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Abstract—Although model transformations are considered to be the heart and soul of Model Driven Engineering (MDE), there are

still several challenges that need to be addressed to unleash their full potential in industrial settings. Among other shortcomings, their

performance and scalability remain unsatisfactory for dealing with large models, making their wide adoption difficult in practice. This

paper presents A2L, a compiler for the parallel execution of ATL model transformations, which produces efficient code that can use

existing multicore computer architectures, and applies effective optimizations at the transformation level using static analysis. We have

evaluated its performance in both sequential and multi-threaded modes obtaining significant speedups with respect to current ATL

implementations. In particular, we obtain speedups between 2.32x and 38.28x for the A2L sequential version, and between 2.40x and

245.83x when A2L is executed in parallel, with expected average speedups of 8.59x and 22.42x, respectively.
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1 INTRODUCTION

THE progressive adoption of Model-Driven Engineering
(MDE) [1] approaches for developing better andmore effi-

cient software is posing different kinds of challenges to cur-
rentMDEmethods and tools. Despite the potential benefits of
MDE technologies to significantly reduce time to market and
improve product quality, they still suffer from some limita-
tions thatmay hinder their full adoption by industry (see, e.g.,
[2], [3], [4]). In particular, the scalability, usability and perfor-
mance of model transformations (MT) are crucial issues that
need to be tackled if they are to be effectively used to address
scenarios such as model-driven modernization of legacy sys-
tems and the engineering of large and complex applications
in, e.g., the automotive, biology or aerospace domains.

At thismoment, ATL [5] andQVT [6] are themost widely-
used model transformation languages [7]. Although they
provide powerful abstractions to specify and implement
transformations between models and to generate model
views, their implementations have limited scalability, and
thus the execution time of transformations may become

prohibitive with large input models (e.g., in the order of mil-
lions of elements), or even medium-size input models if the
transformation has complex model navigations. One reason
for this lack of scalability is due to the fact that most transfor-
mation engines are implemented as simple interpreters and
they barely use static analysis information to apply compile
time optimizations or to improve their scheduling. More-
over, although multicore computers are widely available,
there are very few engines that implement parallel transfor-
mation algorithms.

The contribution presented in this paper addresses the
engineering of an efficient model transformation engine for
the particular case of the ATL model transformation lan-
guage. We have developed a new compiler for ATL, called
A2L, which provides several novel features with respect to
state-of-the-art approaches, namely:

� A2L uses static analysis information provided by
AnATLyzer [8] to compile ATL transformations to
the Java Virtual Machine (JVM), applying optimiza-
tions for OCL expressions and for transformation
rule handling.

� We present a novel algorithm which enables the par-
allel execution of the transformation, using data par-
allelism. This allows A2L to achieve an effective
distribution of the parallel jobs, thus outperforming
other parallel ATL engines which are based on task
parallelism [9], [10].

� A2L is integrated with the ATL/AnATLyzer IDE
and Eclipse Java Development Toolkit (JDT), which
enables the development of transformations using the
facilities provided by AnATLyzer, e.g., quick fixes [11]
and visualizations [12]. Moreover, the compiled code
can be seamlessly integratedwith existing Java code.

A2L has been validated for correctness using the regression
tests defined for the ATL virtual machine [13] and supports
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the majority of the constructs of ATL, including all types of
rules (matched, lazy and called), module and context helpers,
imperative blocks, all datatypes including collections, maps
and tuples, and the standard OCL library. We have run sev-
eral benchmarks that show significant performance improve-
mentswhen comparedwith the existingATL engines.

This paper is organized as follows. Section 2 introduces
the ATL model transformation language and describes the
limitations of current transformation engines through a run-
ning example. Then, Section 3 describes the architecture of
A2L, the compiler we have developed to compile and exe-
cute in parallel existing ATL programs. The more prominent
features of A2L are described in Sections 4 and 5, which pres-
ent, respectively, the algorithm used to execute ATL trans-
formations in parallel, and the A2L optimization strategies
andmechanisms enabled by the use of AnATLyzer static typ-
ing information. Section 6 describes the evaluation that we
have conducted to validate our proposal. Finally, Section 7
discusses related work, and Section 8 concludes with an out-
line on future work.

2 MOTIVATION AND BACKGROUND

Performance and scalability of model transformations is
deemed as one of the most important challenges in MDE
since it enables the use of model transformation technology
to handle large models appearing in scenarios like reverse
engineering, model analysis, or data engineering. It is also
key to apply MDE to other engineering disciplines, such as
construction [14] or automotive engineering [15].

Model transformation languages, notably those with a
declarative form, have the potential to tackle this challenge
because they provide an abstraction to write transforma-
tions which are independent of the execution mechanism. A
good compiler should generate efficient code by analysing
the structure and relationships of the transformation. How-
ever, this possibility has not been exploited in state-of-the-
art MT languages, resulting in poor performance. In fact, a
recent study [7] has revealed that, although MT users value
the advantages of using MT languages, the poor perfor-
mance and scalability issues of MT engines are hampering
their use and forcing them to develop their transformations
in general-purpose languages (even though if it makes the
task more cumbersome and error-prone).

Our working hypothesis is twofold. First, by using static
analysis information, it is possible to compile declarative
transformations to produce high-performance code; more-
over, recurrent transformation idioms can be optimized by
the compiler. Second, since a declarative transformation does
not prescribe the execution order, it is possible to seamlessly

execute a transformation in parallel, if the adequate transfor-
mation algorithm is implemented. More precisely, to achieve
efficient parallel execution of ATL programs, such an algo-
rithm should limit the number of dependencies between
parallel processes to maximize concurrency, while load bal-
ancing between processes should aim at preventing processes
from becoming idle if they finish before others. To this end,
we propose the use of data-based parallelism, whereby the
model is split into chunks of elements that are transformed by
the processes, all running the complete transformation in
parallel.

This paper describes our proposed parallelization algo-
rithm, itsmain features and characteristics, the optimizations
we have applied, and the performance gains it achieves over
existingATLmodel transformation engines.

2.1 ATL

ATL [5] is a hybrid model transformation language that
allows both declarative and imperative constructs. A trans-
formation consists of a set of rules that specifies which ele-
ments of the output model are created from which ones of
the input model.

Listing 1 shows an excerpt of an ATL transformation
taken from the ARTIST project [16] that generates a UML
class diagram (a dependency view) from a Java project.
Excerpts from the input and output meta-models of this
transformation are depicted in Figs. 1 and 2, respectively. In
ATL, the main type of rule is the so-called matched rule. It
consists of an input pattern that might have a filter condi-
tion which is matched on the source model, and an output
pattern that produces a set of elements in the target model
for each matched input pattern. OCL expressions [17] are
used to calculate the values of features of the target ele-
ments. In this excerpt, we have included two matched rules,
Package2Package and Class2Class, which take pack-
age and class elements respectively from the Java model
and convert them to the corresponding counterparts in the
UML model, but filtering proxies out (not s1.proxy). A
rule body consists of binding elements. A binding either
assigns a primitive value (e.g., name  s1.name) or
resolves the source values appearing in its right-hand side
(RHS) to target values generated by other rules. For exam-
ple, the binding in line 15 retrieves and assigns the subpack-
ages mapped by rule Package2Package, and the binding
in line 16 retrieves and assigns all non-proxy classes
mapped by rule Class2Class.

The ATL transformation algorithm works in two phases,
which are graphically illustrated in Fig. 3. The left-hand side

Fig. 1. Excerpt of the Java metamodel (MoDisco).

Fig. 2. Excerpt of the UML metamodel.
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shows a sample input model. In the first phase each matched
rule accesses the input model to get all elements whose type
is compatible with its input element (specified in the from
part of the rules). The filter is used to rule elements out. In
the example, elements jp1 and jp3 are retrieved by the rule
Package2Package but only jp1 satisfies the filter and is
matched. When an element is matched, the target elements
specified in the to part of the rules are created and a traceabil-
ity link is established (depicted by a dashed arrow in the
image) which includes a reference to the rule producing the
link. The second phase of the algorithm consists of traversing
all traceability links and resolving each rule binding in order.
To resolve a binding, its OCL expression in the RHS is evalu-
ated. If the result is a primitive type, the value is directly
assigned to the feature in the left hand side. If it is an object
(or a collection of objects), the internal trace is looked up to
retrieve the corresponding target element and it is assigned
to the left hand side (if it is a collection, the value is added).
In the example, to resolve the binding in line 16, the engine
retrieves and assigns target objects c1 and c2 from source
objects jc1 and jc2 respectively.

ATL also supports rules which must be explicitly
invoked. This is the case of lazy rules. A lazy rule can be seen
as a global function that takes model elements as parameters
and returns a target model element, which is created and ini-
tialized by the rule. In the example, the lazy rule createU-
sageDependency (line 38) defines a dependency between
the class that defines a field and the field type. In line 21, the
rule is invoked. Since the lazy rule generates the target ele-
ment, it can be assigned directly in the corresponding bind-
ing (i.e., no binding resolution is needed).

The ATL code is compiled into bytecode for its execution
using two main runtime engines: the default ATL virtual
machine [5], whichwas released alongwith theATL language;
and EMFTVM [18], which provides performance improve-
ments as well as other advanced language features such as the
possibility to execute in-placemodel transformations.

2.2 Static Analysis of Model Transformations:
AnATLyzer

A model transformation is typed against its input and out-
put meta-models. This means that the types and features
used in the transformation program must exist in the

Listing 1. Excerpt of the Java2UML transformation.

Fig. 3. Representation of a sample transformation execution.
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corresponding meta-model. This can be enforced dynami-
cally (at runtime) or statically (at compilation time). Some
languages, like QVT-Operational, enforce this statically,
while others, like ATL and Epsilon ETL [19], do it dynami-
cally. In addition, data dependencies between the input
model and the rules which match the elements, as well as
among the transformation rules (i.e., established by means
of bindings in the case of ATL), may exist. In this work, we
have used AnATLyzer [8], [12] to statically analyse ATL
transformations and benefit from this information to imple-
ment our compiler.

Fig. 4 illustrates some of the static analysis information
made available by AnATLyzer. First, every node of the
abstract syntax tree of the transformation is annotated with
its type (i.e., a reference to the corresponding meta-model
element). There are three bindings to initialize package-

dElement, whose semantics is to add elements (i.e., the sec-
ond binding does not override the previous setting because
it is a collection). For example, the type of the first binding is
Sequence(JAVA!Package) because AnATLyzer recog-
nizes the use of oclIsTypeOf and performs an implicit casting.
From the inferred types, AnATLyzer builds a graph to make
dependencies among rules explicit. For instance, the first
binding packagedElement can only be resolved by rule
Package2Package because of the implicit casting that
determines that the RHS of the binding will only have
JAVA!Package elements. The second binding is resolved
by the rule Class2Class because the return type of non-
ProxyClasses is Sequence(JAVA!ClassDeclara-

tion). Finally, the third binding does not need to be
resolved because it directly assigns target elements gener-
ated by the createUsageDependency rule.

2.3 Limitations of Current Approaches

The original ATL transformation algorithm, based on the two
phases described above, and its implementations (both in the
standard ATL Virtual Machine (VM) [5] and EMFTVM [18]),
can cope with scenarios involving small or medium-size mod-
els. However, their performance and scalability rapidly
degrade as the size of the input models grows. Among other
reasons, they fail to exploit a variety of interesting performance
and optimization opportunities, which are described next.

Limited Parallelism. The algorithm and its current imple-
mentations are sequential. A relatively simple approach to
make the algorithm parallel is to use task parallelism [10],

in which the parallelisation unit is the transformation rule.
However, this approach is sub-optimal since it suffers from
lock contention and unbalanced loads (i.e., some threads
will be idle if they finish their tasks earlier than others).
Using a data parallelism approach, all processes perform
the same task, but on different chunks of data—it is the data
that is split. Contrarily, in task parallelism, it is the model
transformation that is split into separate smaller processes
(e.g., a rule) and all of them work on the same data. As dem-
onstrated in [20], using data parallelism to implement con-
current model transformations can produce significantly
better results.

Inefficient Model Access. A transformation engine which
does not exploit type information (such as the existing ATL
virtual machines) does a “blind access” to the input model.
This means that after loading the input, it cannot discard
unused parts of the model. For instance, in the example (see
Fig. 3), objects of types JAVA!Field and JAVA!Method

will never be matched by a rule, and thus, they could be
ruled out in the loading phase. We will improve rule match-
ing by considering, in a pre-processing step, only those ele-
ments that are relevant for the transformation.

Expensive Runtime Checks. The ATL compiler does not
perform any type checking, which means that it needs to
insert code to perform dynamic checks, including, e.g., the
cardinality of the LHS of the binding, or calls to helper
methods. Moreover, it can only use the reflective EMF API,
which also imposes an additional overhead. We will use the
information made available by the type checker to avoid
these kinds of overheads.

Lack of OCL Optimizations. Complex transformations typi-
cally contain many OCL expressions and operation helpers.
These expressions are often devoted to navigating collec-
tions. A good implementation of OCL is critical to achieve a
satisfactory performance on large models—especially when
collection operations are involved. It has already been
reported that the standard ATL VM does not handle large
collections efficiently [21] and it is the EMFTVM engine
which does provide a better implementation. However,
both engines have not addressed optimizations yet. For
instance, the expression

s1.nonProxyClasses->collect(p2| p2.getRefClassFields)

->flatten()->collect(e|thisModule.

createUsageDependency(e))

requires two intermediate collections to be created (for
the first collect and the flatten). An optimizer could
identify this pattern and evaluate the expression without
creating unnecessary intermediate collections.

To the best of our knowledge, there is no transformation
engine that makes use of static analysis information to
improve its performance, and combines this with parallel-
ism to take advantage of all the computing power of current
CPUs.

3 A2L: A COMPILER FOR ATL

Our technical approach to address the limitations presented
above is based on a compiler from ATL to Java. Fig. 5 shows
its architecture.

Fig. 4. Static analysis of the example transformation.
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First, it performs static analyses using AnATLyzer. This pro-
duces an extended ATL abstract syntax model (AST), which
includes type information, control flow and data flow infor-
mation. This will be used throughout the compilation process.

The optimization phase (described in detail later in Sec-
tion 5) is in charge of detecting common transformation pat-
terns that can be particularly managed to generate efficient
code. To implement the optimizations, special nodes are
added to the AST. Each of these nodes represents an optimi-
zation pattern. The optimizer is in charge of detecting the pat-
terns and replacing the AST nodes. Then, the compiler has
specific extensions to produce specific code for these nodes.
This optimization phase is optional and can be disabled.

The compilation phase generates all the code and related
artefacts needed to execute the transformation in the JVM.
An essential feature of A2L is that it targets a transformation
algorithm specifically designed to execute the model trans-
formations concurrently, using data parallelism to achieve
adequate performance results (the algorithm is described in
detail later in Section 4, and the gains in performance are
presented in Section 6).

As a result of these three steps, the compiler generates
four main artefacts (Fig. 5). The Runner allows the user to
configure the transformation execution programatically
(e.g., to set the input models, to configure the number of
threads, etc.). The Pre-processor is in charge of filtering
the input models to optimize the rule matching by consider-
ing only those elements required by the transformation
rules. The Transformation contains the actual transfor-
mation behavior which will be executed by the parallel pro-
cesses. Finally, the Post-processor is in charge of
combining the results of all the processes that have been
working in parallel to realize the transformation, and to
generate the output models.

The following sections describe in more detail these fea-
tures of the A2L compiler. We begin explaining our parallel
transformation algorithm. Then, we explain the optimiza-
tion strategies and mechanisms to implement them.

4 PARALLEL EXECUTION OF ATL
TRANSFORMATIONS

To address the lack of parallelism of ATLwe have designed a
new transformation algorithm. The algorithm is intended to
respect the semantics of the original one but, in addition, it
enables data-based parallelism and focuses on minimizing
the amount of lock contention among theworker threads.

In data-based parallelism, all threads execute the same
code but on different chunks of data. The advantage over
task-based parallelism, as proposed in [10] for ATL, is that
processors are less prone to be idle. We have redesigned the

ATL transformation algorithm to make it amenable to data-
based parallelism, generalizing the approach proposed
in [20]. Our algorithm is presented in Algorithm 1. It works
in three phases, pre-processing (line 4), execution (line 4)
and post-processing (line 10). The architecture to execute
these phases in parallel is illustrated in Fig. 6 and it is
described next.

Algorithm 1. Data-Oriented ATL Algorithm

1 def transform(model, transformation)
2 // Step 1: Pre-processing
3 types footprint(transformation)
4 buffer preprocess(model, types)
5 // Step 2: Parallel execution
6 // This loop does sequential execution,
7 // parallel execution requires assigning jobs to threads
8 foreach e in buffer do
9 execute(element)
10 end
11 // Step 3: Post-processing
12 foreach b in pendingBinding do
13 resolve(b)
14 end
15 end
16 def execute(element)
17 foreach rule in transformation.rules do
18 if rule.filter(element) then
19 executeRule(rule, element)
20 break
21 end
22 end
23 def executeRule(rule, element):
24 foreach type in rule.outputElements do
25 target = createObject(type)
26 create trace link (element, target)
27 end
28 foreach binding in rule.bindings do
29 right = evaluate(binding) if binding is primitive then
30 target.”binding.feature” right
31 else
32 // Resolve the binding
33 foreach resolving in binding.resolvingRules do
34 if resolving.filter(element) then
35 add to pendingRules (target, binding, right)
36 break
37 end
38 end
39 end
40 end

Pre-Processing. The input model is read from some source
(label 1). Its elements are placed in a buffer which will be
used by worker threads in the next phase when fetching
work. However, not all model elements are required by all
worker threads, only those whose type is declared by the
matched rules in their source patterns. Thus, this set of
types is extracted from the static analysis of the transforma-
tion, and used to filter the source model (lines 3-4). In the
transformation example, this set consists of Package and
ClassDeclaration types. The intended effect is to reduce
the size of the buffer and to speed up rule matching, since
there are less elements to consider. Although this step is

Fig. 5. Compiler architecture.
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done sequentially, the actual overhead due to the filtering is
small since the engine needs to load and prepare the input
model in any case.

Execution. This phase is in charge of executing the transfor-
mation logic. In the sequential version each element in the
buffer is processed one after another. In the parallel version,
we spawnworker threads (label 2). Aworker obtains a chunk
of data from the buffer (label 4), which is split into chunks of
a given size (e.g., 512 model elements). Each worker has a
counter to represent the chunk that is currently transforming.
When it finishes, it asks for the next chunk to the scheduler,
which uses an atomic integer variable to represent the last
chunk given to aworker. The scheduler uses an atomic opera-
tion to increment the counter (label 3), which means that the
increment operation for the chunk counter does not need to
be guarded by a lock because it is done atomically. This way,
there are no locks involved in the algorithm and we expect
less contention. There are several possible strategies to split
to decide the chunk size. The simplest one is to use a fixed
chunk size. The larger the chunk size the less competition to
get more work. However, it may happen that some threads
are idle at the end of the transformation execution (i.e., load
imbalance). On the contrary, setting a small chunk sizewould
lead to more contention. The alternative is a dynamic sched-
uling policy in which chunks are larger at the beginning and
smaller towards the end, but this implies some overhead.
Therefore, we have implemented a mixed strategy in which
we split the buffer in two parts. The first one is statically
divided into chunks of size 0:75� buffer size=num workers,
which are large enough for each worker to start transforming
elements. As soon as these chunks are finished, the algorithm
continues with a dynamic scheduling strategy that uses
smaller chunks (10 elements in the current configuration) to
preventworkers from being idle.

Each worker uses a new instance of the transformation,
given that we are using data-based parallelism, which has its
own local state so that threads do not compete to access
shared resources (label 6). For each element of a chunk, we try
to find a matching rule. In practice, rule matching consists of
checking the rules of the transformation in some order. Actu-
ally, in ATL the order is irrelevant because a given source ele-
ment can only be matched by one rule, otherwise a runtime
error is raised. Algorithm 2 illustrates the style of the code
generated formatching the rules of the running example.

Algorithm 2. Example of Rule Matching

1 def transform(element)
2 if model2model_match(element) then
3 model2model_execute(element)
4 else if package2package_match(element) then
5 package2package_execute(element)
6 else if class2class_match(element) then
7 class2class_execute(element)
8 end
9 end

If a matching rule is found, the output elements are cre-
ated and a trace record is generated to establish a mapping
between the input and output elements. Thus, each trans-
formation instance contains a partial trace (LocalTrace in the
figure) to store such records locally to avoid any locking sit-
uation. In addition, the RHS of each binding is evaluated.
Primitive bindings are assigned directly, but non-primitive
bindings (i.e., those whose RHS evaluation returns a set of
model elements) cannot be evaluated because the corre-
sponding target models may not have been transformed
yet. Thus, we delay this task by recording the fact that such
dependency has yet to be resolved (PendingBindings in
Fig. 6). This approach is a generalization of [20] in which
special identifiers are used to construct model references
which are yet to be resolved. The advantage in this case is
that it is independent of the meta-modelling framework
and the subsequent resolution does not require to traverse
the full target model, but can be done by a constant-time
look up.

Post-Processing. The main task of this phase is to resolve
bindings, given that now all target model elements are
available. For each unresolved binding its RHS is used to
look up the partial traces in order to retrieve the corre-
sponding target elements and assigning them to target fea-
tures (label 7). In the sequential scenario, looking up a
single trace has a constant cost Oð1Þ because the trace model
can be indexed by source element using a hash map. How-
ever, an undesirable effect of the parallelization is that,
now, each trace lookup has a cost proportional to the num-
ber of worker threads, because for p threads we may need p
accesses to the partial traces (that is, the cost is OðpÞ. To miti-
gate this shortcoming, we also execute the post-processing
in parallel. This requires classifying unresolved references

Fig. 6. Components of the technical realization of the parallel transformation algorithm.
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into overlapping and non-overlapping. Two references are
overlapping if they may potentially cause a race condition
when set in parallel.1 This is the case of opposite references
and references that are set in more than one location in the
transformation. In the example, client and supplier are
non-overlapping, but packagedElement is overlapping
because there are several assignments in the same rule. At
the end of this phase, the output model may be configured
as required by the underlying meta-modeling framework
(label 8). In particular, if the target model is in EMF format,
we need to establish the root elements of the resulting EMF
resource.

This algorithm exhibits almost the same functional
behavior of the original ATL algorithm, but it enables data
parallelism. The only observable difference is that the order
in which root elements appear in the model is not determin-
istic (i.e., elements which are not assigned to any contain-
ment reference) because each run may allocate chunks
differently. Section 6 evaluates the speed up that can be
obtained by applying it to exploit multi-core CPUs. How-
ever, it is possible to achieve even greater performance by
optimizing the compilation of the sequential part of the
transformation.

5 OPTIMIZATIONS

The availability of typing information allows our compiler
to target a typed runtime environment like the JVM.
This already provides a performance improvement over
dynamically typed languages like ATL or ETL, and over
interpreter-based approaches like most QVT implementa-
tions. In addition, another significant increase in perfor-
mance is possible by applying a number of optimizations
to handle common transformation scenarios and idioms.
The most relevant optimizations that A2L implements are
described next.

5.1 Optimizations at the Transformation Level

These optimizations are intended to improve the perfor-
mance of the execution of the transformation rules. They
include the process of matching input elements and the
binding execution.

Matched Rule Ordering. Our algorithm tries to match
each input element against the input pattern of each
matched rule. Algorithm 2 shows the generated code. The
sooner the matching rule is identified, the more efficient
the process is, because it avoids checking unnecessary con-
ditions. Finding the matching rule as soon as possible
depends on three main factors: the order in which the pat-
terns are checked, the complexity of the rules’ filters, and
the structure and contents of the input model (some rules
are matched more frequently than others depending on
the particular model).

Our approach is to heuristically prioritize rules according
to their filters. We count the number of OCL elements to be
evaluated as part of the filter execution, and check the rules
with fewer elements first. The rationale is that, in the worst
case, all rules must be checked and thus it is preferable to

check the cheaper ones first. If a given element is eventually
matched by a rule with a costly filter, the time spent on
checking the wrong rule filters first is low. However, other
heuristics are possible, such as estimating the chances of
matching an element by considering the operations used in
the filter (e.g., equality operation would match less elements
than inequalities).

Transformation Footprinting. We use the transformation
footprint to filter the input model in order to consider only
those elements that may actually be matched by some
matched rule. Notably, we only use the partial footprint,
meaning that we are only interested on the types declared
in the source pattern of the rules. In the running example,
the partial footprint of that transformation consists of the
set footprint={Package,Class}. This is specified in
line 3 of Algorithm 1. We intend to significantly reduce the
buffer size in scenarios in which the transformation only
matches a small subset of the model. Although the default
ATL algorithm behaves differently (it computes an associa-
tive table to gather objects per type) it would also benefit
from this optimization since the table size could be smaller
by only recording needed elements. Moreover, we use this
step to pre-compute global data such as ClassDeclara-

tion.allInstances(), thus avoiding another model
traversal.

Binding Handling. ATL relies on binding resolution to
assign target references implicitly. To resolve a binding,
ATL checks if the the value of the RHS is a primitive value,
an object, or a collection of primitive values and/or
objects. If it is a collection, it might be the case that it is a
nested collection, in which case it needs to be flattened.
A2L does not need to check these conditions at runtime
since it knowns at compile time whether the RHS contains
primitive or object values, and whether collections are
nested or not.

Trace Footprint Reduction. ATL relies on recording trace
links between the input elements matched by a rule and
the corresponding elements created upon execution. A
transformation engine without access to information about
rule relationships will generate trace links even in cases
where they are not needed. In A2L, we apply an optimiza-
tion to reduce the trace memory footprint, namely, we ana-
lyse which rules may need to resolve a given binding.
There are two main scenarios: a) if a matched rule is never
used to resolve a binding, the link between the input ele-
ment and the primary output pattern element does not
need to be recorded, and b) if a matched rule has more
than one output pattern element, there is no need to record
the trace link for the secondary elements (i.e., all elements
except the first one) unless there is a resolveTemp opera-
tion which retrieves them (in ATL, the resolveTemp

operation is used to explicitly retrieve a target element
from a given source element).

This optimization is useful to reduce the memory footprint
when there are rules that create, for a single input element, a
large connected set of elements, but other rules only need to
link a single element—typically the parent of these elements.

5.2 OCL-Related Optimizations

As mentioned in the introduction, A2L supports all ATL
and OCL datatypes including collections, maps and

1. Some meta-modelling frameworks, including EMF, are not
thread-safe.
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tuples, and the standard OCL library. ATL makes heavy
use of OCL expressions for navigating the models, select-
ing elements in the rule filters, and for calculating the val-
ues of the target elements’ features. However, the
evaluation of these OCL expressions is often inefficient,
in particular regarding the use of collections. This is due
to the fact that OCL datatypes are immutable, which
means that each operation over a collection needs to
return a new collection. The transformation engine should
therefore use internally a library for immutable collec-
tions, but this is sometimes not enough when dealing
with very large models. The problem is that these
auxiliary collections can be huge and they can be unnec-
essarily created several times during an OCL expression
evaluation. Moreover, the typical OCL access patterns
for collections are not well suited for immutable collec-
tions (e.g., in sequences including appends an element,
but in an immutable list prepend is typically more
efficient).

To address this issue, we have a two-step approach. In
the first step, we perform escape analysis to check
whether a given collection may be modified in more than
one location. In this case, it is not possible to apply any
optimization and we resort to immutable collections.
However, if a collection is not going to be shared, we
mark each involved (sub-)expression as mutable, so that in
the second step the compiler is free to generate code
using mutable collections. For instance, in the following
listing, the first example shows a piece of ATL for which
it is possible to generate code using mutable collections,
whereas in the second example we must use immutable
collections

In a second step, we use the results of the escape anal-
ysis. We try to optimize certain access patterns for which
we can generate optimized code that avoids redundant
creation of temporary collections by using mutable collec-
tions. For instance, the evaluation of the following OCL
expression using immutable collections requires travers-
ing two intermediate collections (one for select and
another for collect) whose size is equal to the number of
UML!Class instances.

However, if the resulting collection is not shared we can
generate more efficient code which avoids unnecessary
processing and memory usage. Our compiler detects this
particular pattern and generate specific code for it, using
only one traversal of the source collection and without inter-
mediate collections. The following listing illustrates the
code that would be generated.

Table 1 shows a summary of the most relevant optimiza-
tions, described by means of their context, a prototypical
example of each one, and how they are implemented in
A2L, i.e, the Java code generated for them.

5.3 Automatic Caching

This optimization deals with OCL code that computes the
same value several times, and such computation can be
potentially time consuming. It is possible to increase the
execution performance if such computations are cached so
that they are reused in subsequent accesses. ATL supports
caching by factorising code in attribute helpers, but this
requires the developer to identify which code locations
should be cached. Our compiler detects some of these loca-
tions and generates code that caches repeated results. In
particular, we consider a hot spot a sub-expression within a
nested loop such that it starts with a variable that is inde-
pendent of the outermost loop. For instance, in the follow-
ing code the value c2.allSuperClasses()->reject

(...) is reused across iterations of the outer forAll

because it is cached.

The last row of Table 1 shows another form of automatic
caching, in which certain access patterns are compiled as an
indexing operation. The index is filled in the pre-processing
phase in order to provide fast access during the transforma-
tion execution.

6 VALIDATION

To evaluate our approach, we have defined four research
questions regarding the correctness of the obtained transfor-
mation outputmodels, the completeness of the ATL language
support, the speedup compared to existing ATL engines and,
finally, the scalability of A2L, i.e., the speedup gained when
raising the number of available cores. To answer these ques-
tions, we carried out an empirical case study [22] by following
the guidelines for conducting empirical explanatory case
studies by Roneson and H€orst [23]. Moreover, the implemen-
tation, case studies and scripts to reproduce our results are
available at http://github.com/anatlyzer/a2l.

In the next subsections, we describe our research questions
and the case studies and metrics we have used to answer
these questions. Finally, we discuss the answer to each
research question and the overall threats to validity of our
proposal.

6.1 Research Questions

Our study addresses the following four research ques-
tions. With these questions, we aim to justify the use of our
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compilation strategy and our parallelization approach in
order to significantly improve the performance of ATL trans-
formations. At the same time, we argue about the correctness
and completeness of our approach.

RQ1 Compiler Correctness: Does the code generated by the A2L
compiler exhibit the same functional behavior as the stan-
dard ATL engine? To validate the correctness, we
compared the results of running transformations
compiled with A2L against the results of running the
same transformations on the standard ATL VM. We
resort to an available set of regression tests already
used by ATL transformation engines [13] to test their
correctness.

RQ2 Compiler Completeness: How much of the ATL lan-
guage is the A2L compiler able to deal with? To vali-
date its completeness, we evaluated the coverage
of the ATL language, defined by the ATL metamo-
del, for which the A2L compiler provides support.
Moreover, we have manually checked against the
ATL documentation which features are actually
supported by A2L.

RQ3 Performance: What is the gain in performance when com-
pared with ATL VM and EMFTVM? To evaluate the
performance of the implementation we have used
seven case studies, which exercise several transfor-
mation styles and ATL constructs. We compared the
execution times of different A2L versions (non-opti-
mized, optimized, sequential and parallel) with

the standard ATL VM and EMFTVM. EMFTVM is a
newer ATL engine that compiles to Java bytecode
on the fly and it is reported to achieve gains of
80 percent in basic benchmarks. In the experiments,
we used A2L in both sequential and parallel mode.
The sequential execution allows us to show the gains
obtained only by the use of static analysis and opti-
mizations. The parallel execution aims to validate
our parallelization strategy. Since the optimizations
are optional, we also compared the executions with
and without the optimizations, to assess their impact
on performance.

RQ4 Parallelism: What are the effects of adding more cores?
We analyse how the number of cores influences the
execution times of ATL transformations parallelized
by A2L. We have executed our case studies using an
increasing number of threads and recorded the
obtained speedups.

6.2 Experimental Setup

6.2.1 Case Studies

RQ1 and RQ2 are evaluated using the same set of 24 regres-
sion tests [13] that the ATL team used to validate the correct-
ness of two consecutive versions of the ATL Virtual
Machine. Each of these tests consists of one model transfor-
mation and all the necessary artifacts needed to execute the
transformation, i.e., the input and output metamodels, and a
sample input model. Since none of these tests provides large

TABLE 1
Summary of the Most Relevant OCL Optimisations

The target code is written in a Java-like pseudocode for simplicity.
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models, to answer RQ3 and RQ4, we considered seven addi-
tional case studies: java2uml (reverse engineering Java code
into UML models), java2graph (creates a graph of dependen-
cies between Java classes), dblpv1 (query the DBLP database
to obtain authors and associated information), dblp2bibtex
(map DBLP entries to BibTeX records), identity (copy trans-
formation of the IMDB database), findcouples (extracts actors
from IMDB who played together) and airquality (queries
weather data obtained from sensors). For these transforma-
tions, we have models with up to 5.6 millions elements, and
1.2 GBwhen serialized and stored in disk.

In order to characterize our benchmark, we have consid-
ered six dimensions, which are used in Table 2 to summa-
rize the main characteristics of the performance case
studies:

1) I/O size is the expected size of the output model with
respect to the size of the input model.

2) Matching cost is the expected cost of rule matching, in
particular the complexity of the rule filters.

3) Rule cost is the expected cost of rule execution, which
is the complexity of the RHS of the bindings.

4) FP size is the footprint size with respect to the input
model size, that is, if the transformation has rules
that attempt to match all input elements.

5) OCL refers to the dominant OCL elements in the
transformation: collection intensive, usage of
allInstances, conditionals, etc.

6) Finally, we count the transformation elements in
order to have an indication about its “size”: number
of matched rules (MR), number or called or lazy rules
(LR), number of helpers (H), dependencies between
rules as the number of bindings for references (B),
number of imperative blocks (I).

All transformations except identity and dblp2bibtex
generate output models which are smaller, in terms of
number of elements, than their corresponding input
models (I/O size). This means that they either rule out
many elements in the rule filters (they have a high
matching cost) or its footprint with respect to the origi-
nal meta-model is small (they purposely lack rules to
match certain elements). Both identity and dblp2bibtex
exercise the ability of the engine to handle many binding
resolutions. Regarding the matching cost, we have that
airquality, dblpv1 and dblp2bibtex have at least one rule fil-
ter which traverses collections or accesses all instances of
a given type, so it is expected to be costly, whereas the
other four transformations have very simple or no rule
filters. The execution of cost of airquality and dblpv1 is
low because they are “query transformation” whose

target elements have simple initialisations. In this respect
identity also has simple initialisations, but it has more
binding dependencies which makes the post-processing
phase time consuming.

6.2.2 Evaluation Metrics

To answer our research questions, we use several metrics
depending on the nature of the research question.

Model Comparison Metrics (RQ1): To evaluate research
question RQ1, correctness, we need to compare the resulting
models after running the code produced by the A2L com-
piler, with those obtained from the execution of the stan-
dard ATL VM. For this, we used EMF Compare, a model
comparison framework that compares two models and
reports differences between them, such as additions, dele-
tions, and updated elements.

Language Coverage Metrics (RQ2): To evaluate RQ2, we
computed the footprints of the ATL transformations with
respect to the ATL metamodel. This gives an estimation of
how many features are tested by the test cases.

Execution Performance Metrics (RQ3 and RQ4): To evaluate
research questions RQ3 and RQ4, we calculated the execu-
tion time of the seven case studies listed in Table 2, using a
large model as input. We run the experiments on a desktop
machine with Ubuntu 18.04 and kernel 5.3.0, a i7-5820K
CPU, with 6 cores at 3.30GHz and hyper-threading (12
threads) and 16 GB of RAM, which is expected to be repre-
sentative of a typical setup of a professional developer. We
have used Java 8 (OpenJDK 1.8.0_252) configured with the
default options except for the heap size which was set to
8 GB (-Xms=8196m -Xmx=8196m), except for dblp2bibtex
which was set to 12GB. Each case study is run 10 times with
the different engines, discarding the first two runs (as warm
up). We perform the 10 executions together in the same VM
instance, but after each execution we wait until the garbage
collector has released the used memory. We report the aver-
age results.

6.3 Result Analysis

6.3.1 Results for RQ1

We executed the 24 regression test cases and compared the
output models produced by the standard ATL engine and
by A2L. All test cases produced the same results, apart from
five of them that could not be directly executed.

We could not compile the ATL2Problem transformation
with A2L because its typing is too convoluted for AnATLyzer
and it cannot properly infer the type of a couple of expres-
sions. Another two unsupported transformations were
DSL2XML and KM32DSL, because they set global variables

TABLE 2
Main Features of the Case Studies
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using some reflective operations which are currently unsup-
ported by A2L. Similarly, the SpreadsheetMLSimplified2Trace
transformation uses global attributes in a way that adds seri-
ous performance penalties to the parallel algorithm. It is
worth noting that all of these four transformations could be
rewritten so that they could be compiled by A2L. For
instance, when there are global variables involved, a strategy
could be to use helpers to compute the global information
from the sourcemodel each time (possiblywith some penalty
in the execution time).When the problem is related to typing,
it might be possible to insert specific annotations (e.g., a
dummy version of oclAsType) in dedicated places to guide
the type inference performed by AnATLyzer [24]. Finally, the
ATL andA2L output models of theXML2DSLModel transfor-
mation were slightly different because this transformation
suffers from child stealing, i.e., an element is set to a contain-
ment referencemore than once.

6.3.2 Results for RQ2

The test cases used in our experiments cover 88 percent of the
ATL meta-model. The missing 12 percent belongs to meta-
model elements used to represent declaration of libraries
and querymodules, unique lazy rules, entry point rules, rule
inheritance and map types. We have separate tests for all of
these elements, except query modules and rule inheritance

which are currently not supported. Althoughwe do not fore-
see any difficulty in supporting rule inheritance in the future,
we decided not to implement it at this stage because it is
rarely used in practice [25].

We have used the ATL manual as reference for our
implementation. Table 3 shows the language features cov-
ered by A2L. We support all forms of matched rules (i.e.,
1:1, 1:N, N:1 and N:N) and all major ATL features.

6.3.3 Results for RQ3

Table 4 shows the execution times of the case studies in our
desktop machine. It compares two versions of the ATL
engine (the standard VM and EMFTVM) against four differ-
ent configurations of A2L: sequential mode without optimi-
zations (seq O�), sequential mode with optimizations (seq
O+), parallel (using 12 cores) without optimizations enabled
(par O�), and parallel (using 12 cores) with optimizations
(par O+) — or simply A2L, since this is the default A2L
mode. The figures shown in Table 4 correspond to the aver-
age execution time in seconds of eight runs of each transfor-
mation. Note that the execution time excludes model
loading, but in the case of A2L, it includes the three phases
of the algorithm: pre-processing (filling the buffer after
model loading), transformation execution, and post-proc-
essing. We did not include the parallel ATL [9] implementa-
tion (pATL) because it is not supported anymore and we
could not make it work reliably.

Table 5 shows the speedups obtained by the different
transformation engines and A2L execution modes. For each
one, we calculated the individual speedups achieved in all
the case studies (excluding the dblp2bibtexmodel transforma-
tion in the comparisons between ATL/EMFTVM and A2L
because it could not be executed in ATL and EMFTVM).
Every cell shows a tuple with the minimum (left) and maxi-
mum (right) values, as well as its geometric mean (center),
which is the most informative way to represent the average
speedup as expected by users [26]. The standard ATL engine
is consistently slower than the other options. This is due to
its sub-optimal implementation of immutable collections
which hinders its ability to handle scenarios with extensive
processing of large collections [21]. In particular, the airqual-
ity test case heavily exercises this feature and shows that
EMFTVM is far more efficient (50 versus 1,280 secs). This is
because it uses a custom implementation of immutable (and
lazy) collections. Moreover, EMFTVM compiles to JVM byte-
code on the fly, which provides additional gains. These two

TABLE 4
Performance Comparison

#elements ATL EMFTVM A2L: seq O� A2L: seq Oþ A2L: par O� A2L: par O+

(millions) (1 thread) (1 thread) (12 threads) (12 threads)

airquality 0.1M 1280.40 50.70 6.65 1.32 3.39 0.21
findcouples 3.5M 1765.09 1908.89 1395.66 363.28 299.54 61.60
identity 3.5M 269.00 71.73 11.63 13.87 10.08 10.48
java2graph 4.4M 146.33 2.32 1.65 1.00 1.30 0.97
java2uml 4.4M 49.18 42.05 27.28 4.32 14.59 1.92
dblpv1 5.6M 75.66 48.68 4.68 2.84 2.27 1.05
dblp2bibtex 5.6M - - 783.07 11.73 455.15 8.51

Execution on an i7-5820K CPU@3.30GHz - 6 cores (12 threads). Time in seconds.

TABLE 3
ATL Coverage

Feature Support Observations

Matched rules Yes
Input elements = 1 Yes
Input elements > 1 Yes Via rewriting
Output elements = 1 Yes
Output elements > 1 Yes
Rule inheritance No

Binding resolution Yes
resolveTemp Yes Secondary elements resolution
Lazy rules Yes
Unique lazy rules Yes
Called rules Yes Also end/entry point rules
Helpers Yes Context and global helpers
OCL
Collection types Yes
Tuple types Yes
Collection iterators Yes
Iterate operation Yes

Reflective operations No
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features combined makes it normally much faster than the
standardATL engine (except for the findcouples example).

A2L obtains significant gains over both engines in all exe-
cution modes. Next, we only discuss improvements w.r.t.
EMFTVM since they also imply gains over standard ATL.

In the slowest A2L execution mode (A2L seq O–), the
speedupw.r.t. EMFTVM is between 1.37x and 10.4x depend-
ing on the application. Given that both A2L and EMFTVM
target JVM bytecode, this improvement can be explained (in
addition to differences in the engine internals) by the fact
that A2L does not need to generate code for dynamic checks
and model accesses. Table 4 shows that all case studies bene-
fit from this improvement. The findcouples case study is the
slowest, with a relatively modest performance gain of 1.37x.
The main bottleneck is a nested loop which computes the
same value in different rule applications. This shortcoming
is addressed by our optimizer through automatic caching.
Given these results, it can be stated that it is possible to have
a significant performance improvement by changing the
design of the transformation language from dynamically to
statically typed. All other A2L execution modes (with opti-
mizations and in parallel) outperform EMFTVM even more,
with speedups that range between 2.32x and 38.28x (A2L seq
O+), 1.79x and 21.43x (A2L par O�), and even between 2.4x
and 245.83x in the case of the A2L default behavior (A2L par
O+), depending on the test case. The geometric means indi-
cate expected average speedups of A2L against EMFTVM of
3.37, 8.59, 6.49 and 22.42, respectively.

We also wanted to investigate the individual effects of
optimization and parallelization in A2L. This is why we
compared the performance of the four possible execution
modes of A2L: A2L seq O�, A2L seq O+, A2L par O�, and
A2L par O+.

Using as baseline the sequential mode without optimiza-
tions (seq O�), the speedup obtained by enabling optimiza-
tions (seq O+) ranges between 0.84x and 66.76x depending
on the case study. The worse case is the identity application,
in which the execution time even increases. This is because
the partial footprint of the transformation is equal to the
source meta-model, and therefore our footprint filtering
optimisation only adds overhead to the optimised version
but does not reduce the buffer size (there are no other opti-
misations in that transformation). Therefore, when the par-
tial footprint is equal to the meta-model, it is better not to
activate this optimisation. The best case occurs in the
dblp2bibtex transformation, where optimizations achieve a
speedup of 66.76x due to the automatic indexing optimiza-
tion. The speedup obtained by the use of optimizations in
the airquality case study is 5.2x, because this transformation
is particularly well-suited for collection optimizations given
that it applies several OCL iterators to the set of objects

returned by allInstances (i.e., it needs to traverse the
complete model). The findcouples case study gets a speedup
of 3.84x thanks to the automatic caching optimization. The
rest of the transformations obtain speedups of 1.64x, 6.31x
and 1.65x, respectively, when optimizations are enabled,
with a geometric average of 4.07x.

To analyse the effects of parallelization on the perfor-
mance of A2L (using the 12 threads in our experimental
desktop machine), we compared our baseline A2L seq O�
with A2L par O�. The resulting speedup ranges between
1.15x and 4.66x, which represents a significant improvement,
although not as noticeable as the one obtained with the opti-
mizations. This is clear in the comparison between optimiza-
tions (seq Oþ) and parallelization (par O�), where the
former outperforms the latter 2.14x (’1.0/0.47x) on average.

The speedup obtained by combining optimizations and
parallelization ranges between 1.11x and 92.02x depending
on the case study, compared to the sequential baseline (seq
O�). Again, the identity transformation gets the smallest
improvement (1.11x) while dblp2bibtex obtains the largest
gain (92.02x). The rest of the test cases achieve speedups of
32.23x, 22.66x, 1.70x, 14.19, and 4.47x, respectively.

Finally, if we compare the execution times of the two par-
allel modes (with and without optimizations), the one with
optimizations obtain speedups that range between 0.96x
(identity) and 53.48x (dblp2bibtex). This means that optimiza-
tions also have a positive effect in the parallel results, mainly
because they reduce memory usage, thus reducing the pres-
sure over the garbage collector (i.e., the less garbage collec-
tion pauses the better, because a pause stops all threads and
causes an important degradation in the speedup).

In summary, A2L achieves significant speedups compared
to ATL and EMFTVM. By combining both optimizations and
parallel execution, A2L is able to outperform EMFTVM
between 2.4x and 245.83x, with an expected average of 22.42x.
In this way, A2L execution times for large models become
acceptable in all cases, which is an indication that ATL can
become a competitive model transformation language when
compiled with A2L. In addition, A2L is capable of running
transformations such as dblp2bibtex that may not be executed
with the other engines because of the excessive usage of col-
lection operations over very large collections. In practice,
these results also mean a much better developer experience
because the transformations can be used as part of the devel-
opment processwithout incurring longwaiting times.

6.3.4 Results for RQ4

To answer this question, we have executed the case studies
using an increasing number of cores, from 1 to 12. Our algo-
rithm has three phases: pre-processing, execution and post-
processing, but only the execution phase is expected to have

TABLE 5
Speedups Achieved Between the Transformation Engines: ATL, EMFTVM and the Different A2L Options
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a speedup due to parallelism, because the parallel execution
of the post-processing phase only amortizes the cost of
accessing the partial traces created by each transformation
instance. The speedups obtained in the execution phase for
each case study are shown in Fig. 7. We can see how two of
the test cases (airquality and findcouples) scale up very well,
close to the theoretical limit, which is 6x with 6 threads. Then,
dblpv1 and identity also scale well, with speedups around 4.5x
with 6 threads. However, the other three stop scaling soon.
This can be caused by a variety of reasons. On the one hand,
the rules of these transformations have a modest computa-
tion cost which may increase the competition for obtaining
the next chunk from the scheduler. On the other hand, paral-
lel computations are highly sensitive to external factors. For
instance, a stop-the-world execution of the Java GC would
provoke an important decrease in the speedup. Also, in Java
and EMF in particular there is little control over the memory
layout whichmay cause an increase in cachemisses.

A related question is what is the scalability when taking
into account all the phases of the algorithm, or in other
words, how much the pre-processing and post-processing
phases limit the parallel speedup. Table 6 shows the break-
down of the execution times of the case studies in sequential
and in parallel mode with 6 threads. In some transforma-
tions, like airquality, java2graph, java2uml and dblpv1, the
post-processing time is negligible because they do not
resolve many bindings. However, transformations with
more bindings or whose bindings have many objects in the
RHS, incur in large postprocessing times. Therefore, the
post-processing phase represents the main bottleneck for
scalability in case there are many dependencies among the
elements in the rules, because the traces are distributed in
the threads and there is aO(numThreads) cost to access them.

Overall, it can be claimed that our algorithm exhibits
good scalability, particularly for transformations whose
rules have a high computational cost, but relatively few rule
dependencies.

6.3.5 Further Findings

Compatibility With ATL.The fact that ATL is a dynamic
language poses the challenge of correctly inferring type

information for its compilation to a typed target language
such as Java. In practice this means that we require the
transformation to be considered well-typed by AnATLyzer.
However, when evaluating RQ1, we already found that
ATL2Problemand those transformations using reflective
operations could not be compiled. The fact that we have
been able to compile the rest of the test cases make us believe
that this is a minor issue. Besides, it is always possible to
write an equivalent program compatible with A2L.

At the execution level, there might be differences in the
order in which the root elements appear in the serialized
model, notably when executed in parallel mode. Neverthe-
less, this is not a real incompatibility since this order is not pre-
scribed by the ATLmanual. There are also some differences in
the way errors are handled. In particular, ATL signals rule
conflictswith a runtime exception, whereas A2L ignores them
and relies onAnATLyzer for signalling them at compile time.

Additional Optimizations. In the experiments, we have
observed that the post-processing phase is sometimes a bot-
tleneck when a transformation needs to initialize many tar-
get references. It would be interesting to find out ways to
reduce its impact. At the pre-processing level, it would be
possible to filter the input model at loading time using
approaches like partial model loading [27]. This would
enable the engine to start the transformationwithout waiting
for the model to be fully loaded. Regarding the evaluation of
OCL expressions, more specific optimizations for common
access patterns can be developed. A2L is prepared for this
with a dedicated extensionmechanism.

Using GPLs versus ATL. There is a recent trend in the
modeling community to use general purpose programming
languages (GPL), such as Java or Scala, to develop and exe-
cute model transformations. There are several reasons that
justify such a decision. For example, ðaÞ IDE features avail-
able for GPLs such as live error reporting, quick fixes and
debugging have been traditionally missing for transforma-
tion languages like ATL; ðbÞ the performance and scalability
of ATL, when compared with those of GPL, are much
worse; ðcÞ ATL can only deal with EMF models, which is
not the format in which many models are stored (for
instance, in biology or automotive applications), being
rather inefficient, too. The declarative nature of ATL for
specifying the transformations and the facility to navigate
models using OCL was at the beginning a strong point
against Java, but this is not the case any more after Java 8
supported lambda expressions. Scala was also strong in this
respect, and its efficient performance has made it a good
recent replacement for ATL, too.

Fig. 7. Speedup of the execution phase of the transformations.

TABLE 6
Execution Times for A2L O+

Sequential Par. 6 threads

Pre. Exec. Post. Pre Exec. Post.

airquality 0.01 1.31 0.00 0.01 0.25 0.00
findcouples 0.60 353.65 9.03 0.61 68.64 8.48
identity 0.66 3.88 9.33 0.65 0.87 9.14
java2graph 0.94 0.05 0.01 0.93 0.01 0.01
java2uml 1.10 3.13 0.08 1.06 0.91 0.07
dblpv1 0.73 2.11 0.00 0.74 0.47 0.00
dblp2bibtex 1.88 4.70 5.15 1.84 1.72 5.20
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However, our goal with A2L is to improve the situation
for model transformation languages in general, and ATL in
particular, showing that our design can make MT languages
competitive again against these GPLs. First, the AnATLyzer
tool provides very helpful and useful analyses of the ATL
code which are not possible if the transformation is written
in a GPL. This, together with the quick-fixing and visualiza-
tion capabilities that AnATLyzer provides [11], [12] help
solving the first shortcoming. Second, we have seen how
the performance and scalability of the A2L generated code
can be quite acceptable for transforming large models, with
competitive execution times. Furthermore, the specific opti-
mizations of A2L for the ATL code and the OCL expressions
can provide interesting advantages over GPLs since naviga-
tion code could be written in the most readable manner
without impact in its performance. A transformation engine
also hides the technological complexity related to the
modelling platforms. For instance, we internally optimize
certain type of accesses to multi-valued features for which
we discovered poor performance of the default EMF’s inter-
nal iterators.2 Moreover, the declarative nature of ATL ena-
bles the automatic parallelization of the transformation
code. If a transformation is written in a GPL, this improve-
ment has to be done manually, which is typically difficult,
cumbersome, and error prone.

6.4 Threats to Validity

In this section, we cover the four basic types of validity
threats that can affect the validity of our study [28].

6.4.1 Conclusion Validity

Conclusion validity affects the ability to draw correct con-
clusion about the relations between the treatment and the
outcome, i.e., how reasonable the conclusion is. Examples
that influence this threat to validity include the choice of
sample size, and the measurement of the experiment. In this
respect, the correctness and coverage of the compiler have
been assessed using the standard regression test suite for
ATL [13]. The size of this suite is relatively low, but it covers
a large part of the ATL language. Regarding the perfor-
mance evaluation, there might be specific transformations
for which A2L performs worse than ATL and EMFTVM. To
mitigate this threat, we have used transformations which
exercise different types of scenarios and its analysis shows
that they cover different transformation styles. Moreover,
the large improvents obtained with A2L makes us confident
that improvements will be achieved even in unforeseen
scenarios.

6.4.2 Construct Validity

Construct validity refers to the extent to which the experi-
ment setting reflects the theory, i.e., whether the research/
tests are well-constructed using established standards and
methods. For example, whether the type of samples are rep-
resentative of the population or not; or whether the number
of classes taken reflects common experience. Again, by

using a standard test suite for ATL, we aimed at minimizing
this threat, since the transformations that comprise the suite
provide a representative subset of all kinds of transforma-
tions that can be written with ATL. Likewise, the seven
additional transformations were carefully selected so that
they contain the main features that can have impact on the
performance and scalability of the results, and therefore can
constitute a representative sample of the kinds of ATL
transformations in which we are interested. Moreover, the
sizes of the input models were also selected according to
the model sizes used in similar tests [9], [20] in order to
extract comparable conclusions.

6.4.3 External Validity

This kind of threat limits the ability to generalize the results
beyond the experiment context. In this respect, the fact that
we have used representative model transformations gives
us some confidence that the performance results can be gen-
eralized to the rest of the ATL model transformations.
Regarding how our results could be applicable to other lan-
guages, we believe that for model-to-model rule-based lan-
guages like ETL and RubyTL, the applicability would be
straightforward, provided that an appropriate type checker
is available. QVT-Operational is also rule-based but the rule
structure is more explicit, which implies that there might be
less opportunities for data-based parallelism at the matched
rule level as we do. Nevertheless, the OCL compiler and
optimizer could be adapted. In particular, applying these
ideas to QVT-Operational is part of our future work.

Moreover, we have used differently sized inputmodels for
our study to cover diverse scenarios. However, there may be
scenarios where even larger input models are required to be
processed by model transformations. We cannot generalize
our results for very largemodels (going beyond 10millions of
model elements such as present in the Train Benchmark [29]
for continuous model queries) based on our performed study
and leave this as subject to futurework.

6.4.4 Internal Validity

Internal validity checks whether the test or instrument meas-
ures what it is supposed to. This threat can affect the inde-
pendent variable with respect to causality. That is, the
results may indicate a causal relationship, although there is
none. In this respect, the optimizations at the transformation
and OCL expression level, as well as the parallelization algo-
rithm used to execute the transformation have proved to be
effective to significantly improve its performance. The
speedup results obtained independently for each separated
feature seem to corroborate our hypotheses. The compiler
was designed so that these features could be independently
enabled or disabled, precisely to facilitate these kinds of
analyses.

7 RELATED WORK

With respect to the contribution of this paper, namely the
efficient execution ofmodel transformations by data parallel-
ism and optimizations based on static analysis information,
we identify three lines of related work. First, we discuss gen-
eral approaches for speeding up model transformations

2. This happens because EListIterator.hasNext() invokes
List.size() instead of having its own size property, which pre-
vents JVM optimizations
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which apply smart execution strategies for different contexts.
Second, we discuss research dedicated to the evaluation of
model transformation engines. Third, we discuss approaches
focusing on the parallel execution of model transformations.

7.1 Model Transformation Execution Strategies

In this paper, we have investigated the creation of output
models from input models by following the classical batch
transformation strategy, i.e., the transformation run is con-
sidered as a fresh one which is creating a new output model
from scratch for a given input model [30]. In addition to this
strategy, there are several other strategies for executing
model transformations in particular contexts. First, incre-
mental transformations [31], [32], [33] have been proposed
for cases where output models are already available from
previous transformation runs. In such cases, the transforma-
tion engine may only propagate the changes of the input
models to the existing output models. Second, lazy transfor-
mations [34] have been proposed for cases where only sub-
sets of outputmodels are needed in a first step. In such cases,
the transformation engine only creates these subsets in a first
phase, while other elements are created just-in-time when
they are requested. Third, streaming transformations [35]
have been proposed for transforming so-called streaming
models, i.e., models are considered as an open and continu-
ous stream of model elements opposed to a fixed set of ele-
ments given at once in a closed input model. Fourth, patch
transformations [36] are used in cases where transformations
are evolving and the existing output models have to be
migrated to newer versions of the transformations.

All of the mentioned execution strategies mainly focus on
not having to re-execute the whole transformation by pro-
viding some kind of reactivity, e.g., to changes in the input
models and model transformations or read access to the out-
put models. Needless to say, identifying the transformation
statements that are unnecessary to be re-executed is proba-
bly the best optimization for running transformations out-
side the classical batch transformation area.

While we have focused on batch transformations in this
work, we do not see any major obstacle to adopt the pre-
sented optimizations also for other kind of transformation
execution strategies used for the discussed contexts. On the
contrary, we see the introduction and evaluation of the pre-
sented optimization techniques for these additional transfor-
mation strategies as an interesting line for future research.

In addition to the already mentioned model transforma-
tion execution strategies, in recent years there have been also
major efforts in optimizing the execution of full batch trans-
formations by following the distributed execution paradigm
for transforming large models which are fragmented over
different computing nodes. For instance, MapReduce has
been exploited for running ATL transformations on distrib-
utedmodels [9]. Camargo et al.presented a data-centric fame-
work for distributed model transformations reusing the
Bloom platform [37]. In one of our previous work, we have
employed Linda-based tuple spaces to run distributedmodel
transformations [38]. Finally, graph queries (comparable to
the matching part of model transformation rules such as the
in-pattern of ATL rules) are executed for large models in a
distributed manner by combining incremental graph search
techniques and cloud computing technologies [39] as well as

by providing dedicated optimization concepts such as node
sharing for efficiently executing partially redundant code
fragments [40].

In this paper, we did not consider the distribution aspect
of models but rather focused on supporting the scenario of
running model transformations directly on developer-scale
machines having the models stored in-memory. Thus, we
consider investigations on the distribution aspect in combi-
nation with our presented optimization techniques as a sub-
ject for future work.

7.2 Performance Evaluations of Transformation
Engines

There is work on evaluating the performance of state-of-the-
art model transformation engines. For instance, Amstel
et al. [41] compared the runtime performance of transforma-
tions written in ATL and in QVT, finding that the standard
ATL engine outperforms the available QVT engines. From
these works we can conclude that A2L may also outperform
existing QVT engines, although this needs to be confirmed
with the more recent versions of the QVT engines. In [42],
several implementation variants of the ATL language, e.g.,
using either imperative constructs or declarative constructs,
of the same transformation scenario have been considered
and their different runtime performance was compared.
However, both mentioned works [41], [42] only consider
the traditional sequential execution engines.

A performance evaluation of the standard ATL engines
with respect to running the transformations within database
technologies is performed in [43]. In our work, we currently
do not use a dedicated database technology for storing the
models to be transformed. However, the presented optimi-
zation techniques for ATL rules and OCL expressions based
on static analysis information may also help in cases where
dedicated database technologies are used to produce even
more efficient code that is subsequently executed inside the
databases. An interesting future work line in this respect is
to study the combination of the presented approach of this
paper with current advances achieved for graph databases
(cf. [44] for a survey) as well as investigations of data-paral-
lel operations inside databases (cf. [45] for a comparison of
different execution models) to allow even more efficient
transformations of very large models.

Finally, we also like to mention the Transformation Tool
Contest (TTC)3 that is now running for 13 years. Every year,
there are dedicated transformation cases developed and
submitted by the community for the community. In previ-
ous years, there have also been some transformation cases
that focused on performance and scalability of model trans-
formations. In particular, worth to mention are the Train
Benchmark case, the Movie Database case and the Program
Comprehension case. We have reused and partially adapted
the Movie Database case and the Program Comprehension
case for our evaluation, as they represent outplace batch
transformations that we are considering in this paper.

7.3 Parallel Model Transformations

In recent years, there is an increased interest in parallelizing
different types of model transformations which resulted in

3. https://www.transformation-tool-contest.eu
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dedicated extensions for graph transformation languages,
model management languages based on Epsilon, and also
ATL which we discuss in the following.

First, there is work in the field of graph transformations
wheremulti-core platforms are used for parallel execution of
graph transformation rules [46], [47]. In these papers, specific
focus is put on the parallel execution of the matching phase
of the left-hand sides of graph transformation rules, which is
considered to be the most expensive part. Another work
exploits the Bulk Synchronous Parallel model for executing
transformations based on the Henshin graph transformation
framework [48]. To make use of the Bulk Synchronous Paral-
lel model, the Henshin graph transformation rules are com-
piled to Apache Giraph.

Second, efforts have been made to speed up different
types of modelmanagement programs (which can be consid-
ered as specific kinds of model transformations) for the Epsi-
lon framework [19], [49] available in Eclipse. In particular,
parallel execution support for the different model manage-
ment languages provided by Epsilon has been presented
in [50], [51]. For instance, the authors provide data and rule
parallelization approaches for the Epsilon Validation Lan-
guage (EVL). However, the use of static analysis information
for automatic performance improvement is only mentioned
as future work.

Third, there have been pioneering approaches for the
parallel execution of ATL transformations. In previous
work, we have presented LinTra [20], an approach for run-
ning ATL transformations on Linda-based platforms follow-
ing the data-based parallelization approach. Tisi et al. [10]
presented another approach for the parallel execution of
ATL transformations, using a task-based approach for par-
allelization, as already mentioned in Section 2.3.

7.4 Synopsis

While there are several approaches available for speeding
up model transformations, the scalability of model transfor-
mations is still considered as a major challenge in MDE [52].
We are not aware of any approach that uses the information
from static analyses to find improved (parallel) execution
strategies for model transformations. Thus, we are confident
that in this paper we provide an important cornerstone for
scalable and high-performance execution of model transfor-
mations, which may also help to improve other model
transformation engines beyond ATL. This line of research is
considered critical to the long-term success of model trans-
formation tools, as a recent survey has revealed [30].

8 CONCLUSION

This paper has presented A2L, a compiler for the ATL
model transformation language that aims at achieving effi-
cient transformations of large models. Improved perfor-
mance and scalability is accomplished by two of the main
features of A2L: the use of static information to achieve
effective optimizations on both rule execution and the eval-
uation of the OCL expressions; and the use of data parallel-
ism in the algorithm that implements and executes the
transformation. The results show that A2L produces large
performance gains with respect to existing ATL engines in
both sequential and parallel modes. The figures presented

in this paper should be a baseline for the expected perfor-
mance of future transformation languages.

Our work can be extended along different lines of
research. First, further optimizations can be pursued, mainly
for domain-specific transformations where the semantics of
the particular domains can be taken into account. Second, we
plan to study how our work can be generalised to other
model transformation languages, notably QVT-Operational.
To this end we aim at designing an intermediate representa-
tion from which it is easy to reuse most of the infrastructure.
Implementation-wise, it would be interesting to create an
intermediate representation in which it is easier to perform
rewritings and make our optimizations composable. Han-
dling models from different modeling platforms, beyond
EMF, or even stored as plain Java objects, is another research
line we are also working on, with the goal of widening the
usability of A2L. This line of research may also require the
development of a dedicated debugger which allows the
observation and control of the executing transformations
directly on the ATL code level [53]. Finally, we would like to
explore the possibilities of creating a streaming transforma-
tion engine on top of A2L as well as of employing emerging
database technologies for executing our transformations for
very largemodels.
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Why My App Crashes? Understanding and
Benchmarking Framework-Specific

Exceptions of Android Apps
Ting Su , Lingling Fan , Sen Chen , Yang Liu , Lihua Xu, Geguang Pu , and Zhendong Su

Abstract—Mobile apps have become ubiquitous. Ensuring their correctness and reliability is important. However, many apps still

suffer from occasional to frequent crashes, weakening their competitive edge. Large-scale, deep analyses of the characteristics of real-

world app crashes can provide useful insights to both developers and researchers. However, such studies are difficult and yet to be

carried out — this work fills this gap. We collected 16,245 and 8,760 unique exceptions from 2,486 open-source and 3,230 commercial

Android apps, respectively, and observed that the exceptions thrown from Android framework (termed “ framework-specific

exceptions” ) account for the majority. With one-year effort, we (1) extensively investigated these framework-specific exceptions, and

(2) further conducted an online survey of 135 professional app developers about how they analyze, test, reproduce and fix these

exceptions. Specifically, we aim to understand the framework-specific exceptions from several perspectives: (i) their characteristics

(e.g., manifestation locations, fault taxonomy), (ii) the developers’ testing practices, (iii) existing bug detection techniques’

effectiveness, (iv) their reproducibility and (v) bug fixes. To enable follow-up research (e.g., bug understanding, detection, localization

and repairing), we further systematically constructed, DroidDefects, the first comprehensive and largest benchmark of Android app

exception bugs. This benchmark contains 33 reproducible exceptions (with test cases, stack traces, faulty and fixed app versions, bug

types, etc.), and 3,696 ground-truth exceptions (real faults manifested by automated testing tools), which cover the apps with different

complexities and diverse exception types. Based on our findings, we also built two prototype tools: Stoat+, an optimized dynamic

testing tool, which quickly uncovered three previously-unknown, fixed crashes in Gmail and Google+; ExLocator, an exception

localization tool, which can locate the root causes of specific exception types. Our dataset, benchmark and tools are publicly available

on https://github.com/tingsu/droiddefects.

Index Terms—Mobile applications, android applications, empirical study, exception analysis, software testing, bug reproducibility

Ç

1 INTRODUCTION

MOBILE apps have become ubiquitous recently. For
example, Google Play, Google’s official Android app

market, contains over three million apps; over 50,000 apps
are continuously published on it [1] each month. To ensure
the competitive edge, app developers strive to deliver high-

quality apps [2]. One of their primary concerns is to prevent
fail-stop errors (i.e., app crashes) from releases [3], [4].

1.1 Motivations

In industry, many testing frameworks (e.g., Robotium [5],
Appium [6]) and static checking tools (e.g., Lint [7], Find-
Bugs [8]) are available [9], [10] to improve app quality.
However, many released apps still suffer from crashes. Two
recent studies [11], [12] discovered hundreds of previously
unknown crashes in popular and well-tested commercial
apps. This may make developers wondering “why my app
crashes?”. Researchers have proposed a number of testing
techniques and tools [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24] to reveal app crashes. How-
ever, none of them investigated the root causes of these
crashes. Without the answer to this question, developers
may not know how to effectively avoid and fix these bugs.
By analyzing the 272,629 issues mined from 2,174 Android
apps hosted on GitHub and Google Code, we find nearly
40 percent of the reported crash issues remain open/unfixed
(filtered by the keywords “crash” or “exception” in their issue
descriptions). This situation could compromise the app qual-
ity, considering these issues may probably lead to fail-stop
errors after releasing. Even worse, due to the lack of under-
standing of root causes, the follow-up research, e.g., bug
detection, localization and repairing, might be constrained.
For example, existing fault localization [25] and repairing [26],
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[27] tools for Android apps are limited to a small set of trivial
crash bugs. Thus, it is important to conduct such a study —
characterizing the root causes from a large-scale, diverse set
of real-world app crashes, and investigating how to effec-
tively detect, reproduce, and fix them. However, such a study
is difficult and yet to be carried out, which has motivated
thiswork.

Routinely, when an app crashes, the Android runtime sys-
tem will dump an exception trace that provides certain clues
of the issue (e.g., the exception type, message, and the stack of
invoked methods). Based on the architecture layer throwing
the exception, each exception can be classified into one of
three categories — application exception, framework exception,1

and library exception (cf. Section 2.1). Specifically, we find
framework exceptions account for themajority of app crashes,
affecting over 75 percent of the projects (cf. Section 3). Thus,
we focus on analyzing framework exceptions, and also brief
the other two exception types (cf. Section 3.1).

1.2 Challenges

We face three key challenges in this study. (1) The first is the
lack of comprehensive dataset. To enable crash analysis, we
need a comprehensive set of crashes from many apps. Ide-
ally, each crash is associated with the exception trace, the
buggy code version, the bug-triggering test, and the patch (if
exists). However, to our knowledge, no such dataset exists.
Despite open-source project hosting platforms (e.g., GitHub
andGoogle Code) maintain issue repositories, we find only a
small set of crash issues (� 16%) are accompanied with
exception traces. Among them, only a small fraction has clear
reproduction steps (with target app versions and environ-
ment); even if the issue is closed, the faulty code versionmay
not be linked with the fixed one. (2) The second concerns
difficulties in crash analysis. Analyzing crashes requires deep
knowledge of app logic, Android framework, and even
third-party libraries. However, no reliable tool exists that
can help our analysis. As a result, the crash analysis requires
considerable human expertise and efforts. (3) The third is the
validation of analysis results and findings. To reduce the threats
to validity, we need to consider diverse categories/types of

apps, and cross-check our findings by referring to the devel-
opers’ expertise and experience.

To achieve this study, we made substantial efforts in sev-
eral aspects. Fig. 1 shows the overview of our study.

1.3 Data Collection and Online Survey

We collected 16,245 unique exception traces from 2,486
open-source (F-Droid) apps as our analysis data (see
Fig. 1a) by (1) mining the issue repositories; and (2) apply-
ing the three state-of-the-art app testing tools (Monkey [28],
Sapienz [11], and Stoat [12]). We also run the three testing
tools on 3,230 Google Play apps, and collected 8,760 unique
exception traces, to complement our analysis data. More-
over, we conducted an online survey, and received 135 app
developers’ responses about how they analyze, test, repro-
duce and fix exception bugs to cross-validate our analysis
results and gain more insights (see Fig. 1b).

1.4 Crash Analysis

We aim to answer the following research questions.

� RQ1 (Exception Characteristics): What are the character-
istics of these exceptions, e.g., exception categories, distri-
butions, and locations of manifestation?

� RQ2 (Root Causes): What are the root causes of frame-
work exceptions? What are the difficulties app developers
face when analyzing them?

� RQ3 (Exception Detection): What tools are commonly
used by developers to detect exception bugs? Are they
satisfactory?

� RQ4 (Auditing Tools): How effective is the state-of-the-
art bug detection techniques in manifesting framework
exceptions?

� RQ5 (Exception Reproduction): How is the reproducibil-
ity of app exception bugs? Are there any difficulties of
reproducing?

� RQ6 (Exception Fixing): How do developers fix frame-
work exceptions? Are there any difficulties app developers
face?

Through these questions, we find framework exceptions
account for themajority in both open-source and commercial
apps. They have lower issue closing rate2 (only 53 percent),

Fig. 1. Overview of our study.

1. For brevity, we use framework exception to indicate framework-spe-
cific exception, which can be any exception thrown from Android
framework.

2. The percentage of how many issues has been closed by
developers.
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compared with application exceptions (67 percent).
Through careful analysis, we distilled 11 common fault
categories, which have not been well-investigated before
(cf. Section 3.2).

Informed by the developer survey, we further audited
existing automated bug detection tools on framework
exceptions (cf. Section 3.4). We find dynamic testing tools
can reveal framework exceptions, but are still less effective
on certain fault categories. Their testing strategies have a
big impact on the detection ability. In addition, these testing
tools have low reproducing rates (cf. Section 3.5). We also
find most exceptions can be fixed by five common practices
with small patches (fewer than 20 code lines), but develop-
ers face several difficulties in fixing (cf. Section 3.6).

1.5 Applications

Based on our study, we made several applications: (1) We
constructed DroidDefects, the first comprehensive and largest
benchmark of Android app exception bugs. It contains 33
reproducible and 3,696 ground-truth exception bugs, and
covers diverse exception types, root causes, app complexi-
ties and categories, and relevant bug information. It can
help follow-up research, e.g., bug understanding, detection,
localization, prediction, and patch generation for Android
apps. (2) We optimized Stoat,3 a GUI testing tool, by inte-
grating a number of testing strategies, which quickly
revealed three previously unknown bugs in Gmail and Goo-
gle+. (3) We built ExLocator,4 an exception localization tool,
which can help localize the root causes of specific exception
types. (4) We also demonstrated the possibility of enhancing
static checking and mutation testing for Android apps.

1.6 Contributions

To summarize, we made the following contributions:

� We conducted the first large-scale study to investi-
gate exception bugs (framework exceptions in partic-
ular) of Android apps, and identified 11 common
fault categories. The results provide useful insights
for both researchers and developers.

� Our study evaluated the state-of-the-art bug detec-
tion techniques, reviewed the reproducibility of
these exceptions, and investigated common fixing
practices. The findings motivate more effective bug
detection, reproduction, and fixing techniques.

� We conducted an online survey to understand how
developers analyze, test, reproduce and fix crashes.
This survey gains more insights from the developers’
experiences, and also validates our analysis results.

� We constructed DroidDefects, the first comprehensive
and largest benchmark of Android app exceptions,
to enable follow-up research. We built two prototype
tools Stoat+ and Exlocator to improve bug detection
and debugging, and summarized several lessons
learned.

In our prior work [29], we investigated framework-specific
exceptions in Android apps. In this journal version, we have
made substantial extensions: (1) We additionally analyzed

8,760 exception bugs from3,230 commercial apps fromGoogle
Play. It provided more observations on the characteristics of
exception bugs, and validated the generability of our conclu-
sion (Sections 2.2 and 3.1). (2) We conducted an online survey
among 135 Android app developers. It provided more
insights from the developers’ experiences and complemented
our analysis results (Sections 2.3, Sections 3.1, 3.2, 3.3, 3.4, 3.5,
and 3.6 (RQ1�RQ6)). (3) We revisited our research questions
(i.e., RQ1, RQ2, RQ4 and RQ6) in depth and analyzed together
with the results from the online survey. For example, we addi-
tionally investigated the difficulties the developers face when
analyzing root causes, the common fix practices, and the rea-
sons of library exceptions, etc. (4)We additionally studied two
new research questions, i.e., the testing practices of exception
bugs by developers (RQ3 in Section 3.3), and the reproducibil-
ity of exception bugs from the perspectives of both developers
and testing tools (RQ5 in Section 3.5). It reveals the unsatisfac-
tory points of existing testing tools, and the challenges that
app developers and state-of-the-art tools face in reproducing
exceptions, which have not yet been explored before. (5) We
constructed the benchmark repository DroidDefects. It now
contains 33 reproducible and 3,696 ground-truth exception
bugs and the utility program for facilitating other research
work. For each bug, we provided the faulty code version, the
reproducible test, the exception trace and the explanation of
root cause. DroidDefects can serve follow-up research work
(Section 4). (6) We further illustrated more application
domains of our study. We also extended our analysis on the
empirical study and analysis results, and concluded with sev-
eral lessons learned that were not identified before (Section 5
and 6). Importantly, our dataset, benchmark and tools were
made publicly available at https://github.com/tingsu/droiddefects.

2 PRELIMINARY AND STUDY PREPARATION

2.1 Android Exception Model

The architecture of Android platform is composed of four
layers, i.e., application, framework, library and Linux ker-
nel. Android apps run at the application layer. The Android
framework APIs form the building blocks of apps. To pro-
vide different functionalities and services, Android reuses a
number of libraries (e.g., Apache, SSL, OpenGL). When an
app crashes, a (Java) exception will be thrown from one of
these three layers, which corresponds to application, frame-
work or library exception.

Android apps (implemented in Java) inherit the exception
model of Java, which has three kinds of exceptions. (1)
RuntimeException, the exceptions that are thrown during the
normal operation of the Java Virtual Machine when the pro-
gram violates the semantic constraints (e.g., null-pointer dere-
ferences, divided-by-zero errors). (2) Error, which represents
serious problems that a reasonable application should not try
to catch (e.g., OutOfMemoryError). (3) CheckedException (all
exceptions except (1) and (2)), these exceptions are required to
be declared in a method or constructor’s throws clause (stati-
cally checked by compilers), and indicate the conditions that a
reasonable client program might want to catch. The pro-
grammers are responsible to handle RuntimeException and
Error by themselves at runtime.

Fig. 2 shows an example of RuntimeException. The bottom
part represents the root exception, i.e.,NumberFormatException,

3. Stoat is available at https://github.com/tingsu/stoat.
4. Exlocator is available at https://github.com/crashanalysis/ExLocator.
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which indicates the root cause. Java uses exceptionwrapping, i.e.,
one exception is caught and wrapped in another to propagate
exceptions. In this case, RuntimeException in the top part
wraps NumberFormatException. Note that the root exception
can be wrapped by multiple exceptions, and the flow from the
bottom to the top denotes the order of exception wrappings.
An exception signaler, the first called method under the root
exception declaration (e.g., invalidReal in this case), is the
method that throws the exception. To classify each exception,
we referred to Android documentation [30] (API level 18) and
the heuristic rules defined by prior work (Table II in [31])
according to the signaler’s origin: (1) Application Exception: the
signaler is defined in the application code. We can recognize it
by the application’s package name. (2) Framework Exception:
the signaler is defined in the Android framework, i.e., from
these packages: “android:�”, “com:android:�”, “java:�”, and
“javax:�”. (3) Library Exception: the signaler is defined in the lib-
core inAndroid framework (e.g., “org:apache:�”, “org:json:�”,
“org:w3c:�”) or third-party libraries used by the app. Note
that, in this study, we do not consider native crashes caused by
C++ exceptions, and do not consider Java exceptions caused
by the bugs of Android framework itself.

2.2 Data Collection

2.2.1 App Subjects

We collected our app subjects from F-Droid [32] and Google
Play Store [33].We chose F-Droid due to three reasons. First, it
is the largest repository of open-source Android apps. At the
time of our study, it contains over 2,104 unique apps and
4,560 different releases (each app has 1�3 recent releases),
and maintains their metadata (e.g., project addresses, history
versions). Second, the apps have diverse categories (e.g., Inter-
net, Personal, Tools), covering different maturity levels of
developers, which are the representatives of real-world apps.
Third, all apps are hosted on GitHub, Google Code, Source-
Forge, etc, which makes it possible to access their source code
and issue repositories. Additionally, we randomly selected
3,230 closed-source apps fromGoogle Play, Google’s Android
app market, which has millions of commercial apps with
diverse categories.We uniformly selected these apps from the
top ten categories (e.g., Education, Lifestyle, Business,
Tools) [1], and each app has at least one million installations.
These apps could be regarded as the representatives of com-
mercial apps.

2.2.2 Exception Trace Collection

Table 1 summarizes the statistics of collected exception
traces from hosting platforms (GitHub and Google Code)
and testing tools. We applied testing tools on both F-Droid
apps and Google Play apps to collect exceptions.

Issue Repositories. We collected exception traces from
GitHub and Google Code since they host over 85 percent
(2,174/2,549) F-Droid apps. To automate data collection, we
implemented a web crawler to automatically crawl the issue
repositories of these apps, and collected the issues that con-
tain exception traces. In detail, the crawler visits each issue
and its comments to extract valid exception traces. Addi-
tionally, it utilizes GitHub and Google Code APIs to collect
project information such as package name, issue id, number
of comments, open/closed time. We took about two weeks
and successfully scanned 272,629 issues from 2,174 apps,
and finally mined 7,764 valid exception traces (6,588
unique) from 583 apps.

Automated GUI Testing Tools. To test F-Droid apps (4,560
recent release versions of 2,104 apps) and Google Play
apps (3,230 apps), we chose three state-of-the-art Android
app testing tools with different strategies: Monkey [28]
(random testing), Sapienz [11] (search-based testing), and
Stoat [12] (model-based testing). Each tool is configured
with default settings and each app is given 3 hours to thor-
oughly test on a single Android emulator. Each emulator
is configured with Jelly Bean Android OS (SDK 4.3.1, API
level 18). The evaluation is deployed on three physical
machines (64-bit Ubuntu/Linux 14.04). Each machine runs
10 emulators in parallel. Since Sapienz and Stoat leverage
code coverage to optimize test generation, we instru-
mented apps by Emma [34] or Jacoco [35] to collect cover-
age data.

This data collection phase took 6 months in total, and
we finally detected 13,271 crashes (9,722 unique) for
open-source apps, and 293,266 crashes (13,764 unique)
for commercial apps. During testing, when an app
crashes, the exception trace with bug-triggering inputs,
screenshots, detection time, etc, are recorded to help our
analysis.

Notably, for F-Droid apps, we find that the issue
repositories of GitHub and Google Code only contain
545 unique crashes that were reported with stack traces,
for the 4,560 recent release versions. These crashes only
accounts for 5.6 percent of those detected by testing
tools. This indicates these exception traces collected by
testing tools can indeed effectively complement the mined
exceptions.

2.2.3 Other Resource Collection

To help analysis, we also collected the most relevant posts
with the most votes on Stack Overflow by searching key
words with “Android”, exception types and exception mes-
sages. We recorded the creation time, number of votes,
number of answers, summary, etc. Finally, we mined 15,678
posts of various exceptions.

Fig. 2. An example of RuntimeException trace.

TABLE 1
Statistics of Collected Crashes

(“M.”: Monkey; “Sa.”: Sapienz; “St.”: Stoat)
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2.3 Online App Developer Survey

2.3.1 Questionnaire Design

To gain more understanding and validate our own analysis
results on exception bugs, we conducted an online app
developer survey. This survey aims to solicit Android app
developers to share their experience of analyzing, testing,
reproducing and fixing exception bugs. Table 2 presents the
questionnaire of our study, which includes Q1�Q17. Specif-
ically, the survey is designed as two parts.

Part I: Background Information. We collected the back-
ground information of developers via Q1�Q4. By these
questions, we can filter invalid developers (e.g., the survey
only proceeds if the developer is aware of app exceptions),
and get the survey results of different developer groups
(e.g., groups of developers with different experience levels,
different app categories and countries).

Part II: App Exception Experiences and Practices. We col-
lected developers’ experiences and practices information
via Q5�Q17. We initially designed a number of questions
according to our research questions RQ1�RQ6, and sent
them to three experienced Android app developers (with 5-
year+ development experience) from Google, Tecent and
Alibaba, respectively, for early feedback. We later refined
these questions several rounds, and come up with Q5�Q17.
This design process aims to make the questions intuitive to
developers and concentrate on those questions that both
developers and researchers really concern.

For the developers who are aware of app exceptions, we
provided three examples for each exception category to make
sure the developers can fully understand the survey’s pur-
pose and related terminologies. Then, we presented Q5�Q17
to systematically understand the developers’ practices from

different perspectives. Specifically, we collected information
about (1) whether developers have encountered the three
exception categories via Q5 and Q6 (cf. Section 3.1.1), (2) how
developers understand framework exceptions via Q7�Q9 (cf.
Section 3.2.3), (3) how developers detect these exceptions in
practice via Q10�Q12 (cf. Section 3.3), (4) how developers
reproduce these exceptions via Q13�Q15 (cf. Section 3.5), and
(5) how developers fix these exceptions via Q16�Q17 (cf.
Section 3.6). In particular, some questions (e.g., Q5, Q6, Q7,
Q16) aim to validate our analysis results; some questions (e.g.,
Q9, Q12, Q13, Q14, Q15, Q17) aim to understand developers’
experiences and practices; some questions (e.g., Q7, Q9, Q12,
Q14) are given with some options (summarized and refined
according to our research experience and discussions with
three senior developers), and an “Others” option to allow any
additional comments.

2.3.2 Participants

To get sufficient number of responses from developers, we
solicited the participants from three channels. First, we con-
tacted 4,428 open-source app developers from GitHub and
1,226 commercial app developers from Google Play by
scrawling their emails. Second, we invited the app developers
in industry to distribute the survey within their companies
and networks. These contacts are from Google, Tencent,
Huawei, Alibaba and other IT companies. Third, we recruited
appdevelopers fromAmazonMechanical Turk [36] to partici-
pate in our survey. We paid 1.5 USD payment for each
approved submission. Finally, we received valid responses
from 135 professional app developers. Specifically, These
developers come from 32 different countries across four dif-
ferent continents (Asia, Europe, North America, Oceania),
and develop a diverse categories of apps (22 different catego-
ries). Among them, Business, Tools, Education, Lifestyle, Enter-
tainment are the most popular categories. 10 developers are
also involved in banking, insurance, financial apps, which
emphasize more on robustness and safety. Among these 135
participants, 25 developers (18.5 percent) have less than 1-
year experience, 67 developers (49.6 percent) have 1�3 years’
experience, 35 developers (25.9 percent) have 3�6 years’ expe-
rience, and 8 developers (6.0 percent) have more than 6 years’
experience. Most of the developers, i.e., 100 participants (81.5
percent) havemore than 1-year development experience.

3 EMPIRICAL STUDY

3.1 RQ1: Characteristics of Exceptions

3.1.1 Exception Category and Distribution

Based on the data collected in Section 2.2, Table 3 lists the
exception categories of open-source and closed-source
apps, and shows the number of the affected projects, occur-
rences, number of exception types and issue closing rate.
Since Google Play apps do not have publicly available issue
repositories, we only collected the closing rate for F-Droid
apps. We can see two facts: (1) Framework exceptions are
more pervasive and affect most of the apps. For example,
75.3 percent of open-source apps (revealed by the data of
GitHub & Google Code) and 84.5 percent of closed-source
apps (revealed by the data of testing tools) suffer from
framework exceptions. In terms of exception occurrences,

TABLE 2
Survey Questionnaire of Our Study
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framework exceptions occupy more than half of all excep-
tions (50.8 percent for open-source apps revealed by
GitHub/Google Code data, 74.1 percent for closed-source
apps revealed by testing tools). This observation also con-
forms to the results of our survey question Q5 and Q6: 108
developers (80 percent), report they have encountered
framework exceptions, and 88 developers (57.8 percent)
report, in their experience, framework exception occupies
around 30% � 50% (reported by 35 developers) and 50% �
70% (reported by 43 developers) among the three exception
categories. (2) The closing rate of framework exceptions
is 53 percent, which is relatively lower than those of the
others (67 percent for application and 57 percent for library
exception).

3.1.2 Locations of Framework Exception Manifestation

To understand framework exceptions, we grouped them
by the class names of their signalers. In this way, we got
more than 110 groups. To distill our findings, we further
grouped these classes into 17 modules by following the
insights of popular Android development tutorials [37], [38].
In our context, the classes in one module achieve either one
general purpose or stand-alone functionality from devel-
opers’ perspective. For example, we grouped the classes that
manage the Android application model (e.g., Activities, Serv-
ices) into App Management (corresponding to android:app:�);
the classes that manage app data from content provider and
SQLite into Database (android:database:�); the classes that
provide basic OS services, message passing and inter-pro-
cess communication into OS (android:os:�). Other modules
include Widget (UI widgets), Graphics (graphics tools that

handle UI drawing), Fragment (one special visual element),
WindowsManager (managewindowdisplay), etc.

Fig. 3 shows the exception-proneness5 of Android frame-
work modules in terms of unique exception instances. We
find App Management, Database and Widget are the top 3
exception-prone modules. In App Management, the most
common exceptions are ActivityNotFound (due to no activity
is found to handle a given intent) and IllegalArgument
exceptions (due to improper registering/unregistering
BroadcastReceiver in the activity’s callbacks). Surprisingly,
although Activity, BroadcastReceiver and Service are the
basic building blocks of apps, developers make the most
number of mistakes on them.

As forDatabase,CursorIndexOutOfBounds,SQLiteException,
SQLiteDatabaseLocked account for themajority, which reflect
the various mistakes of using SQLite, the default database of
Android. As for the other modules, we find: (1) improper use
of ListViewwithAdapter throws a large number of IllegalState
exception (account for 47 percent) in Widget; (2) In OS,
SecurityException, IllegalArgument, NullPointer are the
most common ones. (3) improper use of Bitmap causes
OutOfMemoryError (48 percent) inGraphics; (4) improper han-
dling callbacks of Fragment brings IllegalState (85 percent) in
Fragment; improper showing or dismissing dialogs triggers
BadTokens (25 percent) inWindowManager.

3.1.3 Locations of Library Exception Manifestation

To investigate the library exception, we used the exception
data collected in Table 3. We grouped these exceptions by
the class names of their signalers, and integrated the excep-
tions that are thrown from the same library. We finally got
100+ exception-prone libraries. Fig. 4 shows the top 15
libraries in terms of number of unique exception occur-
rences. We find libcore, org.apache, and org.json are the three
most exception-prone libraries, which are in fact the most
basic ones and more frequently used than the others.

We further randomly selected 10 library exceptions from
each of these top 15 libraries, and analyzed the root causes.
We find that although these libraries provide different func-
tionalities, their exceptions still have some common root
causes. For example, most of exceptions are due to the mis-
use of APIs, e.g., giving incorrect parameter values/for-
mats, failing to validate specific resources (e.g., network)

TABLE 3
Statistics of the Exceptions Crawled From GitHub & Google Code and Collected by Testing Tools on F-Droid and Google Play Apps

(classified into Application Exception, Framework Exception, and Library Exception, respectively)

Fig. 3. Exception-proneness of Android framework modules in terms of
unique instances (M. = Management)

5. In our context, exception-proneness indicates how often develop-
ers may misuse specific framework or library functionalities, and does
not indicate the correctness of Android framework or libraries them-
selves. Specifically, these misuses manifest themselves as exceptions.
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before use. Some exceptions are caused by the API incompati-
bility issues [39] between theAndroid SDK/appand the library
version, lack of specific hardware support or permissions [40].
Only a small portion of exceptions are due to the bugs of librar-
ies themselves. These observations reveal that library excep-
tions do share similarity with framework exceptions (detailed
in Section 3.2) in terms of common root causes. The Android
framework can be actually viewed as a basic “library” that
forms the building blocks of Android apps. In this paper, we
focus on investigating framework exceptions. Different apps may
use different libraries. Thus, giving a thorough analysis of
library exceptions is not possible in this work alone. Thus, we
leave it as future work. We have not given the manifestation
locations of application exceptions, since these exceptions can
be thrown from arbitrary locations at the app code level. We
inspected a number of application exceptions, but most of
them were generic programming errors. Thus, we do not give
further exploration on application exception in this study.

Answer to RQ1: Framework exceptions are more pervasive
than the other two exception categories, among which App
Management, Database and Widget are the three most excep-
tion-prone modules for developers. Library exceptions are simi-
lar with framework exceptions in the terms of root causes.

3.2 RQ2: Taxonomy of Framework Exceptions

This section characterizes the framework exceptions and
classifies them into different categories based on their root
causes. According to ISTQB [41], “Root cause is a source of
a defect such that if it is removed, the occurrence of the
defect type is decreased or removed.” Specifically, in our
context, we define root cause, from the view of developers, is
the initiating cause [42] of either a condition or a causal
chain that leads to a visible exception bug. Section 3.2.1
explains how we analyze and abstract these framework
exceptions into different categories. Section 3.2.2 illustrates
these categories with concrete examples.

3.2.1 Exception Analysis Method

First, we collected 8,243 framework exceptions and parti-
tioned them into different exception buckets. Each bucket con-
tains the exceptions that share the similar root cause.
Specifically,we used the exception type,message and signaler
to approximate the root cause. We also removed app specific

information in the exception message to scale the partition.
For example, the exception in Fig. 2 is labeled as
(NumberFormatException, “invalid double”, invalidReal). Here,
we removed the empty string from the original exception
message.We finally got 2,016 buckets, and the top 200 buckets
contain over 80 percent of all exceptions. The remaining buck-
ets have only 5 exceptions or fewer in each of them. Therefore,
we focus on the top 200 buckets.

Second,we randomly selected a number of exceptions from
each bucket, andused three complementary resources to facili-
tate root cause analysis: (1) Exception-Fix Repository. We set up
a repository that contains pairs of exceptions and their fixes. In
particular, (i) from 2,035 Android apps hosted on GitHub, we
mined 284 framework exception issues that are closed with
corresponding patches. To set up this mapping, we checked
each commit message by identifying the keywords “fix”/
“resolve”/“close” and the issue id. (ii) We manually checked
the remaining issues to include valid ones that are missed by
the keyword rules. We finally got 194 valid issues. We investi-
gated each exception trace and its patch to understand the root
causes. (2) Exception Instances Repository. From the 9,722 excep-
tions detected by testing tools (see Table 3), we filtered out
framework exceptions, and linked each of themwith its excep-
tion trace, source code, bug-triggering inputs and screenshots.
When an exception type under analysis is not included or has
very few instances in the exception-fix repository, we referred
to this repository to facilitate analysis by using available repro-
ducing information. (3) Technical Posts. For each exception
type,we referred to the posts from Stack Overflow collected in
Section 2.2.3 when needingmore information fromdevelopers
and validating our understanding.

Finally, we analyzed 86 distinct exception types, which cov-
ers 84.6 percent of all framework exceptions,6 and distilled 11
common fault categories. Specially,we abstracted the common
faults by the three steps. First, we read the official Android
documentation and popular developer tutorials to identify
and understand Android’s important mechanisms (e.g., activ-
ity lifecyle, single-GUI-threadmodel), components (e.g., activ-
ity, service, thread, database), and features (e.g., XML-based
UI design, API compatibility). Second, we inspected each
exception bug to understand its own root cause by using the
resources stated above. Third, we abstracted the root cause
into which mechanism it violates, or which component or fea-
ture it fails in. By these information, we classified an exception
into one specific fault category, which is named after specific
mechanism errors (i.e., Component Lifecycle Error, UI Update
Error, Framework Constraint Error), component usage errors
(i.e., Concurrency Error, DatabaseManagement Error), feature
errors (i.e., API Updates and Compatibility, Memory/Hard-
ware Error, XML Design Error) or generic errors (Resource
Not Found Error, API Parameter Error, Indexing Error).

3.2.2 Taxonomy

� Component Lifecycle Error. Each Android component has its
own lifecycle and is required to follow the prescribed life-
cycle paradigm, which defines how the component is

Fig. 4. Top 15 exception-prone libraries in terms of unique instances
based on the data in Table 3.

6. We found 13.2 percent of all exceptions are NullPointerException,
which are caused by null pointer dereferences and highly related to the
specific logic of each app. Thus, we did not inspect this generic excep-
tion type in our analysis.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1121



created, used and destroyed [43]. For example, Activity pro-
vides six core callbacks to allow developers to be aware of
its current state. If developers improperly handle the call-
backs or miss state-checking before some tasks, the app can
be fragile considering the complex environment interplay
(e.g., device rotation, network interruption). Bankdroid [44]
(Fig. 5) is a Swedish banking app. It utilizes a background
thread DataRetrieverTask to perform data retrieval, and
pops up a dialog to inform that the task is finished. How-
ever, if the user presses the back button on BankEditActivity
(which starts DataRetrieverTask), the app will crash when it
tries to pop up a dialog. The reason is that the developers
fail to check BankEditActivity’s state (in this case, destroyed)
after the background task is finished. The bug triggers a
BadTokenException and was fixed in revision 8b31cd3 [45].
Besides, Fragment [46], a reusable class implementing a por-
tion of Activity, has much more complex lifecycle. It pro-
vides 12 core callbacks to manage its state transition, which
makes lifecycle management more challenging, e.g., state
loss of Fragments, attachment loss from its activity.

� UI Update Error. Android enforces the single GUI thread
model. AUI thread is in charge of dispatching events and ren-
dering user interface. Each app owns one UI thread and
should offload intensive tasks to background threads to
ensure responsiveness. cgeo [47] (Fig. 6) is a popular full-
featured client for geocaching. When refreshing cacheList
(cacheList is associated with a ListView via an ArrayAdapter),
the developers query the database and substitute this list with
new results (via clearðÞ and addAllðÞ) in doInbackground.
However, the app crashes when it tries to refresh the list.
Because cacheList is maintained by the UI thread, which
internally checks the equality of item counts between ListView
and cacheList. But when a background thread modifies
cacheList, the checking will fail and an exception will be
thrown. The developer fixed it bymoving the refreshing oper-
ations into onPostExecute, which instead runs in the UI
thread (in revision d6b4e4d [48]).

� Framework Constraint Error. Android defines a number of
constrains when using its framework to build an app. For
example, Each Handler [49] instance must be associated with a
single thread and the message queue of this thread [50]. Otherwise,
a runtime exception will be thrown. Local-GSM-Backend [51]
(Fig. 7), a popular cell-tower based location lookup app,
uses a thread worker to monitor the changes of telephony
states via PhoneStateListener. However, the developers are
unaware that PhoneStateListener internally maintains a
Handler instance to deliver messages [52], which requires
setting up a message loop in worker. They later fixed it by
calling Looper#prepareðÞ (in revision 07e4a759 [53]). Other
constraints include performance consideration (avoid per-
forming network operations in the main UI thread [54], per-
mission consideration (require runtime permission grant for
dangerous permissions [55] since Android 6.0, otherwise
SecurityException) and etc.

� Concurrency Error. Android provides a number of asyn-
chronous programming constructs, e.g., AsyncTask, Thread,
to concurrently execute intensive tasks. However, improper
handling themmay cause data race [56] or resource leak [57],
and even app crashes. Nextcloud Notes [58], a cloud-based
notes-taking app, automatically synchronizes local and
remote notes. It attempts to re-open an already-closed data-
base, causing app crash [59]. The exception can be reproduced
by executing two steps repeatedly: (1) open any note from the
list; (2) close the note as quickly as possible by pressing back-
button. The app creates a new NoteSyncTask every time
when a note sync is requested, which connects with the
remote sever and updates the local database by calling
updateNoteðÞ. However, when there are multiple update
threads, such interleaving may happen and crash the app:
Thread A is executing the update, and Thread B gets the refer-
ence of the database; Thread A closes the database after the
task is finished, and Thread B tries to update the closed data-
base. The developers fixed this exception in revision
aa1a972 [60] by leaving the database unclosed (since
SQLiteDatabase already implemented thread-safe database
accessmechanism).

� Database Management Error. Android uses SQLite as its
default database.Many errors are caused by impropermanip-
ulating database columns/tables. Besides, improper data
migration for version updates is another major reason. Atara-
shii [61] (Fig. 8) is a popular app formanaging the reading and
watching of anime.When the user upgrades from v1.2 to v1.3,
the app crashes once started. The reason is that the callback
onCreateðÞ is only called if no old version database file exists,
so the new database table friends is not successfully created

Fig. 5. Bankdroid Issue #471 (Simplified).

Fig. 6. cgeo Issue #4569 (Simplified).

Fig. 7. Local-GSM-Backend Issue #2 (Simplified).
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whenupgrading. Instead, onUpgradeðÞ is called, it crashes the
app because the table friends does not exist (fixed in revision
b311ec3 [62]).

� API Updates and Compatibility. Android features fast
API updates. For example, Service should be started explic-
itly since Android 5.0; the change of the comparison con-
tract of Collections#sortðÞ [63] since JDK 7 crashes many
apps due to the developers are unaware of this. It also has
device fragmentation issues, which were already investi-
gated by prior work [64], [65]. For example, problematic
deriver implementation, non-compliant OS customization,
and peculiar hardware configuration may cause compatibil-
ity issues.

� Memory/Hardware Error. Android devices have limited
resources (e.g., memory). Improper using of resources may
cause app crashes. For example, OutOfMemoryError occurs
if loading too large Bitmaps; RuntimeException appears
when MediaRecorder#stopðÞ is called without valid audio/
video data received.

� XML Design Error. Android supports UI design and
resource configuration in the form of XML files. Although
IDE tools have provided much convenience, mistakes still
exist, e.g., misspelling custom UI control names, forgetting
to escape special characters (e.g., “$”, “%”) in string texts,
failing to specify correct resources in colors:xml and
strings:xml.

� Resource Not Found Error. Android apps heavily use
external resources (e.g., databases, files, sockets, third-party
apps and libraries) to accomplish tasks. Developers make
this mistake when they fail to check their availability.

� API Parameter Error. Developers make such mistakes
when they fail to consider all possible input contents or
formats, and feed malformed inputs as the parameters of
APIs. For example, they directly use the results from
SharedPreference or database querieswithout any checking.

� Indexing Error. Indexing error happens when developers
access data, e.g., database, string, and array, with awrong index
value. One typical example is the CursorIndexOutOfBounds
exception caused by accessing database with incorrect cursor
index.

3.2.3 Understanding Root Causes From Developers

To further validate the results of root cause analysis, we
surveyed the developers with three questions. In the first
question (Q7), we aimed to check the correctness and com-
pleteness of root causes. We listed the 11 root causes

(accompaniedwith 2�3 issue examples) that can cause frame-
work exceptions, and asked developers to choose anyone that
he or she has ever encountered. We also provided an addi-
tional option “Others” for developers to fill in any root causes
we may have missed in our study. In the second question
(Q8), we aimed to understand how difficult the developers
may feel when resolving the exceptions with these root causes
(including the effort to inspect the exception message, under-
stand the root case, and locate the faulty code). We gave them
the three options, i.e., Difficult,Medium, and Easy, to rate each
root cause. In the third question (Q9), we aimed to understand
the difficulties of diagnosing root causes. We gave the four
options, i.e., understand exception type and message, get the repro-
duction steps (the user actions to trigger the exception), get the
bug environment (e.g., app version, device info), understand the
principles or usages of specific Android APIs, and an additional
option “Others”.

The responses of the first question support our root cause
analysis. All of the 11 root causes were encountered by the
developers. Specifically, Framework Constraint Error
(encountered by 62 developers (45.9 percent of all develop-
ers)), API Updates and Compatibility Error (60 developers
(44.4 percent)), Lifecyle Error (53 developers (39.3 percent)),
UI Update Error (53 developers (39.3 percent)) are the four
most commonly encountered errors reported by developers.
This finding conforms to our analysis results. In Table 4,
“#Occ.” denotes the exception occurrences of each root
cause among the 8,243 framework exceptions. We can see,
besides those “trivial” errors such as Resource-Not-Found
Error, Index Error and API Parameter Error, app developers
are indeed more likely to make Android specific errors, e.g.,
Lifecycle Error, Memory/Hardware Error, Framework Con-
straint Error. Some developers also mentioned some excep-
tion instances in the “Others” option. For example, one
developer mentioned improperly using of Android APIs,
which was categorized into the API Parameter Error cate-
gory; another developer mentioned not properly handling the
state of the listeners for sensors, which was categorized into
the Framework Constraint Error. Additionally, 42 develop-
ers (31.1 percent of all developers) mentioned Android sys-
tem errors (i.e., the bugs of Android framework itself) can
also lead to framework exceptions, which is indeed true but
out of our scope.

In the second question, we find developers have different
assessments on the difficulties of these root causes accord-
ing to their experience. Resource-Not-Found Error, API
Parameter Error, Index Error, and XML Error were the top
four most Easy errors rated by 50.4, 48.1, 44.4, 43 percent of
all developers, respectively, since these errors are usually
induced by trivial human mistakes and easy to fix. On the
other hand, Memory/Hardware Error, Concurrency Error,
and API Updates and Compatibility Error were the top
three most Difficult errors rated by 46.7, 34.8, 29.6 percent
developers, respectively, because these errors are notori-
ously difficult to debug [56], [66]. As for Database Manage-
ment Error, UI Update Error, Framework Constraint Error,
Lifecycle Error, almost half of participants, i.e., 51.8, 48.1,
46.7, and 46.7 percent of all developers, respectively, rated
them as Medium. This finding also conforms to our observa-
tion on Stack Overflow. In Table 4, “#S.O. posts” counts the
number of Stack Overflow posts on discussing these faults.

Fig. 8. Atarashii Issue #82 (Simplified)/.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1123



We can see developers indeed discuss more on Android
Framework Constraint Error and Lifecycle Error.

Fig. 9 shows the responses for Q9. We can see 96 develop-
ers (71.1 percent of all developers) reached the consensus that
themost difficult point is to get the reproduction steps, which
is quite crucial for diagnosing the root cause. The second dif-
ficult point, mentioned by 72 developers (53.3 percent), is to
get the bug environment. 57 developers (42.2 percent) con-
firmed the exception type and message sometimes also bring
confusions, while 45 developers (33.3 percent) reported some
specific Android APIs usages or features also affect the
understanding of root causes. We received 5 answers from
the “Others” option, but all of them can be grouped into the
previous four difficulties due to similarity. Thus, we believe
these four difficulties are themost typical ones.

Answer to RQ2: We distilled 11 fault categories of frame-
work exceptions. Developers make more mistakes on Lifecycle
Error, Memory/Hardware Error and Framework Constraint
Error. Developers feel it difficult to resolve Concurrency Error,
Memory/Hardware Error, and API Updates and Compatibil-
ity Error. Getting reproduction steps and bug environment are
the two most difficult problems when diagnosing root causes.

3.3 RQ3: Detecting Exception Bugs

This section investigates the testing practices against excep-
tion bugs from developers’ perspective. Different from prior
surveys [9], [10], [67] on how developers test Android apps,
our investigation focuses on how developers detect these
exception bugs that can lead to crashes. Specifically, we aim
to understand (1) the importance of detecting exception
bugs, (2) the commonly-used tools to detect exception bugs,
and (3) the unsatisfactory points of these tools. This section

motivates our deep investigation on these bug detection
tools in Section 3.4 (RQ4) and Section 3.5 (RQ5).

3.3.1 Tools for Detecting Exception Bugs

For the question Q10 “Do you think it is important to detect
(and resolve) exception bugs before releasing your apps?”, the
responses were very consistent: 56.3 percent developers
chose Very Important, 34.8 percent developers chose Impor-
tant, and 8.9 percent developers chose Normal. This result
indicates that detecting exception bugs is indeed one of top
priorities for developers.

In practice, many bug detection tools or frameworks are
available to help detect potential app exceptions. Fig. 10
shows the tools that are used by app developers to test or
check exception bugs (the responses of Q11). These tools
can be categorized into different groups by their principles.
For example, Monkey [28] is a random fuzzing tool that
tests apps by emitting a stream of random input events;
MonkeyRunner [68] is an API-based testing tool that tests
apps/devices from functional or framework level. Other
tools include unit/integration testing frameworks (e.g.,
Roboelectic, Espresso, UIAutomator), script-based testing
frameworks (e.g., Robotium, Appium), R&R (record &
replay)-based tools, cloud-based testing service (e.g., Google
Firebase, Microsoft Xamarin) and static checking tools (e.g.,
Findbugs, Android Lint, PMD, SonarQube).

We can seemanual testing is still themost preferableway of
86 developers (63.7 percent) to find exception bugs. Android
Lint is the most commonly-used tool by 45 developers
(33.3 percent) to automatically scan app bugs, which is more
popular than other static checking tools (i.e., FindBugs, PMD,
SonarQube). 74 developers (54.8 percent) preferred using
AndroidJunitRunner-based unit and integration testing frame-
works (e.g., Espresso and UIAutomator), and 32 developers
(23.7 percent) resorted to cloud-based testing services (e.g.,
Google Firebase). We also notice only a few (5 developers) use
automated GUI ripping tools. Sapienz [11] and Stoat [12], the
two state-of-the-art tools, were used. Different from all the
other tools, these GUI ripping tools are developed and main-
tained by researchers to achieve automated app testing.

3.3.2 Unsatisfactory Points of Existing Tools

In the survey, we further asked the developers Q12 “which
points do you think the tools you used are still not satisfactory for

TABLE 4
Statistics of 11 Common Fault Categories, Sorted by Closing

Rate (Collected From GitHub) in Descending Order
(“Occ.”: Occurrences, “S.O.”: Stack Overflow)

Fig. 9. Difficulties of root cause analysis.

Fig. 10. Tools/Frameworks used by developers.
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detecting exception bugs?”. From the responses, we have sev-
eral findings. (1) 67 developers (49.6 percent) complained
about the demanding human efforts required by manually
writing tests and setting up the testing environment. Manual
testing and those non-fully automatic testing methods (e.g.,
MonkeyRunner, AndroidJunitRunner-based and script-based
testing frameworks and R&R tools) all need manual efforts.
(2) The inefficiency of uncovering exception bugs is another
major concern of 64 developers (43.7 percent). They reported
some tools either cost too much testing time (e.g., R&R tools) or
miss bugs (e.g., Android Lint and other static checking tools).
(3) 56 developers (41.5 percent) complained that even if the tool
finds an exception, the generated test cannot guarantee to reproduce
the bug. This indicates the bug reproducibility problem of
mobile apps. Monkey and cloud-based testing service are the
two typical methods that have this issue. For example, aMon-
key test is a stream of low-level events (based on the device
screen coordinates), whichmay probably fail to reproduce the
bug if the screen size changes. Section 3.5 gives a deep investi-
gation of this problem. (4) 47 developers (34.8 percent) men-
tioned that the static checking tools (e.g., Lint) and R&R tools
can bring false alarms, i.e., the reported issues are not real bugs.
This issue usually wastes developers’ time for inspecting
them. (5) 43 developers (31.9 percent) reported that some tools
fail to consider various environment (e.g., screen rotation, net-
work stability, different geographic locations, heavy mem-
ory/CPU usage), which are quite crucial for testing the
usability and robustness of mobile apps. (6) 42 developers
(31.1 percent) hoped the testing or checking tools could gener-
ate tests for verification or generate more readable tests for
debugging. For example, some developers desired to get
more readable tests from Monkey. Developers have not pro-
vided other comments in the “Others” option.

Answer to RQ3: Most developers agree detecting exception
bugs is crucial, however, manual testing is still the most pref-
erable testing method. Although different bug detection tools
are used, developers still have unsatisfactory points, e.g., high
manual efforts, insufficient bug detection, low reproducibility
rate, many false positives, lack of considering environment etc.

3.4 RQ4: Auditing Automatic Bug Detection Tools

Informed by the study of RQ3, this section aims to investigate
the effectiveness of bug detection tools. As revealed by RQ3,
most of the bug detection tools require human assistance (e.g.,
writing tests). We note two groups of tools, i.e., dynamic test-
ing and static analysis tools, can fully automate app exception
checking. However, our previous investigation on the four

static analysis tools, i.e., Lint, FindBugs, PMD, SonarQube,
shows these tools are almost ineffective in detecting frame-
work exceptions due to the lack of specific checking rules [29].
Unfortunately, these tools have not provided handy APIs or
command line options to accept customized checking rules,
and require considerable code-level extensions. Thus, we
decided not to include them in this evaluation, otherwise the
results could be unfair. Section 5 discusses plausible ways of
improving static analysis tools. We do not consider the cloud-
based testing services as well, which are pay-by-use and not
convenient to conduct large-scale evaluation on thousands of
apps. Therefore, we only focus on dynamic testing tools, and
evaluate them on the framework exceptions categorized in
Section 3.2. We selected 3 state-of-the-art dynamic testing
tools, i.e., Monkey [28], Sapienz [11], and Stoat [12]. The sur-
vey in Section 3.3 shows these tools are used by a number of
real app developers (35 developers ever used). More impor-
tantly, recent studies [69], [70] show, these tools are proved to
be the most effective on both open-source and commercial
apps, and have found hundreds of previously-unknown
crash bugs inwell-tested apps.

We applied dynamic testing tools on each of 2,104 apps
with the same configurations in Section 2.2.2. We observed
that they could detect many framework exceptions. To
understand their abilities, we used two metrics.7 (1) detection
time (the time to detect an exception). Since one exception
may be found multiple times, we used the time of its first
occurrence. (2) Occurrences (how many times an exception is
detected during a specified duration). Figs. 11 and 12,
respectively, show the detection time and occurrences of
exceptions by each tool grouped by the fault categories.

From Fig. 11, we can see the abilities of these tools vary
across different fault categories. But we also note some obvi-
ous differences. For example, following the guidelines of
statistical tests [71], we used Mann-Whitney U test [72], a
non-parametric statistical hypothesis test for independent
samples, to compare the detection time of some specific
fault categories across three tools. We find Sapienz is better
at database errors (i.e., use significantly less testing time)
than Monkey (p-value=0.02, and standardized effect size is
medium (0.41)) and Stoat (p-value=0.05*10�4, and standard-
ized effect size is large (0.65)). One important reason is that
Sapienz implements a strategy, i.e., fill strings in EditTexts,
and then click “OK” instead of “Cancel” to maximize code

Fig. 11. Detection time of exceptions by each tool. Fig. 12. Occurrences of exceptions by each tool.

7. We do not present the results of trace length, since we find the
three tools cannot dump the exact trace that causes a crash. Instead,
they output the whole trace, which cannot reflect their detection
abilities.
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coverage, which is more likely to trigger database opera-
tions. Monkey and Sapienz, respectively, are better at life-
cycle errors than Stoat (p-values are, respectively, 0.002 and
0.001, and standardized effect sizes are, respectively,
medium (0.35) and small (0.25)). Because both Monkey and
Sapienz emit events very quickly without waiting for the
previous ones to take effect, e.g., open and quickly close an
activity without waiting for the activity finishes its task.

In addition, we note concurrency errors are non-trivial
for all three tools, i.e., Monkey, Sapienz and Stoat. But their
detection times are not significantly different according to
our statistical test. The medians of their detection times are,
respectively, 52, 69 and 58 minutes. In Fig. 12, the occur-
rences of API compatibility, Resource-Not-Found and XML
errors are much more than those of many other fault catego-
ries across three tools. It indicates these errors are easier to
be repeatedly detected. But, on the other hand, Concur-
rency, Lifecyle, UI update errors are more difficult to be
repeatedly detected, regardless of the testing strategies of
these tools. The main reason is that these errors contain
more non-determinism (interacting with threads).

After an in-depth inspection, we find that some Database
errors are hard to trigger because the app has to construct
an appropriate database state (e.g., create a table or insert a
row, and fill in specific data) as the precondition of the bug,
which may take a long time. As for Framework Constraint
Error, some exceptions require special environment inter-
play. For example, InstantiationException of Fragment can
only be triggered when a Fragment is destroyed and recre-
ated. To achieve this, a testing tool needs to change device
rotation at an appropriate timing (when the target Fragment
is on the screen), or pause and stop the app by switching to
another one, and stay there for a long time (let Android OS
kill the app), and then return back to the app. Concurrency
bugs (e.g., data race) are hard to trigger since they usually
need right timing of events.

Answer to RQ4: Dynamic testing tools are less effective in
detecting concurrency, database and lifecycle errors. Different
testing strategies have a big impact on the bug detection ability
against different types of framework exceptions. More effective
dynamic testing strategies are demanded to help detect frame-
work exceptions.

3.5 RQ5: Reproducibility of Exception Bugs

This section investigates the reproducibility of exception
bugs, which is crucial for bug diagnosing and fixing. Android
apps are event-centric programs and run in complex environ-
ment. Typically, the bug-triggering inputs are described as a

few reproducing steps (in the form of natural language by
humans or event sequences generated by testing tools) and
contextual conditions (e.g., device models, network status,
and other device settings [73]). Priorwork improves the repro-
ducibility of crash bugs by augmenting bug reports [74], [75],
[76], [77], translating a bug report (written in natural lan-
guage) into an executable UI test [78], [79], and leveraging
crowd-sourced monitoring [80]. However, to our knowledge,
no previous efforts has investigated the reproducibility of
exception bugs, from these two perspectives: (1) how do app
developers, and (2) how do automatic testing tools, perform
in reproducing bugs, which this sectionwill explore.

3.5.1 Perspective of App Developers

In our survey, we asked developers Q13 “In your experience,
given the reported reproducing steps, how much percentage of cases
in which you still cannot reproduce the crash exception?”. We gave
them the four options, i.e., < 10%, 10% � 30%, 30% � 50%,
and > 50%. Fig. 13 shows the responses. We find 82 develop-
ers (60.6%) reported they fail to reproduce 10% � 30% excep-
tion bugs, which were not ignorable. Further, 20 developers
(15 percent) could not successfully reproduce 30% � 50%
exception bugs, and 2 developers even could not reproduce
over 50 percent exceptions. 31 developers (22.8 percent) chose
the option < 10%. Further, from the responses of 43 senior
developers (with over 3 years working experience), we find
only 11 of them (25.6 percent) choose the option < 10%,
which indicates experienced developers also face difficulties
in reproducing bugs. Based on the above observations,
although developers in fact are quite familiar with their own
apps and implementations, we can see reproducing exception
bugs is still difficult for human developers, even if the repro-
duction steps are given.

We further asked developers Q14 “If you cannot reproduce
the crash exception, in your experience, which reasons may affect
the reproducibility?”. Five options are provided: (A) concur-
rency or asynchronous bugs (e.g., data race), (B) specific running
environment (e.g., low memory, external file access, usage of spe-
cific third-party library), (C) specific device models (e.g., frame-
work API version, OS customization), (D) specific system
configurations or settings (e.g., WiFi/4G, GPS on/off, enable/dis-
able specific developer options), and (E) Others (for any devel-
opers’ comments). The first four options were distilled from
three sources: (1) the app developers’ comments and discus-
sions from GitHub issue repositories when they resolve bug
reports, (2) our own experience of reproducing bugs during
our own research [29], [79], [81], and (3) the previous work
on bug reproduction [76], [78], [80].

Fig. 14 shows the results. 85 developers (63 percent)
selected (C). They indicated different API versions and

Fig. 13. Percentage of cases in failing to reproduce exceptions even if
the reproduction steps are given.

Fig. 14. Difficulties of reproducing exceptions.
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vendor models could affect the reproducibility because the
platform where the apps are developed is usually different
from the one where the apps are used. 82 developers
(60.7 percent) chose (B). They indicated some specific execu-
tion environment (e.g., heavy system load, external file
access, etc) may affect the reproducibility. The developers
felt difficult to record and restore the exact environment
when the app crashes. 53 developers (39.3 percent) selected
(A), since some concurrency bugs require specific thread
scheduling and strict timing [81]. 44 developers (32.6 per-
cent) reported missing “specific system configurations or
settings” in the reproduction steps could also affect the
reproducibility. For example, some bugs can only be mani-
fested with mobile data instead of WiFi.

We further asked app developers an open question Q15
“How do you improve the reproducibility of exception bugs dur-
ing your development?”. 12 app developers answered this
question. They added customized logging interfaces to gain
important running information, or used some off-the-shelf
crash reporting systems, e.g., ACRA [82], Google Firebase
Crashlytics [83], Splunk MINT [84], to collect raw analytics.
Specifically, these crash reporting systems (integrated as
app plugins) collect the contextual environment (e.g., SDK,
OS, app version, hardware model, memory usage), the
exception traces, the steps leading to crash (usually in the
form of screenshots) to facilitate crash analysis. However,
these developers still felt quite challenging to faithfully
reproducing exception bugs the users experience in vivo.

3.5.2 Perspective of Testing Tools

To investigate how testing tools perform in reproducing bugs,
we chose two Android GUI testing tools, i.e., Sapienz and
Stoat. As stated in Section 3.4, these two tools are now the
state-of-the-art in finding crash bugs. Specifically, to record &
replay the tests, we usedAndroidMonkey script [85] for Sapi-
enz, and UIAutomator script [86] for Stoat. When an app
crashes during the testing, we will record the exception trace,
and the corresponding crash-triggering test (i.e., the event
sequences that led to the crash).

To mitigate test flakiness [87], [88], [89], we deployed the
reproducing process on two physical machines, each of
which ran 6 emulators with the exact same environment
and configurations as the previous testing process in
Section 3.4. In addition, we ran each test for five times, and
recorded how many times the exception bugs could be trig-
gered. The machine state was cleared between each test run.
If the exactly same exception (with the same exception type
and stack trace) was triggered among the 5 runs, we
regarded the test as a valid one that can faithfully reproduce
the crash. In total, we replayed the tests of 4,009 and 3,535
exception bugs (including all the three exception categories)
found by Sapienz and Stoat, respectively. The whole

reproducing process took two months. Note that we have
not included Monkey in this investigation, since we find the
tests of Monkey are very flaky.8

Finally, Sapienz and Stoat triggered 15.7 percent (629/
4,009) and 28.2 percent (996/3,535) of all exception bugs,
respectively, by replaying the recorded tests. However,
among these triggered exceptions, only 279 exceptions of
Sapienz (6.9 percent, including 82 application exceptions, 169
framework exceptions, and 28 library exceptions) and 269
exceptions of Stoat (7.6 percent, including 189 application
exceptions, 76 framework exceptions, and 4 library excep-
tions), respectively, were faithfully reproduced. Obviously,
the reproducibility rate of exception bugs were quite low. In
the remaining cases that triggered exceptions, we find the
tests either triggered (1) the exceptions with different types, or
(2) the exceptions with the same types but different stack
traces. We further inspected a number of those “unfaithfully”
reproduced exceptions (i.e., the cases in (2)), and found some
of them actually triggered the same bugs but the stack traces
were slightly different from the expected ones.

Table 5 shows the numbers of reproducible exceptions
across the three exception categories, respectively. In the
parentheses, the percentage numbers indicate the ratios of
reproducible exceptions among all exceptions of that cate-
gory.We can see the reproducibility rates of these three excep-
tion categories do not have much differences, although Stoat
has lower rates on framework and library exceptions, com-
pared to Sapienz. Fig. 15 shows the reproducibility rates of the
11 root causes of framework exceptions. We can see that both
Stoat and Sapienz can reproduce more exceptions of
Resource-Not-Found, Memory/Hardware, and XML Layout
errors (over 10 percent), while neither of them has good per-
formance at Concurrency, API Update and Compatibility,
andDatabaseManagement errors.

Overall, the reproducibility of exception bugs is low for
both Sapienz and Stoat. We further investigated the reasons
behind, and observed the three main difficulties.

� Test dependency. Both Sapienz and Stoat only record the
current test that triggers the exception. However, many
exceptions can only be manifested under specific precon-
ditions, which need to be created by some previous tests.
As a result, only replaying the current test may fail the

TABLE 5
Statistics of Reproducible Exceptions Across the

Three Exception Categories

Tool #Total #Application #Framework #Library

Sapienz 279 82 (6.5%) 169 (7.2%) 28 (6.9%)
Stoat 269 189 (9.6%) 76 (5.3%) 4 (3.2%)

Fig. 15. Reproducibility rate of the 11 root causes of framework excep-
tions w.r.t. Sapienz and Stoat.

8. Our preliminary investigation reveals Monkey’s tests are much
more flaky than those of Stoat and Sapienz. We find most of Monkey’s
tests have thousands of events, while those of Sapienz and Stoat have
merely hundreds or tens of events, respectively.
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reproduction. Simply recording all the previous tests is inef-
fective, while selectively recording the necessary tests w.r.t.
the exception is nontrivial.

� Timing of Events. The execution timing of events are cru-
cial for manifesting some types of exceptions. For example,
concurrency bugs require critical timing of events, so as to
create specific thread scheduling [81]. In other scenarios,
due to the latency of network or computation, some UI
widgets may not be quickly ready for executing the next
event — causing the ignorance of the next event. Such igno-
rance may have negative effect on the execution of the
whole event sequence, leading to totally different execution
paths and results. Thus, to improve reproducibility, the tests
should contain timing control operations.

� Specific Running Environment or Configurations. Trigger-
ing some exceptions require specific running environment,
e.g., the existence of specific files on the SD card. For exam-
ple, one of the reasons for OutOfMemoryError is that the
app tries to load a large-size file from the SD card. Without
this file, such exceptions could not be reproduced. Some
exceptions can only be triggered under specific sytem con-
figurations, e.g., disabling network access or granting the
permission of using camera.

Answer to RQ5: Reproducing exceptions is difficult for
developers, and also challenging for automated testing tools.
Specific device models, specific execution environment, concur-
rency issues, specific system configurations are the four main
difficulties rated by developers. The reproducibility rates of
Sapienz and Stoat are quite low (only 6.9 and 7.6 percent,
respectively). Test dependency, timing of events, and specific
running environment are the three main observed challenges
for testing tools to faithfully reproduce exceptions.

3.6 RQ6: Fixing Patterns and Characteristics

This section uses the exception-fix repository constructed in
RQ2 (194 instances) to investigate the common practices of
developers to fix framework exceptions. We categorized
their fixing strategies by (1) the types of code modifications
(e.g., modify conditions, reorganize/move code, tweak
implementations); (2) the issue comments and patch
descriptions. We finally summarized five common fix pat-
terns, which can resolve over 90 percent of the issues in the
repository. We further presented Q16 to the developers,
and asked them to choose which fix practice they have ever
used to fix framework exceptions. Fig. 18 shows the
responses. We detail these fix practices as follows, which
are ordered by the popularity from the most to the least.

� Work in Right Callbacks. Inappropriate handling lifecycle
callbacks of app components (e.g., Activity, Fragment, Service)
can severely affect the robustness of apps. The common prac-
tice to fix such problems is to work in the right callback. For
example, in Activity, putting BroadcastReceiver’s register and
unregister into onStartðÞ and OnStopðÞ or onResumeðÞ and
OnPauseðÞ can avoid IllegalArgument; and committing a
FragmentTransaction before the activity’s state has been saved
(i.e., before the callback onSaveInstanceStateðÞ) can avoid
state loss exception [90], [91].

� Refine Conditional Checks. Missing checks on API para-
meters, activity states, index values, database versions,
external resources can introduce unexpected exceptions.
Developers usually fix them via adding appropriate condi-
tional checks. For example, Fig. 17a checks cursor index to fix
CursorIndexOutOfBound, Fig. 17b checks the state of the activ-
ity attached by a Fragment to fix IllegalState. Most exceptions
from Parameter Error, Indexing Error, Resource Error, Lifecycle
Error, andAPI Errorwere fixed by this strategy.

� Move Code into Correct Thread. Messing up UI and back-
ground threads may incur severe exceptions. The common
practice to fix such problems is to move related code into
correct threads. Fig. 16 fixes CalledFromWrongThread by
moving the code of modifying UI widgets back to the UI
thread (via Activity#runOnUiThreadðÞ) that creates them.
Similar fixes include moving the showings of Toast or
AlertDialog into the UI thread instead of the background
thread since they can only be processed in the Looper of the
UI thread [92], [93]. Additionally, moving extensive tasks
(e.g., network access, database query) into background
threads can resolve the exceptions NetworkOnMainThread
and “Application Not Responding” (ANR) [94].

� Change APIs or Design Patterns. Developers may fix an
exception by using other APIs to achieve similar functionali-

Fig. 16. Example fixes by moving code into correct thread.

Fig. 17. Example fixes by adding conditional checks.

Fig. 18. Popularity of common fix practices by developers.
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ties. For example, they will replace depreciated APIs with
newly imported ones. Sometimes, they directly change the
design pattern to avoid exceptions, which cannot be easily
fixed in the original design.

� Optimize data storage and manipulations. To resolve other
exceptions, developers have to carefully adjust implementa-
tion algorithms, e.g., optimize data storage and manipula-
tions. For example, to fix OutOfMemory caused by loading
Bitmap, the common practice is to optimize memory usage
by resizing the original bitmap [95]; to fix data race excep-
tions, the common practice is to adopt mutex locks (e.g.,
add synchronized to allow the execution of only one active
thread) or back up the shared data [96].

To further understand the characteristics of developer
fixes, we grouped these issues by their root causes, and com-
puted (1) the number of code lines9 the developers changed to
fix this issue (Fig. 19), and (2) the issue closing rate (column
“Closing Rate” in Table 4).We can see that the fixes for Param-
eter Error, Indexing Error, Resource Error, and Database Error
require fewer code changes (most patches are fewer than 20
lines). Because most of them can be fixed by refining condi-
tional checks. We can also note UI Update Error, API Updates
and Compatibility Error, Concurrency Error, Memory/Hardware
Error and XML Design Error require larger code patches.
Because fixing these issues usually require more manipula-
tions on UI components, API compatibility, threads, memory
andGUI design resources, respectively.

Further, by investigating the discussions and comments
of developers when fixing, we find three important reasons
that reveal the difficulties they face.

� Difficulty of Reproducing and Validation. One prominent
difficulty is how to reproduce exceptions and validate the
correctness of fixes [76]. Most users, testing tools or plat-
forms do not report complete reproducing steps/inputs
and other necessary information (e.g., exception trace,
device model, code version) to developers. In most bug
reports, we find only an exception trace is provided.

We surveyed the developers with Q17 “In your experience,
how much percentage of exceptions you are able to fix if you are only
provided with an exception trace?”. We find only 12 developers
(8.9 percent) reported they could fix over 70 percent exception
bugs (only three developers say they could fix more than 90
percent exceptions). 27 developers (20.0 percent) selected
10 � 30% exceptions, 54 developers (40.0 percent) selected

30 � 50% exceptions, and 39 developers (28.9 percent)
selected 50 � 70% exceptions, respectively. We can see fix-
ing exceptions could be rather difficult if only exception
traces are available. In other cases, reproducing and vali-
dating non-deterministic exceptions (e.g., concurrency
errors) could be harder. After fixing these issue, develop-
ers choose to leave the app users to validate before closing
the issue. As shown in Table 4, concurrency errors have
low fixing rate.

� Inexperience with Android System. A good understanding
of Android system is essential to correctly fix exceptions. As
the closing rates in Table 4 indicate, developers are more
confused by Memory/Hardware Error, Lifecycle Error,
Concurrency Error, and UI Update Error. We find some
developers use simple try-catch or compromising ways (e.g.,
use commitAllowingStateLoss to allow activity state loss) as
workarounds. However, such fixes are often fragile.

� Fast Evolving APIs and Features. Android is evolving fast.
As reported, on average, 115 API updates occur each
month [97]. Moreover, feature changes are continuously intro-
duced. However, these updates or changes may make apps
fragile when the platform they are deployed is different from
the one they were built; and the developers are confused when
such issues appear. For example, Android 6.0 introduces run-
timepermission grant— If an appuses dangerous permissions,
developers have to get permissions from users at runtime.
However, we find several developers choose to delay the fixing
since they have not fully understand this new feature.

Answer to RQ6: Working in the right callbacks, using cor-
rect thread types, refining conditional checks, changing APIs
or design patterns, optimizing data storage or manipulation
are the five common fix practices. When developers fix frame-
work exceptions, UI Update Error, API Updates and Compati-
bility Error, Concurrency Error, Memory/Hardware Error
and XML Design Error require larger code patches. Mean-
while, reproducing exceptions and validating the fixes, under-
standing different mechanisms in Android system and
adapting to fast-evolving Android APIs and features are the
three main difficulties that developers face during fixing.

4 THE BENCHMARK DROIDDEFECTS

Based on the data and analysis results in Section 3, this sec-
tion aims to construct a benchmark of exception bugs for
Android apps. This benchmark can facilitate follow-up
research (e.g., static fault analysis [98], fault localization [25],
program repair [26]), and help measure effectiveness of pro-
posed techniques in a controlled and systematic way.

However, constructing such a benchmark is non-trivial.
First, for Android apps, most bug-triggering tests are reported
in natural language, which describe the specific user actions to
manifest the defects. These tests cannot be directly executed
against the app to validate bugs [74]. Automatically translating
these tests to executable ones are extremely difficult [78], [79].
Second, Android system and its apps are evolving fast, and
use a diverse set of third-party libraries and different build sys-
tems (e.g., Gradle, Ant). These dependencies make it rather dif-
ficult to fully automate the build process, and usually involve
considerable human efforts to resolve issues. Third, GUI tests
can be notoriously flaky [87], [88], [89], which may not be able

Fig. 19. Fixing in terms of number of changed lines.

9. To reduce “noises”, we excluded comment lines (e.g., “//...”),
annotation lines (e.g., “@Override”), unrelated code changes (e.g.,
“import *.*”, the code for new features).
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to deterministically manifest the defects. Due to these chal-
lenges, we cannot follow prior benchmarking methods [99],
[100] to automate the construction. To bridge the gap, we
made tremendous efforts to construct this benchmark.

4.1 Android App Defect Scenario

Our bug repository, DroidDefects, now only considers repro-
ducible, crash defects that are the bugs of apps themselves.
Other defects like Android system bugs [101], third-party
library bugs [102], device fragmentation bugs [64], and non-
crashing bugs (e.g., performance and energy bugs [103],
resource and memory leaks [57], [104], GUI failures [105],
[106], security bugs [107], [108]) are not considered. To char-
acterize an Android app bug in our context, we define the
defect scenario as follows, which includes

� A complete app project with one specific defect, which incor-
porates the source code, the dependency libraries and
the build scripts (e.g., Gradle or Ant). The project can be
successfully compiled into an apk file for running on an
emulator or a real device; and the defect can be deter-
ministically reproduced by one ormore tests.

� An exception stack trace, which is induced by the
defect. It provides certain clues of the defect (e.g., the
exception type, message, and the invoked methods).
In particular, it tracks the sequence of called methods
up to the point where the exception is thrown.

� A bug-triggering test and its environment, which can
deterministically manifest the defect of the app, given
the specific environment (e.g., API version, system con-
figuration). The test usually is composed of a sequence
of user actions and/or system events. The test can be
written in the form of natural language, JUnit-based
test scripts (e.g., Espresso [109], UIAutomator [86]) or
low-level events (e.g.,Monkey scripts [85]).

� Optionally, a developer-written repair or patch, which
fixes the faulty behavior w.r.t. the defect. It can be
used for understanding the defect.

4.2 Artifacts of DroidDefects

DroidDefects contains three main artifacts: (1) dataset of
reproducible defects, (2) dataset of ground-truth defects,
and (3) utility scripts.

Dataset of Reproducible Defects. This dataset now contains 33
reproducible defects from29Android apps, and covers 26 dis-
tinct exception types. This dataset helps researchers to under-
stand the characteristics of different app exceptions, and
enables detailed analysis. Although this dataset is relatively
small, but it covers different types of exception bugs from the
11 common root causes, and provideswith detailed reproduc-
ibility and root cause information. All these information has
never been considered in those previously constructed data-
set [26], [27], [69], [78]. We will continuously evolve and
enhance this dataset to include more exception instances,
although our experience indicate this process requires tre-
mendous manual efforts [79]. Section 4.3.1 gives the setup
details. For each defect, it provides:

� Source code of faulty app version, the complete source
code of the faulty app version with the build scripts
and the compiled apk file.

� Reproducible tests, the test cases that can deterministi-
callymanifest the defect (written in natural language).

� Exception trace, the exception trace w.r.t. the defect.
� Root cause analysis, the explanation of the defect.
In the current version of dataset, we have not yet

included non-deterministic defects (e.g., data race bugs [56],
[66]), since they require specific timing controls.

Dataset of Ground-Truth Defects. This dataset provides 3,696
distinct real faults from 821 apps, which cover all the 11 root
causes summarized in Section 3.2. For each fault, we provide
the app project source code, the executable apk file and the
exception trace. This dataset can be used to evaluate the effec-
tiveness of the fault detection, localization or repairing techni-
ques at the large-scale. Section 4.3.2 details the setup.

Utility Scripts. The utility scripts contain the APIs to run
existing tools, including dynamic testing tools (Monkey,
Sapienz, and Stoat) and static analysis tools (Lint and Find-
Bugs). This can ease the setup of evaluation. For example,
researchers can evaluate his/her newly-proposed testing
tool with the three state-of-the-art ones on our dataset via
calling dedicated APIs.

4.3 Benchmark Setup Details

Apps. To construct DroidDefects, we chose to use open-
source apps since the availability of source code enables
detailed analysis. We chose app subjects from F-Droid. As
discussed in Section 2.2.1, F-Droid apps are the representa-
tives of real-world apps and most of them are maintained
on GitHub.

4.3.1 Setup of Reproducible Defects

Selection Criteria. To construct a comprehensive dataset, we
used exception types as the main guidance. Specifically, we
purposely selected a number of typical Android app defects
to cover each exception type from each root cause group
(summarized in Section 3.2), respectively.

Source of Defects. We mainly collected Android app defects
from GitHub issue repositories, since these defects may be
reported with the reproduction steps and other information.
We also referred to the defects used by recent literature [26],
[78]. We have not considered the defects from testing tools in
Section 3.4, since as revealed in Section 3.5, the reproducibility
rates of generated tests are very low.

Manual Validation. To collect valid defects from GitHub
issue repositories, we reused the dataset of app exceptions
collected in Section 2.2.2. We used the keywords “crash/
stop”, “reproduce”, “replicate”, “version” to further filter
the exceptions, and only considered the issues submitted in
recent years. We constrained our focus on these keywords
since we hoped to focus on those fail-stop defects10 with
clear reproduction steps on the specific app versions, which
are quite important for manual validation and reproduc-
tion. We selected recent issues by considering Android
apps could have outdated dependencies. Finally, we got
448 issues. However, by randomly inspecting some filtered
issues, we note there were still many invalid ones (e.g., the

10. Note that not all exceptions can trigger app crashes, e.g., caught
exceptions or system warning exceptions (e.g., the WindowLeaked
exception only gives resource-leak warning without failing apps).
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reproduction steps are incomplete, the keyword “version”
did not match with the “app version”, etc).

Next, three authors of this paper spent one month to
manually validate and reproduce these issues. Specifically,
we worked in the following steps. First, we randomly sam-
pled some candidate issues for each exception type. Second,
to get the faulty code version Vbug, we either (1) checked out
the code commit right preceding the fixed version Vfix if the
bug fix is explicitly mentioned, or (2) checked out Vbug

according to the specified app version or the issue submis-
sion time. Third, we built the app into an executable apk via
build scripts or Android Studio. Last, we installed the app
on an Android device to replay the described reproduction
steps and observe whether the exact exception will be
thrown. In our experience, various reasons may fail the
above reproduction process. For example, the compilation
may fail due to outdated dependencies; the exception can-
not be manifested due to incomplete reproduction steps or
environment issues. Therefore, if we could not successfully
reproduce an exception within one hour, we resorted to the
other candidates. Finally, we got 33 reproducible defects.

4.3.2 Setup of Ground-Truth Defects

To construct a large dataset of ground-truth defects, we lever-
aged the exceptions revealed by dynamic testing tools in
Section 3.4. Table 6 shows the statistics of this datasetw.r.t. the
root causes of framework exceptions. In total, we collected
3,696 framework exceptions across 11 common root causes,
whichwere discovered in 821 uniqueAndroid apps. To facili-
tate the use, we characterized the complexity of each faulty
app by number of lines, number ofmethods, number of activi-
ties, and number of classes, and the diversity by the app cate-
gory. Finally, we got 3,696 ground-truth defects.

5 APPLICATIONS OF OUR STUDY

5.1 Improving Exception Detection

Dynamic Testing. Enhancing testing tools to detect specific
errors is very important. For example, (1) Generate meaningful
as well as corner-case inputs to reveal parameter errors. We find
random strings with specific formats or characters are very
likely to reveal unexpected crashes. For instance, Monkey

detectsmoreSQLiteExceptions than the other tools since it can
generate strings with special characters like “”” and “%” by
randomly hitting the keyboard.When these strings are used in
SQL statements, they can fail SQL queries without escaping.
(2) Enforce environment interplay to reveal lifecycle, concurrency
and UI update errors. We find some special actions, e.g., change
device orientations, start an activity and quickly return back
without waiting it to finish, put the app at background for a
long time (by calling another app) and return back to it again,
can affect an app’s internal states and its component lifecycle.
Therefore, these actions can be interleaved with normal UI
actions to effectively check robustness. (3) Consider different app
and SDK versions to detect regression errors. We find app updates
may introduce unexpected errors. For example, as shown in
Fig. 8, the changes of database scheme can crash the new ver-
sion since the developers havenot carefullymanageddatabase
migration from the old version. (4) More advanced testing crite-
ria [110], [111] are desired to derive effective tests.

Static Analysis. Incorporating new checking rules into static
analysis tools to enhance their abilities is highly valuable. We
find FindBugs and SonarQube have not included any
Android-specific checking rules, while PMD defines three
rules [112], although these tools all support checking Android
projects. Lint defines 281 Android rules [113] but only covers
a small portion of framework-specific bugs [29]. However,
there are plausible ways to improving these tools. For exam-
ple, to warn the potential crash in Fig. 7, static analysis can
check whether the task running in the thread uses Handler to
dispatchmessages, if it uses, Looper#prepareðÞmust be called
at the beginning of Thread#runðÞ; to warn the potential crash
in Fig. 5, static analysis can check whether there is an appro-
priate checking on activity state before showing a dialog from
a background thread. In fact, some work [98] already imple-
ments the lifecycle checking in Lint.

Demonstration of Usefulness. We implemented Stoat+, an
enhancement version of Stoat [12] with two new strategies.
These two strategies include eight enhancement cases: (1) five
specific input formats (e.g., empty string, lengthy string, null)
or characters (e.g., “””, “%”) to fill in EditTexts or Intent’s
fields; (2) three specific types of environment-interplay actions
mentioned in Section 5.1. These two strategies were imple-
mented in theMCMC sampling phase of Stoat, and randomly
inject these specific events into normal GUI tests to improve
fault detection ablitiy (see Section 4.4 in [12]). We applied
Stoat+ on dozens ofmost popular apps (e.g., Facebook, Gmail,
Google+,WeChat) fromGoogle Play, and each appwas tested
for ten hours on a Google Pixel 3 device. At last, we success-
fully detected 3 previously unknown bugs in Gmail (one
parameter error) and Google+ (one UI update error and one
lifecycle error). All of these bugs were detected in the latest
versions at the time of our study, and have been reported to
Google and got confirmed. The detailed issue reports were
available at the Stoat’s website [114]. However, these bugs
were not found by Monkey and Sapienz, while other testing
tools, e.g., CrashScope [115] and AppDoctor [116], only con-
sider 2 and 3 of these 8 enhancement cases, respectively.

5.2 Enabling Exception Localization

We find developers usually take days to fix a framework
exception. Thus, automatically locating faulty code and

TABLE 6
Statistics of Ground-Truth Defects w.r.t. 11 Common Root

Causes of Framework Exceptions

Category (Name for short) #Defects #Apps

API Updates and Compatibility (API) 33 16
XML Layout Error (XML) 66 30
API Parameter Error (Parameter) 675 181
Framework Constraint Error (Constraint) 168 95
Index Error (Index) 551 183
Database Management Error (Database) 51 15
Resource-Not-Found Error (Resource) 1,238 286
UI Update Error (UI) 170 53
Concurrency Error (Concurrency) 241 71
Component Lifecycle Error (Lifecycle) 301 160
Memory/Hardware Error (Memory) 123 63
Others (Java-specific errors) 79 40

Total 3,696 821
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proposing possible fixes are highly desirable. Our study can
shed light on this goal.

Demonstration of Usefulness. We built a framework excep-
tion localization tool, ExLocator, based on Soot [117], which
takes as input an APK file and an exception trace, and out-
puts a report that explains the root cause of this exception.
It currently supports 5 exception types from UI Update,
Lifecycle, Index, and Framework Constraint errors. In
detail, it first extracts method call sequences and exception
information from the exception trace, and classifies the
exception into one of our summarized fault categories
according to the root exception and signalers. As shown in
Section 3.2, these specific exception types have obvious fault
patterns (e.g., incorrect handling background threads).
Exlocator utilizes these patterns and data-/control-flow
analysis to locate the root cause. More technical details can
be found in our descendant tool APEchecker [81], which
automatically localizes UI update errors. The report gives
the lines or methods that causes the exception, the descrip-
tion of the root cause and possible fixing solutions, and
closely related Stack Overflow posts. From our benchmark
DroidDefects, we randomly selected 6 exception cases for
each of five supported exception types. At last, we got 30
exception cases in total. ExLocator was successfully able to
locate 28 exceptions out of 30 (93.3 percent precision) by
comparing with the patches by developers. By incorporat-
ing additional context information from Android frame-
work (e.g., which framework classes use Handler), our tool
successfully identified the root causes of the remaining two
cases. However, all previous fault localization work [25],
[118], [119], [120] can only handle generic exception types.

5.3 Enhancing Mutation Testing

Mutation testing is a widely-adopted technique to assess the
fault-detection ability of a test suite, as well as to guide test
case generation and prioritization [121]. One crucial step of
applying mutation testing in a new application domain (e.g.,
Android apps) is to design specificmutation operators, which
can represent typical programming faults, in addition to those
generic mutation operators. For example, a number of muta-
tion testing tools for Java programs (e.g., Pit [122] and
Major [123]) are available, but they do not include any
Android-specific mutation operators. As a result, they may
generate trivial mutants that may directly crash themselves
when startup or cannot be complied into executables.

We identified 75 different exception instances (with
unique exception types and messages) from the data in
Table 4. But we find existing mutation operators [124], [125],
[126], [127], [128] designed for Android apps only cover a
few of these instances. Specifically, only 4 mutation operators
(i.e., Intent Playload Replacement, Actvity/Service Lifecycle
Method Deletion, Fail on Back) of Deng et al.’s 17 opera-
tors [125], [126] may help reveal some specific framework
exceptions (e.g., lifecycle-related issues). Their remaining
operators focus on detecting UI, event handling and energy
failures instead of fatal crashes. MDroid+ [127] proposes 38
operators, but can only cover 8 exception instances in our
study. Based on the results of our study, researchers could
add more mutation operators. For example, we can delete
Activity state checking statements from those methods

running in background threads to inject Lifecycle errors (see
Fig. 5); we can also remove specific statements (e.g., app state
storage) from some Fragment’s lifecycle callbacks (e.g.,
onSaveInstanceState) to inject state loss errors [90], [91]; we
can also change some data access from UI threads to back-
ground threads to inject UI update errors (see Fig. 6). We can
also inject many Framework constraint errors (e.g., see the
example in Fig. 7). All these generated mutants can be suc-
cessfully compiled and only detectable at runtime with spe-
cific GUI tests. Thus, more mutation operators can be
introduced for framework exception types to improve muta-
tion testing of Android apps.

6 DISCUSSION

6.1 Lessons Learned

We have learned several lessons from this study. We sum-
marize them to inspire practitioners and researchers, and
motivate future work.

Automatically Reproducing Exceptions Need More Research
Efforts. Reproducing exceptions is very important for bug
diagnosing and fixing. First, in practice, only (incomplete)
reproduction steps (written in natural language) or exception
traces are available to developers. Although some tools [75],
[78], [79], [115] have been developed to improve or automate
bug reproduction, their effectiveness and usability are still
limited. CrashScope [115] improves the reproducibility by
recording more contextual information of bug-triggering
event sequences. However, it still cannot handle exception
bugs caused by inter-app communications. Yukusu [78] trans-
lates a bug report written in natural language into executable
test cases. However, according to our replication of their eval-
uation, we find Yukusu still focuses on creating test cases
instead of reproducing the expected bugs. RecDroid [79] is a
further step of Yukusu, which aims to automatically repro-
duce the expected crash bugs from a bug report. However, it
cannot cover all types of exception bugs (e.g., concurrency
bugs) and its ability is limited by its predefined grammar pat-
terns. Thus, how to effectively and faithfully reproducing the
intended bug described in a bug report still requires more
research efforts. Second, how to reproduce an exception with
a short event trace is also important [129], [130]. Existing test-
ing tools (e.g., Monkey and Sapienz) usually generate quite
long traces which are flaky and not suitable for reproducing.
However, when applied for GUI programs, existing test
reduction techniques, e.g., delta debugging [129], [131], still
have high performance overhead. Thus, how to efficiently
reduce bug-triggering tests is still an open problem. Third, if
only an exception trace is available, effective techniques for
locating faulty code and then generating the bug-triggering
tests at the UI level are quite useful for bug reproduction.
However, existing fault localization techniques for Android
apps [25] are far from mature, and limited to trivial types of
exceptions. Little research efforts has been done to link the
app logic code with UI widgets for interactive debugging of
Android apps. This deservesmore research efforts.

Effective Bug Detection Tools are in Great Demand. Both
dynamic and static bug detection techniques are needed to
effectively reveal as many exception bugs as possible before
app release. First, Android apps could be complicated and
have different types of bugs, and different testing strategies
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could have very different performance in detecting excep-
tions. Thus, one plausible idea is to combine the strengthens
of these strategies together, e.g., combining random testing
and systematic GUI exploration [70], or using static analysis
to guide dynamic testing [81]. Second, static analysis tools
could include more specific rules to check potential bugs
and keep update with the evolution of Android system. The
rules that are closely related to Android programming
errors (e.g., Component Lifecycle Error, Framework Con-
straint Error, UI Update Error) could have higher fault
detection abilities. Third, bug detection tools should
improve their usability. For example, dynamic testing tools
should provide mechanisms to automatically bypass user
logins or accept user-provided account information, other-
wise, they are likely trapped at the login pages. Other tool
features are also very useful, e.g., leveraging user-provided
oracles, generating more readable and less flaky tests,
reducing number of false positives. These can improve bug
detection and reproduction, and save debugging efforts.

Better Documentation and Technical Tutorials are Needed. A
comprehensive and intuitive technical documentation is
very important for developers to quickly understand
Android system and avoid programming errors. However,
during this study, we find this issue is still prominent. For
example, we notice developers are more capable of fixing
trivial errors (e.g., Parameter Error, Index Error) according
to their Java programming knowledge, but takes more time
and needs more discussions when fixing such Android-spe-
cific issues as Component Lifecycle, Memory/Hardware,
Concurrency, and UI Update errors. However, some sophis-
ticated mechanism are not well documented in the official
Android documentation. One typical example is about the
state loss issue when handling Activity and Fragment life-
cycle [90]. Junior developers have to refer to those technical
posts from experienced developers.

Second, we find some developers cannot quickly get
familiar with the newly-introduced features. We observe
some developers chose to delay the upgrading of their apps
to new Android platforms. For example, Android introdu-
ces runtime permission granting since API 23; and supports
Kotlin since API 27. Better documentation and training
courses should be continuously updated to help developers
gain more understanding of new mechanisms, and let them
know the feature evolution of Android system.

6.2 Threats to Validity

External Validity. First, our selected apps may not be the rep-
resentatives of all possible real-world apps. To counter this,
we collected all 2,486 apps from F-Droid at the time of our
study, which is the largest database of open-source apps,
and covers diverse app categories. We also collected a
diverse set of 3,230 closed-source Google Play apps as sub-
jects. Second, our mined exceptions may not include all pos-
sible exceptions. To counter this, we mined the issue
repositories of 2,174 apps on GitHub and Google Code; and
applied testing tools on 5,334 unique apps, which leads to
total 30,009 exceptions. To our knowledge, this is the largest
study for analyzing Android app exceptions.

Internal Validity. First, our exception analysis may not be
absolutely complete and correct. For completeness, (i) we

investigated 8,243 framework exceptions, and carefully
inspected all common exception types. (ii) We surveyed pre-
vious work [11], [12], [15], [19], [21], [31], [56], [98], [116],
[132], [133], [134], [135] that reported exceptions, and
observed all their exception types and patterns were covered
by our study. For correctness, we cross-validated our analy-
sis on each exception type, and also referred to the patches
from developers and Stack Overflow posts. More impor-
tantly, we surveyed 135 professional app developers to gain
more understandings and insights to validate our analysis.
Second, the classification of app exceptions (Section 3.1) and
the taxonomy of root causes (Section 3.2) may be subjective.
This may affect the validity of some analysis results. To
counter this, we carefully analyzed these exceptions based
on our understanding, and the knowledge from Android
documentation and development tutorials.

Construct Validity. The online developer survey may have
some limitations. The designed questions may not fully cover
all aspects, and affect the validity of our conclusions drawn
from this survey. But we tried our best to design appropriate
questions, and refined these questions according to early feed-
back from three experienced Android developers and our
own long-time research experience of inspecting developers
activities on GitHub. In the survey, we also provided some
questions with open options to receive any comments from
developers, which complemented our provided options. Our
constructed benchmarkmay also subject to construct validity.
To counter this, we manually verified all reproducible cases.
For ground-truth cases, we also automatically checked the
validity of exception traces.

7 RELATED WORK

A number of fault studies exist in the literature for Android
apps from different perspectives, e.g., performance [103],
energy [136], compatibility issues [64], [137], permission
issues [138], memory leak [139], [140], GUI failures [105],
[106], [141], resource usage [57], [104], API stability [97],
security [142], [143], [144] etc. However, none of these work
particularly focuses on app crashes and exceptions, which
is the main goal we target at in this work.

Hu et al. [132] make one of the first attempts to analyze
functional bugs for Android apps. They manually classify 8
bug types (e.g., Activity errors, Event errors, Type errors) from
158 bug reports of 10 apps. Other efforts include [31], [134],
which however have different goals compared to our study:
Coelho et al. [31] analyze exception traces to investigate the
bug hazards of exception-handling code (e.g., cross-type
exception wrapping), Zaeem et al. [134] study 106 bugs of 13
apps to generate testing oracles for a specific set of bug types.
However, none of them give a large-scale and comprehensive
analysis in this direction, and the validity of their conclusions
is also unclear.

Linares-V�asquez et al. [127] recently also analyze a large
number of android app bugs. But our study is significantly
different from theirs. First, we focus on analyzing crash
bugs caused by framework exceptions, while they focus on
designing mutation operators to evaluate the effectiveness
of test suites. Second, we give a much more comprehensive,
deep analysis on the root causes, exception detection, repro-
duction and fixing.
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Based on our dataset and analysis results, we constructed
the benchmark DroidDefects. Although prior work also con-
struct some benchmarks of Android app faults, our bench-
mark is more systematic in the number of faults, exception
types and root causes. For example, AndroTest [69], [145] is
a dataset of 68 apps collected from early research work [13],
[15], [18], [133], to evaluate the fault detection abilities of
Android app testing tools. But these subjects are randomly
selected from F-Droid without any specific selection criteria.
Many of these apps are quite out-of-date and error-prone.
DroidBugs [27], [146], the only available dataset for auto-
mated program repair of Android apps, merely contains 13
bugs from 5 apps. This dataset is introductory, and has not
provided any information about bug types.

Researchers have also constructed benchmarks for other
bug types. MUBench [147] is a benchmark of 89 API misuses
mined from 33 real-world projects, including Android.
AppLeak [148] is a benchmark of 40 resource leak bugs in
Android apps, which contains the faulty apps, bug-fixed
versions (when available), and reproducible test cases.
Mostafa et al. [149] study behavioral backward incompatibili-
ties of Java software libraries, including Android. They
archived a number of backward incompatibility faults. In con-
trast, our work focus on exception bugs, and covers diverse
categories and root causes.

8 CONCLUSION

In this paper, we conducted the first large-scale, comprehen-
sive study to understand framework exceptions of Android
apps, which account for the majority of app exception bugs.
Specifically, we investigated framework exceptions from sev-
eral perspectives, including exception characteristics, root
causes, testing practice of developers, abilities of existing bug
detection tools, exception reproducibility and common fix
practices. To validate and generalize our analysis results, we
considered both open-source and commercial apps, and fur-
ther conducted an online developer survey to gain more
insights from the developers’ knowledge and experiences.
Through this study, we constructed DroidDefects, the first
comprehensive and largest benchmark of exception bugs, to
enable follow-up research; and built two prototype tools,
Stoat+ and ExLocator, to demonstrate the usefulness of our
findings. We pointed a number of research directions that
deservemore research efforts.
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Inputs From Hell:
Learning Input Distributions for Grammar-Based Test Generation

Ezekiel Soremekun , Esteban Pavese, Nikolas Havrikov, Lars Grunske , and Andreas Zeller

Abstract—Grammars can serve as producers for structured test inputs that are syntactically correct by construction. A probabilistic

grammar assigns probabilities to individual productions, thus controlling the distribution of input elements. Using the grammars as input

parsers, we show how to learn input distributions from input samples, allowing to create inputs that are similar to the sample; by

inverting the probabilities, we can create inputs that are dissimilar to the sample. This allows for three test generation strategies:

1) “Common inputs”–by learning from common inputs, we can create inputs that are similar to the sample; this is useful for regression

testing. 2) “Uncommon inputs”–learning from common inputs and inverting probabilities yields inputs that are strongly dissimilar to the

sample; this is useful for completing a test suite with “inputs from hell” that test uncommon features, yet are syntactically valid.

3) “Failure-inducing inputs”–learning from inputs that caused failures in the past gives us inputs that share similar features and thus

also have a high chance of triggering bugs; this is useful for testing the completeness of fixes. Our evaluation on three common input

formats (JSON, JavaScript, CSS) shows the effectiveness of these approaches. Results show that “common inputs” reproduced

96 percent of the methods induced by the samples. In contrast, for almost all subjects (95 percent), the “uncommon inputs” covered

significantly different methods from the samples. Learning from failure-inducing samples reproduced all exceptions (100 percent)

triggered by the failure-inducing samples and discovered new exceptions not found in any of the samples learned from.

Index Terms—Test case generation, probabilistic grammars, input samples

Ç

1 INTRODUCTION

DURING the process of software testing, software engi-
neers typically attempt to satisfy three goals:

1) First, the software should work well on common
inputs, such that the software delivers its promise on
the vast majority of cases that will be seen in typical
operation. To cover such behavior, one typically has a
set of dedicated tests (manually written or generated).

2) Second, the software should work well on uncommon
inputs. The rationale for this is that such inputs
would exercise code that is less frequently used in
production, possibly less tested, and possibly less
understood [1].

3) Third, the software should work well on inputs that
previously caused failures, such that it is clear that pre-
vious bugs have been fixed. Again, these would be
covered via specific tests.

How can engineers obtain such inputs? In this paper, we
introduce a novel test generation method that learns from a
set of sample inputs to produce additional inputs that are
markedly similar or dissimilar to the sample. By learning
from past failure-inducing inputs, we can create inputs
with similar features; by learning from common inputs, we
can create uncommon inputs with dissimilar features not
seen in the sample.

The key ingredient to our approach is a context-free gram-
mar that describes the input language to a program. Using
such a grammar, we can parse existing input samples and
count how frequently specific elements occur in these sam-
ples. Armed with these numbers, we can enrich the grammar
to become a probabilistic grammar, in which production alter-
natives carry different likelihoods. Since these probabilities
come from the samples used for the quantification, such a
grammar captures properties of these samples, and produc-
ing from such a grammar should produce inputs that are sim-
ilar to the sample. Furthermore, we can invert the learned
probabilities in order to obtain a second probabilistic gram-
mar, whose productionwould produce inputs that are dissim-
ilar to the sample. We thus can produce three kinds of inputs,
covering the three testing goals listed above:

1) “Common inputs”. By learning from common samples,
we obtain a “common” probability distribution,
which allows us to produce more “common” inputs.
This is useful for regression testing.

2) “Uncommon inputs”. Learning from common sam-
ples, the resulting inverted grammar describes in
turn the distribution of legal, but uncommon inputs.
This is useful for completing test suites by testing
uncommon features.
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3) “Failure-inducing inputs”. By learning from samples
that caused failures in the past, we can produce similar
inputs that test the surroundings of the original inputs.
This is useful for testing the completeness of fixes.

Both the “uncommon inputs” and “failure-inducing
inputs” strategies have high chances of triggering failures.
Since they combine features rarely seen or having caused
issues in the past, we gave them the nickname “inputs from
hell”. As an example, consider the following JavaScript
input generated by focusing on uncommon features:

var { a: {} = ‘b’ } = {};

This snippet is valid JavaScript code, but causes the
Mozilla Rhino 1.7.7.2 JavaScript engine to crash during
interpretation.1 This input makes use of so-called destructur-
ing assignments: In JavaScript, one can have several variables
on the left hand side of an assignment or initialization. In
such a case, each gets assigned a part of the structure on the
right hand side, as in

var [one, two, three] = [1, 2, 3];

where the variable one is assigned a value of 1, two a value
of 2, and so on. Such destructuring assignments, although
useful in some contexts, are rarely found in JavaScript pro-
grams and tests. It is thus precisely the aim of our approach
to generate such uncommon “inputs from hell”.

This article makes the following contributions:

1) We use context-free grammars to determine produc-
tion probabilities from a given set of input samples.

2) We use mined probabilities to produce inputs that
are similar to a set of given samples. This is useful for
thoroughly testing commonly used features (regres-
sion testing), or to test the surroundings of previ-
ously failure-inducing inputs. Our approach thus
leverages probabilistic grammars for both mining
and test case generation. In our evaluation using the
JSON, CSS and JavaScript formats, we show that our
approach repeatedly covers the same code as the
original sample inputs; learning from failure-induc-
ing samples, we produce the same exceptions as the
samples as well as new exceptions.

3) We use mined probabilities to produce inputs that are
markedly dissimilar to a set of given samples, yet still
valid according to the grammar. This is useful for
robustness testing, as well as for exploring program
behavior not triggered by the sample inputs. We are
not aware of any other technique that achieves this
objective. In our evaluation using the same subjects,
we show that our approach is successful in repeatedly
covering code not covered in the original samples.

The remainder of this paper is organized as follows.
After giving a motivational example in Section 2, we detail
our approach in Section 3. Section 4 evaluates our three
strategies (“common inputs”, “uncommon inputs”, and
“failure-inducing inputs”) on various subjects. After discus-
sing the limitations (Section 5) and related work (Section 6),
Section 7 concludes and presents future work.

2 INPUTS FROM HELL IN A NUTSHELL

To demonstrate how we produce both common and uncom-
mon inputs, let us illustrate our approach using a simple
example grammar. Let us assume we have a program P
that processes arithmetic expressions; its inputs follow the
standard syntax given by the grammar G below.

Expr ! Term | Expr ” +” Term | Expr ” -” Term;

Term ! Factor | Term ” * ” Factor
| Term ” / ” Factor ;

Factor ! Int | ” + ” Factor
| ” - ” Factor | ” ( ” Expr ” ) ”;

Int ! Digit Int | Digit ;
Digit ! ” 0 ” | ” 1 ” | ” 2 ” | ” 3 ” | ... | ” 9 ”;

Let us further assume we have discovered a bug in P :
The input I ¼ 1 � ð2þ 3Þ is not evaluated properly. We
have fixed the bug in P , but want to ensure that similar
inputs would also be handled in a proper manner.

To obtain inputs that are similar to I, we first use the
grammar G to parse I and determine the distribution of the
individual choices in productions. This makesG a probabilis-
tic grammar Gp in which the productions’ choices are
tagged with their probabilities. For the input I above, for
instance, we obtain the probabilistic rule

Digit ! 0% ”0” | 33.3% ”1” | 33.3% ”2”
| 33.3% ”3” | 0% ”4” | 0% ”5”
| 0% ”6” | 0% ”7” | 0% ”8” | 0% ”9”;

which indicates the distribution of digits in I. Using this
rule for production, we would obtain ones, twos, and
threes at equal probabilities, but none of the other digits.
Fig. 2 shows the grammar Gp as extension of G with all
probabilities as extracted from the derivation tree of I
(Fig. 1). In this derivation tree we see, for instance, that the
nonterminal Factor occurs 4 times in total. 75 percent of the
time it produces integers (Int), while in the remaining 25
percent, it produces a parenthesis expression (”(” Expr
”)”). Expressions using unary operators like ”+” Factor
and ”-” Factor do not occur.

If we use Gp from Fig. 2 as a probabilistic production
grammar, we obtain inputs according to these probabilities.
As listed in Fig. 3, these inputs uniquely consist of the digits
and operators seen in our sample 1 * (2 + 3). All of these
inputs are likely to cover the same code in P as the original

Fig. 1. Derivation tree representing ”1 + (2 * 3)”.

1. We have reported this snippet as Rhino issue #385 and it has been
fixed by the developers.
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sample input, yet with different input structures that trigger
the same functionality in P in several new ways.

When would one want to replicate the features of sample
inputs? In the “common inputs” strategy, one would create
test cases that are similar to a set of common inputs; this is
helpful for regression testing. In the more interesting
“failure-inducing inputs” strategy, one would learn from a
set of failure-inducing samples to replicate their features;
this is useful for testing the surroundings of past bugs.

If one only has sample inputs that work just fine, one
would typically be interested in inputs that are different from
our samples—the “uncommon inputs” strategy. We can eas-
ily obtain such inputs by inverting the mined probabilities: if a
rule previously had a weight of p, we now assign it a weight
of 1=p, normalized across all production alternatives. For our
Digit rule, this gives the digits not seen so far aweight of 1=0 ¼
1, which is still distributed equally across all seven alterna-
tives, yielding individual probabilities of 1=7 ¼ 14:3%. Pro-
portionally, the weights for the digits already seen in I are
infinitely small, yielding a probability of effectively zero. The
“inverted” rule reads now:

Digit ! 14.3% ”0” | 0% ”1” | 0% ”2” | 0% ”3”
| 14.3% ”4” | 14.3% ”5” | 14.3% ”6”
| 14.3% ”7” | 14.3% ”8” | 14.3% ”9”;

Applying this inversion to rules with non-terminal sym-
bols is equally straightforward. The resulting probabilistic
grammar Gp�1 is given in Fig. 4.

This inversion can lead to infinite derivations, for exam-
ple, the production rule in Gp�1 for generating Expr is recur-
sive 100 percent of the time, expanding only to Expr ”-”
Term, without chance of hitting the base case. As a result,
we take special measures to avoid such infinite productions
during input generation (see Section 3.3).

If we use Gp�1 as a production grammar—and avoiding
infinite production—we obtain inputs as shown in Fig. 5.
These inputs now focus on operators like subtraction or
division or unary operators not seen in our input samples.
Likewise, the newly generated digits cover the complement
of those digits previously seen. Yet, all inputs are syntacti-
cally valid according to the grammar.

In summary, with common inputs as produced byGp, we
can expect to have a good set of regression tests—or a set
replicating the features of failure-inducing inputs when
learning from failure-inducing samples. In contrast, uncom-
mon inputs as produced by Gp�1 would produce features
rarely found in samples, and thus cover complementary
functionality.

3 APPROACH

In order to explain our approach in detail, we start with
introducing basic notions of probabilistic grammars.

3.1 Probabilistic Grammars

The probabilistic grammars that we employ in this paper are
based on thewell-known context-free grammars (CFGs) [2].

Definition 1 (Context-free grammar). A context-free gram-
mar is a 4-tuple ðV; T; P; S0Þ, where V is the set of non-termi-
nal symbols, T the terminals, P : V ! ðV [ T Þ� the set of
productions, and S0 2 V the start symbol.

In a non-probabilistic grammar, rules for a non-terminal
symbol S provide n alternatives Ai for expansion

S ! A1jA2j. . .jAn: (1)

In a probabilistic context-free grammar (PCFG), each of the
alternatives Ai in Equation (1) is augmented with a proba-
bility pi, where

Pn
i¼1 pi ¼ 1 holds

S ! p1A1jp2A2j. . .jpnAn: (2)

If we are using these grammars for generation of a sen-
tence of the language described by the grammar, each
alternative Ai has a probability of pi to be selected when
expanding S.

By convention, if one or more pi are not specified in a
rule, we assume that their value is the complement proba-
bility, distributed equally over all alternatives with these
unspecified probabilities. Consider the rule

Letter ! 40.0% ”a” | ”b” | ”c”

Here, the probabilities for ”b” and ”c” are not specified;
we assume that the complement of ”a”, namely 60 percent,
is equally distributed over them, yielding effectively

Letter ! 40.0% ”a” | 30.0% ”b” | 30.0% ”c”

Formally, to assign a probability to an unspecified pi, we use

pi ¼ 1�Pfpjjpj is specified for Ajg
number of alternatives Ak with unspecified pk

: (3)

Again, this causes the invariant
Pn

i¼1 pi ¼ 1 to hold. If no pi
is specified for a rule with n alternatives, as in Equation (1),
then Equation (3) makes each pi ¼ 1=n, as intended.

3.2 Learning Probabilities

Our aim is to turn a classical context-free grammar G into a
probabilistic grammar Gp capturing the probabilities from a
set of samples—that is, to determine the necessary pi values

Fig. 2. Probabilistic grammar Gp, expandingG.

Fig. 3. Inputs generated from Gp in Fig. 2.
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as defined in Equation (2) from these samples. This is
achieved by counting how frequently individual alternatives
occur during parsing in each production context, and then
to determine appropriate probabilities.

In language theory, the result of parsing a sample
input I using G is a derivation tree [3], representing the
structure of a sentence according to G. As an example, con-
sider Fig. 1, representing the input ”1 + (2 * 3)” according
to the example arithmetic expression grammar in Section 2.
In this derivation tree, we can now count how frequently a
particular alternative Ai was chosen in the grammar G
during parsing. In Fig. 1, the rule for Expr is invoked three
times during parsing. This rule expands once (33.3 percent)
into Expr ”+” Term (at the root); and twice (66.7 percent)
into Term in the subtrees. Likewise, the Term symbol
expands once (25 percent) into Term ”*” Factor and three
times (75 percent) into Factor. Formally, given a set T of
derivation trees from a grammar G applied on sample
inputs, we determine the probabilities pi for each alterna-
tive Ai of a symbol S ! A1j. . .jAn as

pi ¼ Expansions of S ! Ai in T

Expansions of S in T
: (4)

If a symbol S does not occur in T , then Equation (4) makes
pi ¼ 0=0 for all alternatives Ai; in this case, we treat all pi
for S as unspecified, assigning them a value of pi ¼ 1=n in
line with Equation (3). In our example, Equation (4) yields
the probabilistic grammar Gp in Fig. 2.

3.3 Inverting Probabilities

We turn our attention now to the converse approach; namely
producing inputs that deviate from the sample inputs that
were used to learn the probabilities described above. This
“uncommon input” approach promises to be useful if we
accept that our samples are not able to cover all the possible
system behavior, and if we want to find bugs in behaviors
that are either not exercised by our samples, or do so rarely.

The key idea is to invert the probability distributions as
learned from the samples, such that the input generation
focuses on the complement section of the language (w.r.t.
the samples and those inputs generated by the probabilistic
grammar). If some symbol occurs frequently in the parse
trees corresponding to the samples, this approach should
generate the symbol less frequently, and vice versa: if the
symbol seldom occurs, then the approach should definitely
generate it often.

For a moment, let us ignore probabilities and focus onweights
instead. That is, the absolute (rather than relative) number of
occurrences of a symbol in the parse tree of a sample.We start
by determining the occurrences of a symbol A during a pro-
duction S found in a derivation tree T

wA;S ¼ Occurrence count of A in the
expansions of symbol S in T

: (5)

To obtain inverted weights w0
A;S , a simple way is to make

each w0
A;S based on the reciprocal value of wA;S , that is

w0
A;S ¼ wA;S

�1 ¼ 1

wA;S
: (6)

If the set of samples is small enough, or focuses only on a
section of the language of the grammar, it might be the case
that some production or symbol never appears in the pars-
ing trees. If this is the case, then the previous equations end
up yielding wA;S ¼ 0. We can compute wA;S

�1 ¼ 1, assign-
ing the elements not seen an infinite weight. Consequently,
all symbols B that were indeed seen before (with wB;S > 0)
are assigned an infinitesimally small weight, leading to
w0

B;S ¼ 0. The remaining infinite weight is then distributed
over all of the originally “unseen” elements with original
weight wA;S ¼ 0. Recall the arithmetic expression grammar
in Section 2; such a situation arises when we consider the
rule for the symbol Digit: the inverted probabilities for the
rule focus exclusively on the complement of the digits seen
in the sample.

All that remains in order to obtain actual probabilities is
to normalize the weights back into a probability measure,
ensuring for each rule that its invariant

Pn
i¼1 p

0
i ¼ 1 holds

p0i ¼
w0

iPn
i¼1 w

0
i

: (7)

3.4 Producing Inputs From a Grammar

Given a probabilistic grammar Gp for some language (irre-
spective of whether it was obtained by learning from sam-
ples, by inverting, or simply written that way in the first
place), our next step in the approach is to generate inputs fol-
lowing the specified productions. This generation process is
actually very simple, since it reduces to produce instances by
traversing the grammar, as if it were a Markov chain. How-
ever, this generation runs the serious risk of probabilistically
choosing productions that lead to an excessively large pars-
ing tree. Even worse, the risk of generating an unbounded tree
is very real, as can be seen in the rule for the symbol Int in the
arithmetic expression grammar in Section 2. The production

Fig. 5. Inputs generated from Gp�1 from Fig. 4.

Fig. 4. Grammar Gp�1 inverted from Gp in Fig. 2.
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rule for said symbol triggers, with probability 1.0, a recursion
with no base case, andwill never terminate.

Our inspiration for constraining the growth of the tree
during input generation comes from the PTC2 algorithm [4].
The main idea of this algorithm is to allow the expansion of
not-yet-expanded productions, while ensuring that the
number of productions does not exceed a certain threshold
of performed expansions. This threshold would be set as
parameter of the input generation process. Once this thresh-
old is exceeded, the partially generated instance cannot be
truncated, as that would result in an illegal input. Alterna-
tively, we choose to allow further expansion of the neces-
sary non-terminal symbols. However, from this point on,
expansions are not chosen probabilistically. Rather, the
choice is constrained to those expansions that generate the
shortest possible expansion tree. This ensures both termina-
tion of the generation procedure, as well as trying to
keep the input size close to the threshold parameter. This
choice, however, does introduce a bias that may constitute a
threat to the validity of our experiments that we discuss in
Section 4.3.

3.5 Implementation

As a prerequisite for carrying out our approach, we only
assume we have the context-free grammar of the language
available for which we are interested in generating inputs,
and a collection (no matter the size) of inputs that we will
assume are common inputs. Armed with these elements, we
perform the workflow detailed in Fig. 6.

The first step of the approach is to obtain a counting
grammar from the original grammar. This counting gram-
mar is, from the parsing point of view, completely equiva-
lent to the original grammar. However, it is augmented
with actions during parsing which perform all necessary
counting of symbol occurrences parallel to the parsing
phase. Finally, it outputs the probabilistic grammar. Note
that this first phase requires not only the grammar of the
target language, but also the grammar of the language in
which the grammar itself is written. That is, generating the
probabilistic grammar not only requires parsing sample
inputs, but also the grammar itself. In the particular case of
our implementation, we make use of the well-known
parser generator ANTLR [5].

Once the probabilistic grammar is obtained, we derive
the probabilistically-inverted grammar as described in this
section. Armed with both probabilistically annotated
grammars, we can continue with the input generation
procedure.

4 EXPERIMENTAL EVALUATION

In this section we evaluate our approach by applying the
technique in several case studies. In particular, we ask the
following research questions:

� RQ1 (“Common inputs”). Can a learned grammar be
used to generate inputs that resemble those that
were employed during the grammar training?

� RQ2 (“Uncommon inputs”). Can a learned grammar
be modified so it can generate inputs that, opposed
to RQ1, are in contrast to those employed during the
grammar training?

� RQ3 (“Sensitivity to training set variance”). Is our
approach sensitive to variance in the initial samples?

� RQ4 (“Sensitivity to size of training set”). Is our
approach sensitive to the size of the initial samples?

� RQ5 (“Bugs found”). What kind of crashes (excep-
tions) do we trigger in RQ1 and RQ2?

� RQ6 (“Failure-inducing inputs”). Can a learned gram-
mar be used to generate inputs that reproduce fail-
ure-inducing behavior?

To answer RQ1 and RQ2, we need to compare inputs in
order to decide whether these inputs are “similar” or
“contrasting”. In the scope of this evaluation, we will use the
method coverage and call sequences as measures of input similar-
ity. We will define these measures later in this section, and we
will discuss their usefulness. We address RQ3 by comparing
the method calls and call sequences induced for three ran-
domly selected training sets, each containing five inputs. Like-
wise, we evaluate RQ4 by comparing the method calls and
call sequences induced for four randomly selected training
sets, each containing N sample inputs, where N 2
f1; 5; 10; 50g. We assess RQ5 by categorizing, inspecting and
reporting all exceptions triggered by our test suites in RQ1
and RQ2. Finally, we address RQ6 by investigating if the
“(un)common inputs” strategy can reproduce (or avoid) a
failure and explore the surroundings of the buggy behavior.

4.1 Evaluation Setup

4.1.1 Generated Inputs

Once a probabilistic grammar is learned from the training
instances, we generate several inputs that are fed to each
subject. Our evaluation involves the generation of three
types of test suites:

a) Probabilistic - choice between productions is gov-
erned by the distribution specified by the learned
probabilities in the grammar.

Fig. 6. Workflow for the generation of “ common inputs” and “ uncommon inputs” .
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b) Inverse - choice is governed by the distribution
obtained by the inversion process described in
Section 3.3.

c) Random - choice between productions is governed by
a uniform distribution (see RQ6).

Expansion size control is carried out in order to avoid
unbounded expansion as described in Section 3.4. Table 1
reports the details of the produced inputs, i.e., the depth and
average number of nodes in the derivation trees for the
“common inputs” (i.e., probabilistic/PROB) and “uncommon
inputs” (i.e., inverse/INV).

4.1.2 Research Protocol

In our evaluation, we generate test suites and measure the
frequency of method calls, the frequency of call sequences
and the number of failures induced in our subject programs.
For each input language, the experimental protocol pro-
ceeds as follows:

a) We randomly selected five files from a pool of thou-
sands of sample files crawled from GitHub code
repositories, and through our approach produced a
probabilistic grammar out of them.2 Since one of the
main use cases of our tool is to complete a test suite,
we perform grammar training with few (i.e., five)
initial sample tests.

b) We feed the sampled input files into the subject pro-
gram and record the triggered failures, the induced
call sequences and the frequency of method calls
using the HPROF [6] profiler for Java.

c) Using the probabilistic grammar, we generate test
suites, each one containing 100 input files. We gener-
ate a total of 1,000 test suites, in order to control for
variance in the input files. Overall, each experiment
contains 100,000 input files (100 files x 1,000 runs).
We perform this step for both probabilistic and
inverse generations. Hence, the total number of
inputs generated for each grammar is 200,000 (1,000
suites of 100 inputs each, a set of suites for each
experiment).

d) We test each subject program by feeding the input
files into the subject program and recording the
induced failures, the induced call sequences and the
frequency of method calls using HPROF.

All experiments were conducted on a server with 64
cores and 126 GB of RAM; more specifically an Intel Xeon

CPU E5-2683 v4 @ 2.10 GHz with 64 virtual cores (Intel
Hyperthreading), running Debian 9.5 Linux.

4.1.3 Subject Programs

We evaluated our approach by generating inputs and feed-
ing them to a variety of Java applications. All these applica-
tions are open source programs using three different input
formats, namely JSON, JavaScript and CSS3. Table 2 sum-
marizes the subjects to be analyzed, their input format and
the number of methods in each implementation.

The initial, unquantified grammars for the input subjects
were adapted from those in the repository of the well-
known parser generator ANTLR [5]. We handle grammar
ambiguity that may affect learning probabilities by ensuring
every input has only one parse tree. Specifically, we adapt
the input grammars by (re-)writing lexer modes for the
grammars, shortening lexer tokens and re-writing parser
rules. Training samples were obtained by scraping GitHub
repositories for the required format files. The probabilistic
grammars developed from the original ones, as well as the
obtained training samples can be found in our replication
package.

4.1.4 Measuring (Dis)similarity

Questions RQ1 and RQ2 refer to a notion of similarity
between inputs. Although white-box approaches exist that
aim to measure test-case similarity and dissimilarity [7], [8],
applying them to complex grammar-based inputs is not
straightforward. However, in this paper, since we are deal-
ing with evaluating the behavior of a certain piece of soft-
ware, it makes sense to aim for a notion of semantic
similarity. In this sense, two inputs are semantically similar
if they incite similar behaviors in the software that processes
them. In order to achieve this, we define two measures of
input similarity based on structural and non-structural pro-
gram coverage metrics. The non-structural measure of input
similarity is the frequency of method calls induced in the pro-
grams. The structural measure is the frequency of call sequences
induced in the program, a similar measure was used in [9].
Thus, we will say two inputs are similar if they induce

TABLE 1
Depth and Size of Derivation Trees for “Common Inputs”

(PROB) and “Uncommon Inputs” (INV)

TABLE 2
Subject Details

2. To evaluate RQ6, we learned a PCFG from at most five random
failure-inducing inputs.
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similar (distribution of) method call frequencies for the
same program. The frequency of call sequences refers to the
number of times a specific method call sequence is triggered
by an input, for a program. For this measure, we say two
inputs are similar if they trigger a similar distribution in the
frequency with which the method sequences are called, for
the same program. These notions allow for a great variance
drift if we were to compare only two inputs. Therefore, we
perform these comparisons on test suites as a whole to
dampen the effect of this variance.

Using these measures, we aim at answering RQ1 and
RQ2. RQ1 will be answered satisfactorily if the (distribu-
tion of) call frequencies and sequences induced by the
“common inputs” strategy is similar to the call frequency
and sequences obtained when running the software on the
training samples. Likewise, RQ2 will be answered positively
if the (distribution of) call frequencies and sequences for
suites generated with the “uncommon inputs” strategy are
markedly dissimilar.

4.1.5 Visual Test

For each test suite, we compare the frequency distribution
of the call sequences and method calls triggered in a

program, using grouped and single bar charts. These com-
parisons are in line with the visual tests described in [10].

For instance, Fig. 7 shows the frequency analysis of the
call sequences induced in json-flattener by our test
suites. The grouped bar chart compares the frequency dis-
tribution of call sequences for all three test suites, (i.e., (a)
PROB versus SAMP versus INV) and the single bar chart
shows the frequency distribution of call sequences for each
test suite (i.e., (b.) PROB, (c) SAMP and (d) INV). Frequency
analysis (in (a.)) shows that the (distribution of) call sequen-
ces of PROB and SAMP align (see rightmost part of bar
chart), and INV often induces a different distribution of call
sequences from the initial samples (see leftmost part of bar
chart). The single bar chart for a test suite shows the fre-
quency distribution of the call sequences triggered by the
test suite. For instance, Figs. 7b and 7c show the call
sequence distribution triggered by the “common inputs”
and initial samples respectively. The comparison of both
charts shows that all call sequences covered by the samples,
were also frequently covered by the “common inputs”.

Likewise, Figs. 9, 10, and 11 show the call frequency
analysis of the test suites using a grouped bar chat for
comparison (i.e., (a) PROB versus SAMP versus INV)
and a single bar chart to show the call frequency distri-
bution of each test suite (i.e., (b.) PROB, (c) SAMP and
(d) INV). The grouped bar chart shows the call fre-
quency for each test suite grouped together by method,
with bars for each test suite appearing side by side per
method. For instance, analysing Fig. 9a shows that the
call frequencies of PROB and SAMP align (see rightmost
part of bar chart), and INV often induces a different call
frequency for most methods (see leftmost part of bar
chart). Moreover, the single bar chart for a test suite
shows the call frequency distribution of the test suite.
For instance, Figs. 9b and 9c show the call frequency dis-
tribution of the “common inputs” and initial samples
respectively, their comparison shows that all methods
covered by the samples, were also frequently covered by
the “common inputs”.

Fig. 7. Frequency analysis of call sequences for json-flattener
(length=2).

Fig. 8. Call sequences covered by Sample for “common inputs” (PROB)
and “uncommon inputs” (INV).

Fig. 9. Call frequency analysis for json-simple-cliftonlabs.
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4.1.6 Collecting Failure-Inducing Inputs

For each input file in our Github corpus, we fed it to every
subject program of the input language and observe if the
subject program crashes, i.e., the output status code is
non-zero after execution. Then, we collect such inputs as
failure-inducing inputs for the subject program and parse
the standard output for the raised exception. In total, we
fed 10,853 files to the subject programs, 1,000 each for CSS
and JavaScript, and 8,853 for JSON. Exceptions were trig-
gered for two input languages, namely JavaScript and
JSON, no exception was triggered for CSS. In total, we col-
lected 15 exceptions in seven subject programs (see
Table 10).

4.2 Experimental Results

In Figs. 9, 10, and 11, we show a representative selection of
our results.3 For each subject, we constructed a chart that rep-
resents the absolute call frequency of each method in the sub-
ject. The horizontal axis (which is otherwise unlabelled)
represents the set of methods in the subject, ordered by the
frequency of calls in the experiment on probabilistic inputs.

RQ1 (“Common inputs”): Can a learned grammar be used to
generate inputs that resemble those that were employed during the
grammar training?

To answer RQ1, we compare the methods covered by the
sample inputs and the “common inputs” strategy (Table 4
and Figs. 9, 10, 11). We also examine the call sequences cov-
ered by the sample inputs and the “common inputs”, for
consecutive call sequences of length two, three and four
(Table 3 and Fig. 8). In particular, we investigate if the
“common inputs” strategy covered at least the same methods
or the same call sequences as the initial sample inputs.

Do the “common inputs” trigger similar non-structural
program behavior (i.e., method calls) as the initial samples?
For all subjects, the “common inputs” strategy covered
almost all (96 percent) of the methods covered by the sam-
ple (see Table 4). This result shows that the “common
inputs” strategy learned the input properties in the samples
and reproduced the same (non-structural) program behav-
ior as the initial samples. Besides, this strategy also covered
other methods that were not covered by the samples.

The “common inputs” strategy triggered almost all methods
(96 percent) called by the initial sample inputs.

Do the “common inputs” also trigger similar structural
program behavior (i.e., sequences of method calls)? In our
evaluation, the “common inputs” strategy covered most of
the call sequences that were covered by the initial samples.
For instance, Fig. 7 shows that the call sequences covered by
the samples were also frequently covered by the “common
inputs”, for json-flattener. Overall, the “common
inputs” strategy covered 94 percent of the method call
sequences induced by the sample (see Table 3 and Fig. 8). For
all call sequences, the “common inputs” strategy also cov-
ered 90 to 96 percent of the method call sequences covered
by the samples. This result shows that the “common inputs”
strategy triggers the same structural program behavior as
the initial samples.

Fig. 10. Call frequency analysis for JSONJava. Fig. 11. Call frequency analysis for json-simple.

TABLE 3
Call Sequence Analysis for “Common Inputs” (PROB) and

“Uncommon Inputs” (INV) for all Subject Programs

3. The full range of charts is omitted for space reasons. However, all
charts, as well as the raw data, are available as part of the artifact pack-
age. Moreover, the charts shown here have been selected so that they
are representative of the whole set; that is, the omitted charts do not
deviate significantly.
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The “common inputs” strategy triggered most call sequences
(94 percent) covered by the initial sample inputs.

Additionally, we compare the statistical distributions
resulting from our strategies. We need to be able to see a
pattern in frequency calls such that the frequency curves for
the sample runs and the probabilistic runs match as described
in the visual test (see Section 4.1.5). Figs. 9, 10, and 11 show
that this match does hold for all subjects.

For all subjects, the method call frequency curves for the sam-
ple runs and the probabilistic runs match.

Wealso perform a statistical analysis on the distributions to
increase the confidence in our conclusion. We performed a
distribution fitness test (KS - Kolmogorov-Smirnov) on the
sample versus the probabilistic call distribution; and on the
sample versus the inverse probabilistic distribution. It must
be noted that the KS test aims at determining whether the dis-
tributions are exactly the same, whereas we want to ascertain
if they are similar or dissimilar. KS tests are very sensitive to
small variations in data, which makes it, in principle, inade-
quate for this objective. In this work, we employ the approach
used by Fan [11]—we first estimate the kernel density func-
tions of the data distributions, which smoothen the estimated
distribution. Then, we bootstrap and resample new data on
the kernel density estimates, and perform the KS test on the
bootstrapped data.

The KS test confirms the results from the visual inspec-
tion, the distribution of the method call frequency of
“common inputs” matches the distribution in the sample
(see Table 4), for some subjects. However, there are also sub-
jects, where the hypothesis is rejected (p < 0:05) that
method call frequency distributions (sample and “common
inputs”) come from the same distribution, which is indi-
cated by the blue entries. In the case of the Jackson subject,
frequencies for the sample calls are all close to zero, which
makes the data inadequate for the KS test.

RQ2 (“Uncommon inputs”): Can a learned grammar be modi-
fied such it can generate inputs that, opposed to RQ1 , are in con-
trast to those employed during the grammar training?

For all subjects, the “uncommon inputs” produced
by inverting probabilities covered markedly fewer
(82 percent) of the methods covered by the sample (see
Table 4). This result shows that the “uncommon inputs”
strategy learned the input properties in the samples and
produced inputs that avoid several methods covered by
the samples.

The “uncommon inputs” strategy triggered markedly fewer
methods (82 percent) called by the initial sample inputs.

Do the “uncommon inputs” trigger fewer of the call
sequences covered by the initial samples? Table 3 shows
that the “uncommon inputs” strategy triggered signifi-
cantly fewer (61 percent) of the call sequences covered by
the samples. The number of call sequences induced by the
uncommon inputs decreases significantly as the length of
the call sequence increases (see Fig. 8). For instance, com-
paring frequency charts of call sequences in Figs. 7a, 7c
and 7d also show that “uncommon inputs” frequently
avoided inducing the call sequences triggered by the initial
samples. Notably, for sequences of four consecutive
method calls, the “uncommon inputs” strategy covered
only 47 percent of the sequences covered by the initial sam-
ples (see Table 3). Overall, the “uncommon inputs” avoided
inducing the call sequences that were triggered by the ini-
tial samples.

The “uncommon inputs” strategy induced significantly fewer
call sequences (61 percent) covered by the initial samples.

Do the “uncommon inputs” only cover fewer, or also dif-
ferent methods? We perform a visual test to examine if we
see a markedly different call frequency between the samples
and the inputs generated by the “uncommon inputs”

TABLE 4
Method Coverage for “Common Inputs” (PROB) and “Uncommon Inputs” (INV)
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strategy. In almost all charts this is the case (see Figs. 9, 10,
and 11). The only exception is the CSSValidator subject.

For all subjects (except CSSValidator), the method call fre-
quency curves for the sample runs and “uncommon inputs”
runs are markedly different.

Besides, we examine if the frequency of distribution of
method calls for the samples and the “uncommon inputs”
are significantly dissimilar. In particular, the KS tests shows
that for all subjects (except json-flattener) the distributions
of method calls in the sample and the “uncommon inputs”
are significantly different (p < 0:05, see sample versus INV in
Table 4).

RQ3 (“Sensitivity to training set variance”): Is our approach
sensitive to variance in the initial samples?

We examine the sensitivity of our approach to the vari-
ance in the training set. We randomly selected three distinct
training sets, each containing five inputs. Then, for each set,
we compare the methods and call sequences covered by the
samples to those induced by the generated inputs (Table 5).

Our evaluation showed that our approach is not sensitive to
training set variance. In particular, for all training sets, the
“common inputs” strategy covered most of the methods
and call sequences induced by the initial sample inputs.
Table 5 shows that the “common inputs” (PROB) consis-
tently covered almost all call sequences (93 to 98 percent)
covered by the initial samples, while “uncommon inputs”
(INV) covered significantly fewer call sequences (61 to 68
percent). Likewise, the “common inputs” consistently cov-
ered almost all methods (96 to 100 percent) covered by the
initial samples, while “uncommon inputs” covered fewer
methods (82 to 87 percent) (cf. Table 5).

Both strategies, the “common inputs” and the “uncommon
inputs”, are insensitive to training set variance.

RQ4 (“Sensitivity to the size of training set”): Is our approach
sensitive to the size of the initial samples?

We evaluate the sensitivity of our approach to the size of
the training set. For each input format, we randomly

selected four distinct training sets containing N sample
inputs, where N 2 f1; 5; 10; 50g. Then, for each set, we com-
pare the methods and call sequences induced by the sam-
ples to those induced by the generated inputs (Table 6).

Regardless of the size of the training set, the “common
inputs” strategy consistently covered most of the methods and
call sequences covered by the initial samples. Specifically, for
all sizes, the “common inputs” covered almost all (94 to 99
percent) of the call sequences covered by the initial sam-
ples, while “uncommon inputs” covered significantly
fewer call sequences (58 to 79 percent). In the same vein,
the “common inputs” consistently covered almost all
methods (96 to 100 percent) covered by the initial samples,
while “uncommon inputs” covered fewer methods
(79 to 89 percent) (cf. Table 6). These results demonstrates
that the effectiveness of our approach is independent of
the size of the training set.

The effectiveness of our approach is independent of the size of
the training set used for grammar training.

RQ5 (“Bugs found”): What kind of crashes (exceptions) do we
trigger?

To address RQ5, we examine all of the exceptions trig-
gered by our test suites. We inspect the exceptions triggered
during our evaluation of the “common inputs” strategy (in
RQ1) and the “uncommon inputs” strategy (in RQ2). To
evaluate if our approach is capable of finding real-world
bugs, we compare the exceptions triggered in both RQ1 and
RQ2 to the exceptions triggered by the input files crawled
from Github (using the setup described in Section 4.1.6).

Both of our strategies triggered 40 percent of the excep-
tions triggered by the crawled files, i.e., six (out of 15) excep-
tions causing thousands of crashes in four subjects (cf.
Tables 7 and 8). Half (three) of these exceptions had no sam-
ples of failure-inducing inputs in their grammar training.
This indicates that, even without failure-inducing input
samples during grammar training, our approach is able to
trigger common buggy behaviors in the wild, i.e., bugs trig-
gered by the crawled input samples. Exceptions were trig-
gered for JSON and JavaScript input formats, however, no
exception was triggered for CSS.

TABLE 5
Sensitivity to Training Set Variance Using Three Different Sets of Initial Samples Containing Five Inputs Each

TABLE 6
Sensitivity to the Size of the Training Set Using Initial Sample Size N 2 f1; 5; 10; 50g
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Probabilistic grammar-based testing induced two fifths of all
exceptions triggered by the crawled files.

Our strategies were able to trigger eight other exceptions
that could not be found by the crawled files (cf. Fig. 12). This
result shows the utility of our approach in finding rare buggy
behaviors, i.e., uncommon bugs in the crawled input samples.
Besides, all of these exceptions were triggered despite a lack
of “failure-inducing input” samples in the grammar training.
In particular, both strategies triggered nine exceptions each,
three and four of which were triggered only by the “common
inputs” and only by the “uncommon inputs”, respectively.

Probabilistic grammar-based testing induced eight new excep-
tions that were not triggered by the crawled files.

The “common inputs” strategy triggered all of the excep-
tions triggered by the original sample inputs used in gram-
mar training. Three exceptions were triggered by the
sample inputs and all three exceptions were triggered by
the “common inputs” strategy, while “uncommon inputs”
triggered only two of these exceptions (cf. Tables 7 and 8).
Again, this result confirms that our grammar training
approach can learn the input properties that characterize
specific program behaviors.

The “common inputs” induced all of the exceptions triggered
by the original sample inputs.

Overall, 14 exceptions in seven subject programs were
found in our experiments (see Tables 7 and 8). On inspection,
six of these exceptions affecting five subject programs have

been reported to developers as severe bugs. These exceptions
have been extensively discussed in the bug repository of
each subject program. This result reveals that our approach
can generate inputs that reveal real-world buggy behaviors.
Additionally, from the evaluation of crawled files, 15 excep-
tions in five subjects were found. In particular, one exception
(Rhino issue #385, which is also reproducible with our
approach) has been confirmed and fixed by the developers.

RQ6 (“Failure-inducing inputs”): Can a learned grammar be
used to generate inputs that reproduce failure-inducing behavior?

Let us now investigate if our approach can learn a PCFG
from failure-inducing samples and reproduce the failure.

For each exception triggered by the crawled files (in Sec-
tion 4.1.6), we learned a PCFG from at most five failure-
inducing inputs that trigger the exception. Then, we run our
PROB approach on the PCFG, using the protocol setting in
Section 4.1.2. The goal is to demonstrate that the PCFG
learns the input properties of the “failure-inducing inputs”,
i.e. inputs generated via PROB should trigger the same excep-
tion as the failure-inducing samples. This is useful for
exploring the surroundings of a bug.

In addition, for each exception, we run the inverse of
“failure-inducing inputs” (i.e., INV), in order to evaluate if the
“uncommon inputs” avoid reproducing the failures. In con-
trast, for each exception,we run the randomgenerator (RAND)
on the CFG (according to Section 4.1.2), in order to evaluate the

TABLE 7
Exceptions Induced by “Common Inputs” (PROB), and “Uncommon Inputs” (INV)

TABLE 8
Exception Details

Fig. 12. Number of exceptions triggered by the test suites.
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probability of randomly triggering (these) exceptionswithout a
(learned) PCFG. In the random configuration (RAND), produc-
tion choices have equal probability of generation.

In Table 9, we have summarized the number of repro-
duced exceptions. We see that probabilistic generation
(PROB) reproduced all (15) failure-inducing inputs col-
lected in our corpus. This shows that the grammar training
approach effectively captured the distribution of input
properties in the failure-inducing inputs. Moreso, it repro-
duced the program behavior using the learned PCFG.

Learning probabilities from failure-inducing inputs strategy
reproduces 100 percent of the exceptions in our corpus.

For the inverse of “failure-inducing inputs”, our evalua-
tion showed that the “uncommon inputs” strategy could
avoid reproducing the learned failure-inducing behavior
for most (10 out of 15) of the exceptions (cf . Tables 9 and 10).

The “uncommon inputs” strategy could avoid reproducing the
learned program behavior for two-thirds of the exceptions.

However, this strategy reproduced a third (five out of 15) of
the exceptions in our corpus (cf . Tables 9 and 10). On inspection,
we found that “uncommon inputs” reproduced these five
exceptions by generating new counter-examples, i.e., new
inputs that are different from the initial samples but trigger the
same exception. This is because the initial sample of failure-
inducing inputs was not general enough to fully characterize
all input properties triggering the crash. This result demon-
strates that the inverse of “failure-inducing inputs” can explore
the boundaries of the learned behavior in the PCFG, hence, it is
useful for generating counter-examples.

The “uncommon inputs” strategy generated new counter-
examples for one-third of the exceptions in our corpus.

In contrast, the random test suite (RAND) could not trig-
ger any of the exceptions in our corpus, as shown in Table 9.
This is expected, since a random traversal of the input
grammar would need to explore numerous path combina-
tions to find the specific paths that trigger an exception.
This result demonstrates the effectiveness of the grammar
training and the importance of the PCFG in capturing input
properties.

Random input generation could not reproduce any of the
exceptions in our corpus.

Furthermore, we examined the proportion of the gener-
ated inputs that trigger an exception. In total, for each test
configuration and each exception we generated 100,000
inputs. We investigate the proportion of these inputs that
trigger the exception.

Our results for this analysis are summarized in Table 10.
We see that about 18 percent of the inputs generated by the
“failure-inducing inputs” strategy (PROB) trigger the
learned exception, on average. This rate is three times as
high as the exception occurrence rate in our corpus (SAMP;
6 percent).

About one in five inputs generated by the “failure-inducing
inputs” strategy reproduced the failure-inducing exception.

Finally, the “failure-inducing inputs” strategy also pro-
duced new exceptions not produced by the original sample of
failure-inducing inputs. As shown in the “Other” column in
Table 9, “failure-inducing inputs” triggered at least one
new exception for each exception in our corpus. This result
suggests that the PCFG is also useful for exploring the
boundaries of the learned behavior, in order to trigger other
program behaviors different from the learned program
behavior. This is possible because “failure-inducing inputs”
not only reproduces the exact features found in the samples,
but also their variations and combinations.

The “failure-inducing inputs” strategy discovered new excep-
tions not triggered by the samples or random generation.

4.3 Threats to Validity

4.3.1 Internal Validity

The main threat to internal validity is the correctness of our
implementation. Namely, whether our implementation
does indeed learn a probabilistic grammar corresponding to
the distribution of the real world samples used as training
set. Unfortunately, this problem is not a simple one to
resolve. The probabilistic grammar can be seen as a Markov
chain, and the aforementioned problem is equivalent to ver-
ifying that its equilibrium distribution corresponds to the
posterior distribution of the real world samples. The prob-
lem is two-fold: first, the number of samples necessary in
order to ascertain the posterior distribution is inordinate.
Second, even if we had a chance to process such a number
of inputs, or if the posterior distribution were otherwise
known, it might well be the case that the probabilistic gram-
mar actually has no equilibrium distribution. However, our
tests on smaller and simpler grammars suggest that this is
not an issue.

A second internal validity threat is present in the tech-
nique we use for controlling the size of the generated

TABLE 9
Reproduced Exceptions by Sample Inputs (SAMP), “Failure-
Inducing Inputs” (PROB), Inverse of “Failure-Inducing Inputs”
(INV) and Random Grammar-Based Generation (RAND)
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samples. As described before, a sample’s size is defined in
terms of the number of expansions in its parsing tree. In
order to control the size, we keep track of the number of
expansions generated. Once this number crosses a certain
threshold (if it actually crosses it at all), all open derivations
are closed via their shortest path. This does introduce a bias
in the generation that does not exactly correspond to the
distribution described by the probabilistic grammar. The
effects of such a bias are difficult to determine, and merit
further and deeper study. However, not performing this ter-
mination procedure would render useless any approach
based on probabilistic grammars.

4.3.2 External Validity

Threats to external validity relate to the generalizability of
the experimental results. In our case, this is specifically
related to the subjects used in the experiments. We
acknowledge that we have only experimented with a lim-
ited number of input grammars. However, we have
selected the subjects with the intention to test our approach
on practically relevant input grammars with different com-
plexities, from small to medium size grammars like JSON;
and rather complex grammars like JavaScript and CSS. As
a result, we are confident that our approach will also work
on inputs that can be characterized by context-free gram-
mars with a wide range of complexity. However, we do
have evidence that the approach does not seem to be gen-
eralizable to combinations of grammars and samples such
that they induce the learning of an almost-uniform proba-
bilistic grammar.

4.3.3 Construct Validity

The main threat to construct validity is the metric we use to
evaluate the similarity between test suites, namely method
call frequency. While the uses of coverage metrics as ade-
quacy criteria is extensively discussed by the community
[12], [13], [14], their binary nature (that is, we can either
report covered or not covered) makes them too shallow to dif-
ferentiate for behavior. The variance intrinsic to the probabi-
listic generation makes it very likely that at least one sample
will cover parts of the code unrelated to those covered by

the rest of the suite. Besides, method call frequency is con-
sidered a non-structural coverage metric. To mitigate this
threat, we also evaluate our test suites using a structural
metric, in particular, (frequency of) call sequences.

5 LIMITATIONS

Context Sensitivity. Although, our probabilistic grammar
learning approach captures the distribution of input proper-
ties, the learned input distribution is limited to production
choices at the syntactic level. This approach does not handle
context-sensitive dependencies such as the order, sequences
or repetitions of specific input elements. However, our
approach can be extended to learn contextual dependencies,
e.g., by learning sequences of elements using N-grams [15]
or hierarchies of elements using k-paths [16].

Input Constraints. Beyond lexical and syntactical validity,
structured inputs often contain input semantics such as
checksums, hashes, encryption, or references. Context-free
grammars, as applied in this work, do not capture such com-
plex input constraints. Automatically learning such input
constraints for test generation is a challenging task [17]. In
the future, we plan to automatically learn input constraints
to drive test generation, e.g., using attribute grammars.

6 RELATED WORK

Generating Software Tests. The aim of software test generation is
to find a sample of inputs that induce executions that suffi-
ciently cover the possible behaviors of the program—
including undesired behavior. Modern software test genera-
tion relies, as surveyed by Anand et al. [12] on symbolic code
analysis to solve the path conditions leading to uncovered
code [1], [18], [19], [20], [21], [22], [23], [24], search-based
approaches to systematically evolve a population of inputs
towards the desired goal [25], [26], [27], [28], random inputs
to programs and functions [29], [30] or a combination of
these techniques [31], [32], [33], [34], [35]. Additionally,
machine learning techniques can also be applied to create
test sequences [36], [37]. All these approaches have in com-
mon that they do not require an additional model or annota-
tions to constrain the set of generated inputs; this makes
them very versatile, but brings the risk of producing false

TABLE 10
Reproducing Exceptions by “Failure-Inducing Inputs” (PROB), Inverse of “Failure-Inducing Inputs” (INV),

and Random Grammar-Based Test Generation (RAND)
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alarms—failing executions that cannot be obtained through
legal inputs.

Grammar-Based Test Generation. The usage of grammars as
producers was introduced in 1970 by Hanford in his syntax
machine [38]. Such producers are mainly used for testing
compilers and interpreters: CSmith [39] produces syntacti-
cally correct C programs, and LANGFUZZ [40] uses a Java-
Script grammar to parse, recombine, and mutate existing
inputs while maintaining most of the syntactic validity.
GENA [41], [42] uses standard symbolic grammars to pro-
duce test cases and only applies stochastic annotation dur-
ing the derivation process to distribute the test cases and to
limit recursions and derivation depth. Grammar-based
white-box fuzzing [43] combines grammar-based fuzzing
with symbolic testing and is now available as a service from
Microsoft. As these techniques operate with system inputs,
any failure reported is a true failure—there are no false
alarms. None of the above approaches use probabilistic
grammars, though.

Probabilistic Grammars. The foundations of probabilistic
grammars date back to the earliest works of Chomsky [44].
The concept has seen several interactions and generalizations
with physics and statistics; we recommend the very nice arti-
cle by Geman and Johnson [45] as an introduction. Probabilis-
tic grammars are frequently used to analyze ambiguous data
sequences—in computational linguistics [46] to analyze natu-
ral language, and in biochemistry [47] to model and parse
macromolecules such as DNA, RNA, or protein sequences.
Probabilistic grammars have been used also tomodel andpro-
duce input data for specific domains, such as 3D scenes [48] or
processor instructions [49].

The usage of probabilistic grammars for test generation
seems rather straightforward, but is still uncommon. The
Geno test generator for .NET programs by L€ammel and
Schulte [50] allowed users to specify probabilities for indi-
vidual production rules. Swarm testing [51], [52] uses statis-
tics and a variation of random testing to generate tests that
deliberately targets or omits features of interest. These
approaches, in contrast to the one we present in this paper,
does not use existing samples to learn or estimate probabili-
ties. The approach by Poulding et al. [53], [54] uses a sto-
chastic context-free grammar for statistical testing. The goal
of this work is to correctly imitate the operational profile
and consequently the generated test cases are similar to
what one would expect during normal operation of the sys-
tem. The test case generation [55], [56] and failure reproduc-
tion [57] approaches by Kifetew et al. combine probabilistic
grammars with a search-based testing approach. In particu-
lar, like our work, StGP [55] also learns stochastic grammars
from sample inputs.

Our approach aims to generate inputs that induce (dis)
similar program behaviors as the sample inputs. In contrast
to our paper, StGP [55] is focused on evolving and mutating
the learned grammars to improve code coverage. Although,
StGP’s goal of generating realistic inputs is very similar to
our ”common inputs” strategy (see RQ1), our approach can
further generate realistic inputs that are dissimilar to the
sample inputs (see RQ2). Meanwhile, StGP is not capable of
generating dissimilar inputs.

Mining Probabilities. Related to our work are approaches
that mine grammar rules and probabilities from existing

samples. Patra and Pradel [58] use a given parser to mine
probabilities for subsequent fuzz testing and to reduce tree-
based inputs for debugging [59]. Their aim, however, is not
to produce inputs that would be similar or dissimilar to
existing inputs, but rather to produce inputs that have a
higher likelihood to be syntactically correct. This aim is also
shared by twomining approaches: GLADE [60] and Learn&-
Fuzz [61], which learn producers from large sets of input
samples even without a given grammar.

All these approaches, however, share the problem of pro-
ducing only “common inputs”—they can only focus on
common features rather than uncommon features, creating
a general “tension between conflicting learning and fuzzing
goals” [61]. In contrast, our work can specifically focus on
“uncommon inputs”—that is, the complement of what has
been learned.

Like us, the Skyfire approach [62] aims at also leveraging
“uncommon inputs” for probabilistic fuzzing. Their idea is
to learn a probabilistic distribution from a set of samples
and use this distribution to generate seeds for a standard
fuzzing tool, namely AFL [63]. Here, favoring low probabil-
ity rules is one of many heuristics applied besides low fre-
quency, low complexity, or production limits. Although the
tool has shown good results for XML-like languages, results
for other, general grammar formats such as JavaScript are
marked as “preliminary” only, though.

Mining Grammars. Our approach requires a grammar that
can be used both for parsing and producing inputs. While
engineering such a grammarmay well pay off in terms of bet-
ter testing, it is still a significant investment in the case of spe-
cific domain inputs where such a grammar might not be
immediately available. Mining input structures [64], as exem-
plified using the above GLADE [60] and Learn&Fuzz [61]
approaches, may assist in this task. AUTOGRAM [65] and
MIMID [66] mine human-readable input grammars exploit-
ing structure and identifiers of a program processing the
input, whichmakes themparticularly promising.

7 CONCLUSION AND FUTURE WORK

In this paper we have presented an approach that allows
engineers, using a grammar and a set of input samples, to
generate instances that are either similar or dissimilar to
these samples. Similar samples are useful, for instance,
when learning from failure-inducing inputs; while dissimi-
lar samples could be used to leverage the testing approach
to explore previously uncovered code. Our approach pro-
vides a simple, general, and cost-effective means to generate
test cases that can then be targeted to the commonly used
portions of the software, or to the rarely used features.

Despite their usefulness for test case generation, gram-
mars—including probabilistic grammars—still have a lot of
potential to explore in research, and a lot of ground to cover in
practice. Our futureworkwill focus on the following topics:

Deep Models.At this point, our approach captures probabi-
listic distributions only at the level of individual rules. How-
ever, probabilistic distributions could also capture the
occurrence of elements in particular contexts, and differentiate
between them. For instance, if a ”+” symbol rarely occurs
within parentheses, yet frequently outside of them, this differ-
ence would, depending on how the grammar is structured,
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not be caught by our approach. The domain of computational
linguistics [46] has introduced a number of models that take
context into account. In our future work, we shall experiment
with deeper context models, and determining their effect on
capturing common and uncommon input features.

Grammar Learning. The big cost of our approach is the
necessity of a formal grammar for both parsing and produc-
ing—a cost that can boil down to 1–2 programmer days if a
formal grammar is already part of the system (say, as an
input file for parser generators), but also extend to weeks if
it is not. In the future, we will be experimenting with
approaches that mine grammars from input samples and pro-
grams [65], [66] with the goal of extending the resulting
grammars with probabilities for probabilistic fuzzing.

Debugging.Minedprobabilistic grammars could be used to
characterize the features of failure-inducing inputs, separat-
ing them from those of passing inputs. Statistical fault locali-
zation techniques [67], for instance, could then identify input
elements most likely associated with a failure. Generating
“common inputs”, as in this paper, and testing whether they
cause failures, could further strengthen correlations between
input patterns and failures, as well as narrow down the cir-
cumstances underwhich the failure occurs.

We are committed to making our research accessible for
replication and extension. The source code of our parsers
and production tools, the raw input samples, as well as all
raw obtained data and processed charts is available as a rep-
lication package:

https://tinyurl.com/inputs-from-hell
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On How Bit-Vector Logic Can Help Verify
LTL-Based Specifications

Mohammad Mehdi Pourhashem Kallehbasti , Matteo Rossi , and Luciano Baresi

Abstract—This paper studies how bit-vector logic (bv logic) can help improve the efficiency of verifying specifications expressed in

Linear Temporal Logic (LTL). First, it exploits the notion of Bounded Satisfiability Checking to propose an improved encoding of LTL

formulae into formulae of bv logic, which can be formally verified by means of Satisfiability Modulo Theories (SMT) solvers. To assess

the gain in efficiency, we compare the proposed encoding, implemented in our tool Zot, against three well-known encodings available in

the literature: the classic bounded encoding and the optimized, incremental one, as implemented in both NuSMVand nuXmv, and the

encoding optimized for metric temporal logic, which was the “standard” implementation provided by Zot. We also compared the newly

proposed solution against five additional efficient algorithms proposed by nuXmv, which is the state-of-the-art tool for verifying LTL

specifications. The experiments show that the new encoding provides significant benefits with respect to existing tools. Since the first

set of experiments only used Z3 as SMTsolver, we also wanted to assess whether the benefits were induced by the specific solver or

were more general. This is why we also embedded different SMTsolvers in Zot. Besides Z3, we also carried out experiments with

CVC4, Mathsat, Yices2, and Boolector, and compared the results against the first and second best solutions provided by either NuSMV

or nuXmv. Obtained results witness that the benefits of the bv logic encoding are independent of the specific solver. Bv logic-based

solutions are better than traditional ones with only a few exceptions. It is also true that there is no particular SMTsolver that

outperformed the others. Boolector is often the best as for memory usage, while Yices2 and Z3 are often the fastest ones.

Index Terms—Formal methods, linear temporal logic, bounded satisfiability checking, bit-vector logic

Ç

1 INTRODUCTION

LINEAR Temporal Logic [1] (LTL) plays a key role in
computer science. It has been used for the specifica-

tion and verification of (possibly safety-critical) programs
[2], the generation of test cases [3], the synthesis of con-
trollers [4], the formalization of notations (e.g., UML) [5],
the run-time verification of systems [6], and as planning
formalism [7]. However, one of the key factors that still
hamper the widespread adoption of this formalism in
practice is the limited efficiency and scalability of verifi-
cation tools.

While various techniques have used automata in the past
to formally verify LTL models [8], this work exploits the
notion of Bounded Satisfiability Checking (BSC) [9], a variant
of Bounded Model Checking (BMC) [10]. BSC requires that
LTL formulae be suitably translated into formulae of
another decidable logic, such as propositional logic, that
precisely capture ultimately periodic models of the original
formulae of length up to a bound k. Produced formulae are

then fed to a solver for the target logic (e.g., a SAT or SMT
solver) for verification (up to bound k).

To tackle efficiency, this article presents bit-vector logic
(bv logic) as means to encode LTL formulae and speed-up
their verification. This logic allows SMT solvers to exploit
the representation of the different temporal values of varia-
bles as vectors and to carry out simplifications and optimi-
zations at word (vector) level. Our initial work [11]
demonstrated the feasibility of the approach, proposed an
initial encoding, and demonstrated it was able to scale bet-
ter than the “usual” Boolean-based ones by exploiting
Z3 [12] as SMT solver.

This paper moves a step forward and generalizes the out-
come. It first proposes a new bv logic-based encoding,
which significantly improves the original one [11]. Besides
highlighting the novel aspects, we implemented it as addi-
tional plug-in of our bounded satisfiability checker Zot [13].
Its architecture helped us implement different encodings as
independent plug-ins and carry out the experiments more
easily. To assess the efficiency gain we carried out a first set
of experiments, reported in Section 4, to compare the new
encoding against solutions already proposed by Zot and by
NuSMV [14] and nuXmv1 [16], which are the de-facto stan-
dard for bounded verification of LTL specifications (we did
not consider tools like SPIN [17] because they employ other,
different verification techniques).

We used Zot for reusing the old bv logic-based encod-
ing [11] and the “standard” LTL encoding [9]. We also used
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both NuSMV and nuXmv to try with three “classical”, Bool-
ean logic-based encodings available in the literature: (i) the
classic bounded encoding [18]; (ii) the optimized encoding
[19], and (iii) the improved and incremental version [12], [20].
We also exploited nuXmv for five additional verification algo-
rithms that both adopt diverse verification techniques and
exploit specific optimizations to solve particular problems.

Obtained results show that the new solution, imple-
mented as Zot plug-in and based on Z3, is almost always
the fastest option and consumes less memory. The most sig-
nificant exception is the verification of the Fischer protocol,
where the k-live solution proposed by nuXmv is the best
because it is able to subsume the UNSAT result without nec-
essarily iterating up to the maximum bound. Our experi-
ments also suggest that this solution (k-live) only works well
with a few small models.

The second set of experiments we carried out aimed to
assess whether efficiency benefits were independent of the
particular SMT solver used —Z3 in the initial set of experi-
ments. This is why we exploited Zot one more time to
implement plug-ins and compare the top five solvers in
recent SMT competitions [21]: Boolector [22], Yices2 [23],
Mathsat [15], CVC4 [24], and Z3.

In this paper we focus on the verification of LTL specifi-
cations, which are finite-state models. The bv logic-based
encoding presented here has also been used to improve the
efficiency of the verification technique of infinite-state mod-
els presented in [25]. We do not present this work in this
paper for the sake of brevity.

All these experiments helped us reject the claim that the gain
wasmainly due to the efficiency of Z3, and clearly highlight the
benefits of the bv logic encoding. Obtained results witness that
the benefits are independent of the specific solver. Bv logic-
based solutions are better than traditional ones with only a few
exceptions. There is however no specific solver that outper-
formed the others. Boolector is often the best as for memory
usage,while Yices2 andZ3 are often the fastest options.

To summarize, this article extends the work initially pre-
sented in [11] with: (i) an improved, and more efficient, bv
logic encoding of LTL formulae; (ii) a new and more thor-
ough set of experiments to compare the efficiency of our Zot-
and Z3-based solution against the best Boolean logic-based
approaches and additional algorithms (provided by nuXmv);
and (iii) a wider comparison to assess the impact of different
SMT solvers on the efficiency of the proposed solution.

The rest of this article is organized as follows. Section 2
introduces LTL, briefly sketches logic-based system verifica-
tion, and describes the existing bounded Boolean-based
encoding for LTL. Section 3 explains the improved bv logic-
based encoding for LTL and highlights the differences with
respect to the original one [11]. Section 4 describes the tools
we used for evaluation, the experiments we carried out, and
the resultswe obtained. Section 5 surveys related approaches
and Section 6 concludes the article.

2 PRELIMINARIES

2.1 Linear Temporal Logic

LTL [1] is a widely-used specification logic. In this article,
we focus on the version with both future and past temporal
operators: although past operators do not increase the

expressiveness of the logic, they are advantageous for com-
positional reasoning [26]. In addition, LTL with past opera-
tors is exponentially more concise than its future-only
counterpart [27].

An LTL formula f is defined over a set of atomic proposi-
tions AP by means of the following grammar:

f ::¼ p j :f j f ^ f j Xf j Yf j fUf j fSf;

where p 2 AP , : and ^ have the usual meaning, X andU are
the “next” and “until” future operators, and Y (”yesterday”)
and S (”since”) are their past counterparts. Complex formu-
lae are composed of sub-formulae: for example, pUXp ^ q
comprises p, q, p ^ q, and Xp ^ q.

The semantics of LTL is given in terms of infinite sequen-
ces of sets of atomic propositions, or words. A word p : N!
2AP assigns to every instant of the temporal domain N the
(possibly empty) set of atomic propositions that hold in that
instant. We can think of a word as an infinite sequence of
states p ¼ s0s1s2 . . . , where each state is labeled with the
atomic propositions that hold in it. We say that a word p sat-
isfies formula f at instant i, written p; i � f, if f holds when
evaluated starting from instant i of p. The following is the
usual formal semantics of the satisfiability relation for LTL

p; i � p, p 2 pðiÞ for p 2 AP

p; i � :f, p; i 6� f

p; i � f1 ^ f2 , p; i � f1 and p; i � f2

p; i � Xf, p; iþ 1 � f

p; i � Yf, i > 0 and p; i� 1 � f

p; i � f1Uf2 , 9j � i s.t. p; j � f2

and 8n s.t. i � n < j : p; n � f1

p; i � f1Sf2 , 9j � i s.t. p; j � f2

We say that a word p satisfies formula f when it holds at
the first instant of the temporal domain, i.e., when p; 0 � f

holds. In this case we will sometimes write p � f. A word p

that satisfies f is a model for f.
Starting from the basic connectives and operators, it is

customary to introduce the other traditional Boolean con-
nectives (_, ) , ...), and temporal operators as abbrevia-
tions. In particular the “eventually in the future” (F),
“globally in the future” (G) and “release” (R) operators
(and their past counterparts “eventually in the past” P,
“historically” H and “trigger” T) are defined as follows:
Ff ¼ >Uf, Gf ¼ :F:f, f1Rf2 ¼ :ð:f1U:f2Þ, Pf ¼ >Sf,
Hf ¼ :P:f, and f1Tf2 ¼ :ð:f1S:f2Þ.

LTL is then often used to model (complex) systems and
the properties they must comply with,in a so-called descrip-
tive approach [28]. If formulae S and f describe system and
property to be checked, respectively, satisfiability checking
can help prove if f holds (or fails) for S, since a formula is
valid iff its negation is unsatisfiable [28]. S ) f, which cap-
tures the fact that property f holds for S, can be proven
valid if its negation (S ^ :f) is shown to be unsatisfiable,
otherwise a trace that satisfies S ^ :f would witness the
failure of property f for system S.

For the sake of simplicity, let us introduce a simple run-
ning example used throughout the paper to materialize the
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main concepts. A synchronous shift-register returns every
received bit after a delay of two time instants. This system can
be specified by the LTL formula S : Gðin, XXoutÞ, which
states that in holds at the current time instant iff outwill hold at
the second time instant from now. Consider property P1 :
FG:in, which asserts that there is a time instant in the future at
which in stops occurring; one can easily show that P1 does not
hold for S by producing a counterexample in which in occurs
infinitely often. This can be proven by checking the satisfiability
of formula S ^ :P1, which leads to a counterexample. On the
other hand, propertyP2 : FG:in) FG:out, which states that,
if in ceases to occur after a certain point in time, then out even-
tually ceases to occur, holds for S. Indeed, there is not a single
trace of S in which P2 is falsified, which means that S ^ :P2 is
unsatisfiable.

2.2 Bounded Satisfiability Checking

Bounded Satisfiability Checking is a well-known satisfiabil-
ity checking technique. It is based on the idea of translating
a temporal logic formula c into a formula of propositional
logic that represents infinite, ultimately periodic models of
c—i.e., sequences of states of the form p ¼ s0s1 . . . sl�1
ðslslþ1 . . . skÞv, where k is a parameter called the bound of the
model. As discussed in Section 2.1, then, if one wants to val-
idate the specification of a system S against property f

using a BSC approach, the formula to be translated is S ^
:f, and one must look for an ultimately periodic sequence
of states p ¼ s0s1 . . . sl�1ðslslþ1 . . . skÞv of S that violates f. If
a counterexample that witnesses the violation of the prop-
erty exists, then the property does not hold for S. If no coun-
terexample of length up to k is found, then the property
holds for S provided that k is big enough. For example,
back to the running example, property P1 does not hold for
S because of the counterexample p ¼ fgfingfgðfin; out
bracefgÞv, where we have an in at the second time instant
and from the forth time instant onwards both in and out
occur every other time instant forever.

BSC can be easily carried out by an SMT solver by trans-
lating LTL formulae properly. The classic encoding tech-
nique into propositional logic [18] represents states s0 . . . sl
. . . sk, and then the fact that the state after sk, say skþ1, is in
fact sl again. Hence, the bounded encoding captures finite
sequences of states of the form asbs, where a ¼ s0s1 . . . sl�1,
b ¼ slþ1 . . . sk, and s ¼ sl ¼ skþ1.

The encoding is defined as Boolean constraints over so-
called formula variables j½c�ji. These are Boolean variables
that are used to represent the values of all subformulae of
the LTL formula to be checked for satisfiability at instants
0; 1; . . . kþ 1. More precisely, given an LTL formula f and a
bound k, the encoding introduces kþ 2 formula variables
j½c�j0; j½c�j1; . . . j½c�jkþ1 for each subformula c of f to capture
whether c is true or not at the various instants in ½0; kþ 1�.

In addition, the encoding introduces kþ 1 loop selector vari-
ables l0; l1; . . . ; lk, which are fresh Boolean variables such that ll
is true iff the loop starts at position l (hence, if ll is true, then
sl ¼ skþ1); at most one of l0; l1; . . . ; lk can be true. Other Bool-
ean variables are introduced for convenience: the kþ 1 varia-
bles InLoopi, with 0 � i � k, are such that InLoopi is true iff
position i is in the loop (i.e., l � i � k). Finally, variable
LoopExists is true iff the desired loop exists.

Table 1 introduces the constraints that are imposed on
the Boolean variables introduced above to capture the
semantics of LTL formulae. Constraints jLoopConstraintsjk
formalize the semantics of Boolean variables fligi2½0;k�,
fInLoopigi2½0;k� and LoopExists (e.g., the existence of at
most one loop). In addition, as mentioned in [18], they
impose that the same atomic propositions that hold in state
sk also hold in state sl�1, which has been shown to improve
the efficiency of the satisfiability checking.

Constraints jLastStateConstraintsjk define that the sub-
formulae of f that hold in skþ1 are the same as those that
hold in state sl. This effectively defines that after state sk the
bounded trace loops back to state sl.

The subsequent constraints define the semantics of the
propositional connectives and of the temporal operators.
Constraints jPropConstraintsjk capture the semantics of
propositional connectives. For example, they state that the

TABLE 1
Constraints Defined to Capture the Semantics of LTL Formulae
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value of j½p�ji and j½:p�ji capture whether propositional letter
p holds at instant i or not. The definitions of j½c1 ^ c2�j and
of j½c1 _ c2�j are straightforward. Note that the Boolean
encoding was defined for LTL formulae in Positive Normal
Form (PNF), that is, negations can only appear next to
atomic propositions. This can save some formula variables,
but the encoding can be easily generalized to formulae that
are not in PNF.

Constraints jTempConstraintsjk define the semantics of the
temporal operators, both future (X, U and R) and past ones
(Y, S and T). The semantics of U and R is defined through
their standard fixpoint characterization and through the intro-
duction of the set of constraints jEventualitiesjk.

The latter constraints are used to ensure that, if c1Uc2

holds in sk, then c2 occurs infinitely often, that is, it occurs
somewhere in the loop. Similarly, if c1Rc2 occurs in sk,
then either c2 holds throughout the loop, or at some point
of the loop c1 holds. hhFc2iii and hhGc2iii are auxiliary
variables required for capturing these constraints. hhFc2iii
holds if position i belongs to the loop and c2 holds in at
least one position between l and i. Accordingly, hhFc2iik
means that c2 holds somewhere in the loop. Therefore, con-
straint LoopExists) ðj½c1Uc2�jk ) hhFc2iikÞ does not
allow c1Uc2 to hold at k, if c2 does not occur infinitely
often. Similarly, hhGc2iik holds iff c2 holds everywhere in
the loop. Then, constraint LoopExists) ðj½c1Rc2�jk (
hhGc2iikÞ forces j½c1Rc2�jk to hold if c2 holds from position
l on.

Similar constraints define the semantics of the past opera-
tors Y, S and T, which is symmetrical to their future counter-
parts. We also define operator Z, which is necessary for
formulae in PNF, which is simply a variant of Y such that Zc
holds in 0 no matter c. Since the temporal domain is mono-
infinite (i.e., it is infinite only towards the future), there is no
need to impose eventuality constraints over past operators.
However, we must define the value of past operators in the
origin 0 (constraints jTempConstraintsjk in the origin).

Finally, given an LTL formula f, its Boolean encoding fB

is given by the conjunction of the constraints in sets
jLoopConstraintsjk, jLastStateConstrantsjk, jPropConstraintsjk,
jTempConstraintsjk, and jEventualitiesjk, plus the statement
that f holds in the origin, i.e., j½f�j0.
2.3 Bit-Vector Logic

A bit-vector is an array whose elements are bits (Booleans).
In bit-vector logic, the size of a bit-vector (number of bits)
is finite, and can be any nonzero number in N. We use the
notation x ½n� for the bit-vector x with size n, or simply x 
when the size is not important or can be inferred from the

context. Furthermore, x ½i�½n� stands for the ith bit in the bit-
vector x , where bits are indexed from right to left. Accord-

ingly, x ½n�1�½n� is the leftmost and most significant bit, and

x ½0�½n� is the rightmost and least significant bit. For constants
we use the notation c ½n�, which is the two’s complement
representation of integer c over n bits. For example, �2 �

½4�
is 1110.

Bv logic offers a wide range of operators. The two core
operators are concatenation and extraction. Concatenation:
x ½n� :: y ½m� is a bit-vector z ½nþm�, such that z ½0� ¼ y ½0� and
z ½mþn�1� ¼ x ½n�1�. For example, 111 :: 0 ¼ 1110. Extraction:

x ½j:i� is a bit-vector z ½j�iþ1�, where z ½0� ¼ x ½i� and z ½j�i� ¼
x ½j�, which can be defined through concatenation as x ½j:i� ¼
::ik¼j x

½k�. For example, 1100½2:0� ¼ 100.
Arithmetic operators addition (þ) and subtraction (�)

throw away the final carry bit and the resulting bit-vector
has the same size as the operands. Unsigned shift to the right/
left (�/	) throws away the rightmost/leftmost bit and
inserts zero from the left/right. For example,� 1100 ¼ 0110
and 	 1100 ¼ 1000. In general, 	n x (resp., �n x ) is the
operation that applies	 (resp.,�) to x n times.

We also use bitwise operators like negation (!), conjunction
(&), disjunction (j), reduction or (*), and reduction and (+). The
reduction and operator is defined as + x ½n� ¼ &n�1

i¼0 x ½i�½n� (i.e.,
it is the “and” of all the bits in x ). The size of the resulting
bit-vector is one. The bit corresponds to the minimum value
in x ; in other words, it is equal to one if all the bits of the
bit-vector x are one, zero otherwise.

Bit-vectors (or parts thereof) can be compared using the
usual relational operators ¼ , < , and formulae of bv logic
can be built using the usual Boolean connectives :, ^.

3 BIT-VECTOR-BASED ENCODING

Before introducing our new bv logic-based encoding, we
want to motivate the choice of this logic.

The truth values of an LTL formula at the time instants
from 0 to k are a series of trues or falses, and the value at a
particular time instant is logically related to the values at
the other instants. If one adopted a Boolean encoding, each
value would be stored in an independent variable and the
broader view is disregarded. While a bit-vector is a collec-
tion of Boolean values, the key difference lies in the way
constraints are managed. If they are asserted on a set of
(independent) Boolean values, the solver is blind to their
interrelations and no simplifications can be carried out at
word level. In contrast, when these values are stored in a
single vector (word), SMT solvers can apply simplifications
and optimizations (more) efficiently. Essentially, more
information is provided to the solver in the latter case.

While a thorough assessment of the impact of these sim-
plifications is out of the scope of this paper [29] (see also
Section 4 for our empirical results), we invite the reader to
focus on the trivially unsatisfiable LTL formula ððaUb _
:aR:bÞUcÞ ^ :Fc. By definition, aUb is equivalent to
:ð:aR:bÞ, which reduces aUb _ :aR:b to >. Besides, >Uc
is another form of Fc, which reduces the LTL formula to
Fc ^ :Fc, that is ?. These simplifications are not easy for a
solver, especially when the whole formula is asserted at the
Boolean level. Since only Z3 shows its intermediate steps,
we can report its behavior, but we argue it can be general-
ized. Z3 simplifies the Boolean formula produced by the
classic Boolean encoding into another Boolean formula that
then must be solved. In contrast, the bv logic formula pro-
duced by sbvzot is simplified and reduced to ?, and thus
the result is UNSAT, without solving any formula. With the
Boolean encoding, the solver computes the Boolean varia-
bles for time instants i and iþ 1, which are false, by resolv-
ing different constraints. It is not aware that they both
represent the same sub-formula (?) at various time instants.
In a bv logic-based encoding, the solver knows that bit i and
iþ 1 are zero, not by solving constraints at bit level (Boolean
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values), but by simplifying the formula at vector level since
both bits are parts of the same bit vector (?).

This example shows that bv logic can indeed enable sim-
plifications that Boolean logic does not. However, in this
specific example, since the formula is quite small, the solv-
ing time is quite small. Section 4 witnesses that the bigger
formulae become, the higher the gain is.

3.1 sbvzot

bvzot is the first bv logic-based encoding for LTL we devel-
oped [11], sbvzot (simple bvzot ) is the new encoding pre-
sented in this paper. sbvzot: (i) does not use binary
arithmetic operations (addition and subtraction), (ii) intro-
duces as many bit-vectors as the number of subformulae in
a formula (not only for its propositional letters), (iii) and
adds “last state constraints” for all operators (not only for
past ones). This encoding—which, from a purely syntactic
point of view, is usually more concise than bvzot —is the
result of diverse experiments that explored different
tweaks and solutions. sbvzot is overall the best one in
terms of efficiency.

Similarly to the classic Boolean encoding of Section 2.2,
sbvzot uses bit-vectors to represent the truth value of each
subformula in time instants ½0; kþ 1�. More precisely, to
encode an LTL formula f, for each subformula c of f we
introduce a bit-vector, hci �

½kþ2� (i.e., of size kþ 2), such that

hci �½i�
½kþ2�, with i 2 ½0; kþ 1�, captures the value of subformula

c at instant i.2

In addition to a bit-vector for each subformula c, we also
introduce a bit-vector, hlposi ���

½kþ2�, that contains (encoded in
binary) position pos of the loop in interval ½0; kþ 1� and a
bit-vector, hinloopi �����

½kþ2�, where the bit at position i is 1 iff the
position i is inside the periodic part. For the sake of unifor-
mity, we encode ? (false) as 0

 
½kþ2� (i.e., a sequence of zeros)

and > (true) as �1 �
½kþ2� (i.e., a sequence of ones), so the size

of all bit-vectors used in the encoding is kþ 2. Note that,

given a formula f, and its vector hfi �
, hfi �

&!hfi � ¼ ? and

hfi �j!hfi � ¼ >.
To define the value of bit-vector hinloopi �����

½kþ2� we intro-
duce constraint hinloopi �����

½kþ2� ¼	pos �1 �
½kþ2�.

For example, Table 2 shows an exemplar trace, along
with hlposi ���

, and hinloopi �����
, where we assume that k is 4 and

thus all bit-vectors have length 6 (kþ 2). This trace comes
from a counterexample that shows P1 does not hold for S in
the running example. P1 states that, for all executions of the
system, at some point in stops occurring. This property can
be trivially falsified by the shown counterexample, in which
in occurs infinitely often, to be precise, every other time
instant from time instant 3. The first two rows are the actual
trace, and the rest shows how bit-vectors represent their cor-
responding subformulae. hlposi ���

equal to 000011 means that
the solver was able to find a loop at position 3. Conse-
quently, hinloopi �����

is 111000, that corresponds to 111111
shifted to the left 3 (lpos) times. The table shows that in all
bit-vectors that represent a subformula, the bit at position 3
(loop position, lpos) is equal to the one at position 5 (kþ 1),
because of the last state constraint.

Asmentioned in Section 2.2, constraints jLoopConstraintsjk,
which impose the equality of states sl�1 and sk, are introduced
for optimizationpurposes, but theydonot affect the correctness
of the encoding. Since in our newencodingwe assessed empiri-
cally they do not have beneficial effects on the efficiency of the
verification, we did not use them, and jSBVLoopConstraintsjk
reduce to the definition of bit-vector hinloopi �����

.
For every subformula f being replaced by a fresh bit-

vector, Table 3 introduces the sets of constraints in bv logic
that define the value of f. jSBVPropConstraintsjk assume
that the main connective in f is a Boolean one.
jSBVTempConstraintsjk, capture the semantics of temporal
operators.

Yesterday. Given the semantics of formula Yc, where Yc
holds at i iff c holds at i� 1, the bit-vector for Yc is the one
for c, but shifted “to the left” (from i� 1 to i, recall that
position 0 in bit-vectors is the rightmost one). Consistent
with the origin semantics of Yc, the rightmost bit of 	 hci �

is 0.
Since. The encoding of S is recursively defined based on the

fact thatc1Sc2 holds in i iff eitherc2 holds in i orc1 holds in i
and c1Sc2 holds in i� 1. This recursive definition can be cap-

tured by
Vk

i¼1ðhfi
 �½i� , ðhc2i

 ��½i� _ hc1i
 ��½i� ^ hfi �½i�1�ÞÞ, that is

equivalent to hfi �½kþ1:1� ¼ ðhc2i
 ��½kþ1:1� jhc1i

 ��½kþ1:1�
&hfi �½k:0�Þ.

TABLE 2
A Counterexample That Falsifies Property

P1 of the Running Example

TABLE 3
Constraints in bv logic That Define the Value of f

2. Recall that c
 ½0�

is the right-most (least significant) bit in c
 
, and c

 ½kþ1�
is the left-most (most significant) one.
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Alongwith this constraint, hfi �½0� ¼ hc2i
 ��½0�

is asserted tomake
the encoding compliantwith the origin semantics ofc1Sc2.

Next. The encoding of formula Xc is a bit-wise shift to the

right of bit-vector hci �
, i.e., Xc holds at i iff c holds at iþ 1.

The constraint that bit hfi �½kþ1�
must be equal to the one at

the loop-back position is asserted in the “last state con-
straints” that are presented later in this section.

Until. Similar to S, the encoding of U is also defined
recursively. c1Uc2 holds in i iff either c2 holds in i or c1

holds in i and c1Uc2 holds in iþ 1. This recursive defini-

tion can be captured by
Vk

i¼1ðhfi
 �½i� , ðhc2i

 ��½i� _ hc1i
 ��½i� ^

hfi �½iþ1�ÞÞ, that is equivalent to hfi �½k:0� ¼ ðhc2i
 ��½k:0�

jhc1i
 ��½k:0�

&hfi �½kþ1:1�Þ.
Based on the recursive definition of U at position kþ 1,

two constraints should hold. First, if hc1Uc2i
 ������½kþ1�

holds,

then either hc1i
 ��½kþ1�

or hc2i
 ��½kþ1�

hold; this constraint, which
in the following we indicate as Constraint1, can be repre-

sented in bv logic as ð!hc1Uc2i
 ������½kþ1�jðhc1i

 ��½kþ1� j hc2i
 ��½kþ1�ÞÞ ¼

1. Second, if hc2i
 ��½kþ1�

holds, then hc1Uc2i
 ������½kþ1�

also holds,

i.e., hc2i
 ��½kþ1� ) hc1Uc2i

 ������½kþ1�
holds. Therefore, a bv logic

representation of this constraint (which we indicate in the

following as Constraint2) can be ð!hc2i
 ��½kþ1�jhc1Uc2i

 ������½kþ1�Þ ¼
1. The second and third lines of the encoding are essentially
a conjunction of Constraint1 and Constraint2 expressed in
bv logic.

If no additional constraints are imposed on the semantics
of operator U, hfi �

can be true throughout the periodic part
(i.e., sb in asbs) without any position within it in which hc2i

 ��

is true. For example, if we suppose that k ¼ 2, hlposi ��� ¼ 0001,
hinloopi ����� ¼ 1110, hci �

2 ¼ 0001, and hci �
1 ¼ 1111. According to

the previous constraint (and the “last state constraint”
introduced below), hfi � ¼ c1Uc2 can be either 0001 or
1111, but the latter value is not correct. In the classic encod-
ing, this is fixed through the introduction of constraints
jEventualitiesjk (see Section 2.2). To avoid this problem,

we add a constraint that asserts that hfi �½kþ1�
is true only if

there is at least one position in the periodic part where c2

is true, that is, c2 holds infinitely often. More precisely, we

add constraint hfi �½kþ1� )* ðhci �
2&hinloopi
 �����Þ ¼ 1 to the

encoding of operator U. Consequently, incorrect values are
ruled out, and in fact in the previous example hfi �

cannot
be 1111, since * ð0001&1110Þ ¼ 0.

The “last state constraints” (jSBVLastStateConstraintsjk),
which must be added for all subformulae c of f (including

propositional letters), state that hci �½lpos� ¼ hci �½kþ1�
.

Then, given an LTL formula f, the complete bit-vector-
based encoding, called fsbv, is given by:

I jSBVLastStateConstraintsjk;
II jSBVLoopConstraintsjk to capture the definition of

hinloopi �����
;

III The constraints that define each subformula
(jSBVPropConstraintsjk and jSBVTempConstraintsjk);

IV Constraint hfi �½0� ¼ 1, where hfi �
is the bit-vector

defined based on its subformulae.

For example, if we consider formula :Xp _ ðqUYpÞ, its
complete encoding ð:Xp _ ðqUYpÞÞsbv is given by the follow-
ing formula:

Similar to the classic Boolean encoding, the semantics of the
other temporal operators is defined from the basic ones as
abbreviations. In fact, based on our experiments, in the case
of sbvzot, introducing direct encodings for the derived tem-
poral operators—as done in bvzot—does not impact on the
efficiency of the encoding, therefore we simply define the
following: Ff ¼ >Uf, Gf ¼ :F:f, f1Rf2 ¼ :ð:f1U:f2Þ,
Pf ¼ >Sf,Hf ¼ :P:f, and f1Tf2 ¼ :ð:f1S:f2Þ.

As for bvzot, we also add constraint hfi � ¼	 hci �j 1 to
capture the semantics of f ¼ Zc, in order to support PNF
formulae (see Section 2.2).

3.1.1 Correctness and Complexity

We show the correctness of the encoding by proving a pair of
results. First, we show that, when the encoding of a formula f
is satisfiable, the original formula is also satisfiable (soundness
of the encoding); then, we prove that, if an ultimately periodic
model of f exists, then the encoding is satisfiable, provided that
a sufficiently long bound k has been defined (which shows, to a
certain extent, the completeness of the encoding).

To help the reader follow the proofs presented in this sec-
tion, we exemplify some relevant cases through pictures show-
ing some example bit-vectors and corresponding LTLmodels.

Theorem 1. Let f be an LTL formula, and let k 2 N be the bound
for the encoding fsbv. If formula fsbv is satisfiable, then there is
a model p ¼ asðbsÞv of f such that kþ 1 ¼ jasbj.

Proof. To show the result, we first define how a, s and b are
defined from the bit-vectors satisfying fsbv, and then we
show that p � f holds.

Fig. 1 provides a graphical depiction of the correspon-
dence between bit-vectors related to atomic propositions
and words. Notice that, in all figures shown in this sec-
tion, bit-vectors are depicted with the least significant bit
on the left, instead of on the right, to facilitate the corre-
spondence with words. Recall that lpos is the loop-back
position in p (where the first position in the bit-vector is
0), so we define jaj ¼ lpos and jbj ¼ k� lpos, and the
length of the loop is k� lposþ 1. Word p : N! 2AP is
defined in the following way: (i) for all i 2 N such that
i � k holds, then p 2 pðiÞ (where p 2 AP ) if, and only if,

hpi �½i� ¼ 1 holds; (ii) for all i such that i > k, then p 2 pðiÞ
holds if, and only if, p 2 pðjÞ also holds, where j is the

unique value such that lpos � j � k holds and there

existsm 2 N such that i ¼ jþmðk� lposþ 1Þ holds.
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To show that p � f holds we prove, by induction on
the structure of formula f, that: (i) for all i 2 N such that

i � k holds, then p; i � f holds if, and only if, hfi �½i� ¼ 1

holds; and (ii) for all i such that i > k, p; i � f holds if,

and only if, hfi �½j� ¼ 1 also holds, where, as above, j is the

unique value lpos � j � k such that there is m 2 N such

that i ¼ jþmðk� lposþ 1Þ holds.
The base case f ¼ p, with p 2 AP , is trivial from the

definition of p.
If f ¼ :c, by definition we have that, for all i � k,

p; i � f holds if, and only if p; i 6� c, which, by induction,

holds if, and only if, hci �½i� ¼ 0; by the definitions of

Table 3, this occurs if, and only if, hfi �½i� ¼ 1 holds. The

cases for i > k and for the propositional connectives ^
and _ are similar.

If f ¼ Xc, then p; i � f if, and only if, p; iþ 1 � c.
Fig. 2 exemplifies this case. If i < k (say, i ¼ 2 in Fig. 2),

then by induction hypothesis hci �½iþ1� ¼ 1 holds and, by

the definitions of Table 3, hci �½iþ1� ¼ hfi �½i� ¼ 1 holds. If i ¼
k, then iþ 1 ¼ kþ 1 ¼ lposþ ðk� lposþ 1Þ (that is, j ¼
lpos andm ¼ 1); then, by induction hypothesis, hci �½lpos� ¼
1 holds and, by constraints jSBVLastStateConstraintsjk
and Table 3, hfi �½k� ¼ hci �½kþ1� ¼ hci �½lpos� ¼ 1. If i > k, we

separate the case where i 6¼ kþmðk� lposþ 1Þ (e.g., i ¼
7 in Fig. 2, where k ¼ 5 and k� lposþ 1 ¼ 3) from the

one where i ¼ kþmðk� lposþ 1Þ (e.g., i ¼ 8 in Fig. 2),

which are shown in a similar manner as cases i < k and

i ¼ k above.

If f ¼ Yc, p; i � f holds if, and only if, i > 0 and
p; i� 1 � c. If i ¼ 0, then by definition p; 0 6� f; by

Table 3, hfi �½0� ¼ 0 (recall that the bit of index 0 is the

right-most one, and the unsigned left shift operation 	
inserts a 0 to the right), which shows the desired result. If

0 < i � k holds, then by induction hypothesis hci �½i�1� ¼
1 holds and, by the definitions of Table 3, hci �½i�1� ¼
hfi �½i� ¼ 1 holds. If i > k, we separate the cases i ¼
lposþmðk� lposþ 1Þ and i 6¼ lposþmðk� lposþ 1Þ.
The latter is shown in a similar manner as case 0 < i � k

above. If i ¼ lposþmðk� lposþ 1Þ, then i� 1 ¼
kþ ðm� 1Þðk� lposþ 1Þ, so, by induction hypothesis,

hci �½k� ¼ 1 holds; then, by constraints jSBVLast
StateConstraintsjk and Table 3, hfi �½lpos� ¼ hfi �½kþ1� ¼
hci �½k� ¼ 1 holds.

If f ¼ c1Uc2, then p; i � f holds if, and only if, either
p; i � c2 holds, or both p; i � c1 and p; iþ 1 � c1Uc2

hold. This case is exemplified in Fig. 3. Consider the case
i � k. If p; i � c2 holds (in which case p; i � f also holds,

as for i ¼ 1 in Fig. 3), by induction hypothesis hc2i
 ��½i� ¼ 1

holds and, by the definitions of Table 3, hfi �½i� ¼ 1 also
holds. Otherwise, if p; i � c1 does not hold (in which

case p; i � f does not hold, as for i ¼ 2 in Fig. 3), by

induction hypothesis hc1i
 ��½i� ¼ 0 holds and, by Table 3,

hfi �½i� ¼ 0 holds. If, instead, p; i � c1 holds (and p; i � c2

does not hold), then p; i � f holds if, and only if, p; iþ
1 � c1Uc2 holds; in addition, in this case, by Table 3 we

have that hfi �½i� ¼ hfi �½iþ1�
holds. We separate two cases:

i < k and i ¼ k. If i < k (e.g., in position i ¼ 3 in Fig. 3),

the previous considerations apply also at position iþ 1,
and we iterate them (notice that p; i0 6� c2, p; i0 � c1,

hc2i
 ��½i0 � ¼ 0, hcii

 ��½i0 � ¼ 1 and hfi �½i0 � ¼ hfi �½i0þ1�
all hold for all

positions i � i0 < k in which we iterate the reasoning). If

i ¼ k, we have that p; k � f holds if, and only if, p; kþ
1 � c1Uc2 holds; also, hfi

 �½k� ¼ hfi �½kþ1�
holds by Table 3.

We show that either hfi �½kþ1� ¼ 0 and p; k 6� f both hold,

or hfi �½kþ1� ¼ 1 and p; k � f do.Fig. 2. Exemplification of case f ¼ Xc.

Fig. 3. Exemplification of case f ¼ c1Uc2 when hfi
 �½kþ1� ¼ 0 holds.

Fig. 1. Example of model p built from bit-vector hpi �
.
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� If hfi �½kþ1� ¼ 0 holds then, by constraints

jSBVLastStateConstraintsjk, hfi �½lpos� ¼ 0 also

holds. Then, by Table 3, hc2i
 ��½lpos� ¼ 0 holds and at

least one of hc1i
 ��½lpos�

and hfi �½lposþ1�
is also 0. If

hc1i
 ��½lpos�

is 0, then, by inductive hypothesis, p; kþ
1 6� c2 and p; kþ 1 6� c1 hold (notice that
kþ 1 ¼ lposþ ðk� lposþ 1Þ), hence p; k 6� f also

holds. If, instead, hc1i
 ��½lpos�

is 1, then hfi �½lpos� ¼
hfi �½lposþ1� ¼ 0, and we iterate the reasoning until

either there is lpos < i0 � k such that hc1i
 ��½i0 �

is 0,
or we conclude that for all lpos � i0 � k both

hc2i
 ��½i0 � ¼ 0 and hc1i

 ��½i0 � ¼ 1 hold (this is the case
exemplified in Fig. 3). In both cases, by inductive
hypothesis we conclude that p; k 6� f holds (notice
that if, as in Fig. 3, throughout interval ½lpos; k� hc2i

 ��

is 0 and hc1i
 ��

is 1, then by inductive hypothesis c1

holds forever after k, but c2 never does, so f does
not hold).

� If, instead, hfi �½kþ1� ¼ 1 holds, then, by Table 3,

hc1i
 ��½kþ1� ¼ 1, or hc2i

 ��½kþ1� ¼ 1 hold. In the latter
case, by inductive hypothesis, p; kþ 1 � c2 holds,
so p; k � f also holds. In the former case, by con-
straints jSBVLastStateConstraintsjk, both

hc1i
 ��½lpos� ¼ 1 and hfi �½lpos� ¼ 1 hold. By the con-

straints of Table 3, hc2i
 ��½lpos� ¼ 1 or

hc1i
 ��½lpos�

&hfi �½lposþ1� ¼ 1 hold. The case hc2i
 ��½lpos� ¼

1 (which is the same as hc2i
 ��½kþ1� ¼ 1) was handled

previously. If hc1i
 ��½lpos�

&hfi �½lposþ1� ¼ 1 holds, then
we iterate the reasoning. By constraint

ðhc1Uc2i
 ������½kþ1� )* ðhc2i

 ��
&hinloopi �����Þ ¼ 1Þ of Table 3,

there must be an index lpos � i0 � k such that

hc2i
 ��½i0 � ¼ 1 holds. Then, by inductive hypothesis
p; i0 � c2 and p; i0 þ ðk� lposþ 1Þ � c2 hold (and
p; j � c1 for all k � j � i0 þ ðk� lposþ 1Þ), so
p; k � f also holds.

Case i > k, with i ¼ jþmðk� lposþ 1Þ is similar to
the previous one, when one considers index j (for which
lpos � j � k holds) in place of i.

If f ¼ c1Sc2, then p; i � f holds if, and only if, either
p; i � c2 holds, or both p; i � c1 and p; i� 1 � c1Sc2

hold, provided that i > 0 holds. Notice that p; 0 � f

holds if, and only if, p; 0 � c2 also holds. The proof for
the case i � k is similar to the one for subformula c1Uc2,
with the simplification given by the fact that, at position
0, the truth of c1Sc2 is the same as that of c2. The proof
for the case i > k, with i ¼ jþmðk� lposþ 1Þ, is similar
to the case i � k, using lpos � j � k instead of i. One only

needs to consider that, if hfi �½lpos� ¼ 1 holds (which, by

constraints jSBVLastStateConstraintsjk, entails that

hfi �½kþ1� ¼ 1 also holds), and if hc1i
 ��½i0 � ¼ 1 and hc2i

 ��½i0 � ¼ 0

hold for all lpos � i0 � k then, by inductive hypothesis,

p; t � c1 and p; t 6� c2 hold for all lpos � t � i. However,

since hfi �½lpos� ¼ 1 holds, using a similar reasoning as in

the case of subformula c1Uc2, one can show that there

must be a position 0 � j0 < lpos such that hc2i
 ��½j0 � ¼ 1

holds, and for all j0 < t0 < lpos also hc1i
 ��½t0 � ¼ 1 holds.

Then, by inductive hypothesis, p; t0 � c1 holds for all

j0 < t0 < lpos, p; j0 � c2 holds, and p; i � f finally holds.

Finally, from the fact that hfi �½0� ¼ 1, we have that

p; 0 � f holds, that is, formula f is satisfiable. tu
In the following result, given a formula f we indicate by

dðfÞ the nesting depth of past operators Y and S. More pre-
cisely, if f ¼ p (with p 2 AP ), then dðfÞ ¼ 0; if f ¼ :ðcÞ or
f ¼ Xc, then dðfÞ ¼ dðcÞ; if f ¼ c1 ^ c2, f ¼ c1 _ c2, or f ¼
c1Uc2, then dðfÞ ¼ maxðdðc1Þ; dðc2ÞÞ; if f ¼ Yc, then dðfÞ ¼
dðcÞ þ 1; finally, if f ¼ c1Sc2, then dðfÞ ¼ maxðdðc1Þ;
dðc2ÞÞ þ 1. For example dðYYpÞ ¼ 2. We have the following
result.

Theorem 2. Let f be an LTL formula, whose depth of past opera-
tors is dðfÞ. Let p ¼ asðbsÞv be a model of f and kþ 1 ¼
jaðsbÞdðfÞþ1j; then, fsbv is satisfiable, with bound for the encod-
ing fsbv equal to k.

Before proving the result let us remark that, in this case,
we are considering a bound k that is long enough to encode
a sufficient number of iterations of the loop sb (as evidenced
by the condition kþ 1 ¼ jaðsbÞdðfÞþ1j). This is due to the
presence of past temporal operators Y and S, which entail
that dðfÞ > 0 holds; for a formula f that does not include
past temporal operators (for which dðfÞ ¼ 0 holds), the
result could be proved with simply kþ 1 ¼ jasbj. For exam-
ple, consider formula �f ¼ GFYYp whose depth is dð�fÞ ¼ 2.
Word p ¼ pv is a model for �f, but we need to encode at least
3 iterations of the loop to make �fsbv satisfiable.

Proof. To prove the result, we first define the values of the
bit-vectors that appear in formula fsbv, and then we show
that they satisfy the formulae of the encoding. More pre-
cisely, for every subformula c of f, for every position 0 �
i � kþ 1, we define that hci �½i� ¼ 1 if, and only if, p; i � c.
Notice that, since we are requiring that kþ 1 ¼
jaðsbÞdðfÞþ1j holds, we are essentially considering model p

to be p ¼ a0sðbsÞv, where a0 ¼ aðsbÞdðfÞ. Hence, we define

lpos ¼ ja0j (i.e., bit-vector hlposi ���
is the binary encoding,

over kþ 2 bits, of value ja0j), so that position lpos corre-

sponds to the start of the dðfÞ þ 1th iteration of the loop

in p. Finally, we define hinloopi �����½i� ¼ 1 if, and only if,

i � lpos. Fig. 4 shows an example of bit-vector and

Fig. 4. Example of bit-vector p built from word p in a case where the
depth d is 2.
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parameters lpos, k defined from a word p ¼ asðbsÞv, in
the case where subformula c is a propositional letter and

the depth is 2. Notice that, in the shown example, word p

is a model for formula �f ¼ GFYYp.

First of all, constraints jSBVLoopConstraintsjk trivially
hold by construction. Similarly for constraint hfi �½0� ¼ 1,

since by definition p; 0 � f holds.
The constraints of Table 3 (jSBVPropConstraintsjk)

also obviously hold. Consider, for example, a subformula
c ¼ :c0. By definition, p; i � c holds if, and only if,
p; i � c0 does not hold. By construction, then, for all 0 �
i � kþ 1, hci �½i� ¼ 1 holds if, and only if, hc0i ��½i� ¼ 0.

Consider now the constraints jSBVTempConstraintsjk
of Table 3. It is easy to see that, if c ¼ Xc0 holds, con-

straint hci �½k:0� ¼ hc0i ��½kþ1:1�
also holds. In fact, by defini-

tion, p; i � c holds if, and only if, p; iþ 1 � c0 does.

Then, by construction, for all 0 � i � k, hci �½i� ¼ 1 holds if,

and only if, hc0i ��½iþ1� ¼ 1 holds. Similarly if c ¼ Yc0; in

this case, by definition p; 0 6� c holds, and in fact con-

straint hci � ¼ 	 hc0i ��
imposes that hci �½0� ¼ 0 holds due

to the 	 operator. The constraints of case c ¼ c1Uc2

also hold. Indeed, by definition p; i � c holds if, and

only if, either p; i � c2 holds, or both p; i � c1 and p; iþ
1 � c1Uc2 hold. By construction, then, constraint hci �½i� ¼
hc2i
 ��½i� jhc1i

 ��½i�
&hci �½iþ1�

holds for all 0 � i � k. At position

kþ 1, either p; kþ 1 � c holds, or p; kþ 1 6� c holds. If

p; kþ 1 � c holds, by construction hci �½kþ1� ¼ 1 holds,

which means that ð!hc2i
 ��½kþ1� j hci �Þ ¼ 1 also holds. In

addition, since p; kþ 1 � c holds, either p; kþ 1 � c2

holds, or p; kþ 1 � c1 does, which assures that

ðhc1i
 ��½kþ1� j hc2i

 ��½kþ1� j !hci �Þ ¼ 1 holds by construction. In
addition, since p ¼ a0sðbsÞv and kþ 1 ¼ ja0sbj (so kþ 1

is the position of the second s in a0sbs), p; i0 � c2 must

hold for some lpos � i0 � k, or c2 would never be true

throughout suffix ðbsÞv, so c would not hold at position

kþ 1. Then, constraint hci �½kþ1� )* ðhc2i
 ��

&hinloopi �����Þ ¼ 1

holds by construction. If p; kþ 1 6� c holds,

ðhc1i
 ��½kþ1� j hc2i

 ��½kþ1� j !hci �Þ ¼ 1 holds by construction. In

addition, p; kþ 1 � c2 cannot hold, so constraint

ð!hc2i
 ��½kþ1� j hci �½kþ1�Þ ¼ 1 holds. The proof for the con-

straints of case c ¼ c1Sc2 is similar (notice that p; 0 � c

holds if, and only if, p; 0 � c2 does).
To conclude the proof, we need to show that con-

straints jSBVLastStateConstraintsjk hold. To this end we
first prove—by induction—something stronger. Let us
call lpos0 the position of the first loop in p ¼ aðsbÞv, as
depicted in Fig. 4—that is, lpos0 ¼ jaj (recall that, instead,
by construction lpos is the position of the dðfÞ þ 1th loop
in p; also, notice that k� lposþ 1 ¼ jsbj holds). We show
that, for each subformula c of f, whose depth of past
operators is dðcÞ, for all position lpos0 þ dðcÞðk� lposþ
1Þ � i � lpos0 þ ðdðcÞ þ 1Þðk� lposþ 1Þ � 1, p; i � c

holds if, and only if, p; iþmðk� lposþ 1Þ � c, for all
m 2 N. For example, with reference to Fig. 4 (where

lpos0 ¼ 2, k� lposþ 1 ¼ 2), subformula YYp, whose
depth is 2, holds (resp., does not hold) at position 6
(resp., 7), and at all positions 6þm2 (resp., 7þm2); simi-
larly, subformula Yp, whose depth is instead 1, does not
hold (resp., holds) at position 4 (resp., 5), and at all posi-
tions 4þm2 (resp., 5þm2)

The base case c ¼ p (with p 2 AP ) is trivial, since by
definition pðiÞ ¼ pðiþmðk� lposþ 1ÞÞ for all i � lpos0.
The inductive cases for propositional connectives and for
future temporal operators are straightforward. For exam-
ple, if c ¼ c1Uc2, then there is i0 � i such that p; i0 � c2

holds, and p; i00 � c1 holds for all i � i00 < i0. By induc-
tive hypothesis, since dðcÞ � dðc1Þ and dðcÞ � dðc2Þ
hold, this holds if p; i0 þmðk� lposþ 1Þ � c2 holds, and
p; i00 þmðk� lposþ 1Þ � ci holds for all i � i00 < i0,
which corresponds to p; iþmðk� lposþ 1Þ � c holding.

If c ¼ Yc0, then p; i � c holds if, and only if, p; i� 1 �
c0 holds. Since dðcÞ > dðc0Þ holds, then i > lpos0 þ
dðc0Þðk� lposþ 1Þ holds so, by inductive hypothesis,
p; i� 1 � c0 holds if, and only if, p; i� 1þmðk� lposþ
1Þ � c0 holds, which in turn corresponds to p; iþmðk�
lposþ 1Þ � c holding.

If c ¼ c1Sc2, then there is i0 � i such that p; i0 � c2

holds, and p; i00 � c1 holds for all i0 < i00 � i. If i0 �
lpos0 þ ðdðcÞ � 1Þðk� lposþ 1Þ holds then, since both
dðcÞ � 1 � dðc1Þ and dðcÞ � 1 � dðc2Þ hold, by inductive
hypothesis both p; i0 þmðk� lposþ 1Þ � c2 and p; i00 �
c1 hold for all i0 þmðk� lposþ 1Þ < i00 � iþmðk�
lposþ 1Þ, which entails that p; iþmðk� lposþ 1Þ � c

holds. If, instead, i0 < lpos0 þ ðdðcÞ � 1Þðk� lposþ 1Þ
holds, then p; i00 � c1 holds for all lpos0 þ ðdðcÞ � 1Þðk�
lposþ 1Þ � i00 < lpos0 þ dðcÞðk� lposþ 1Þ, which, by
inductive hypothesis since dðcÞ > dðc1Þ holds, entails
that p; �i � c1 holds for all �i � i0; hence, p; iþmðk�
lposþ 1Þ � c holds for allm 2 N.

Since, obviously, dðfÞ � dðcÞ for all subformulae c of f,
and since, by construction, kþ 1 > lpos0 þ ðdðfÞ þ 1Þðk�
lposþ 1Þ � 1 holds, then, for all subformulae c of f, p; kþ
1 � c holds if, and only if, p; lpos � c holds, which by con-
struction entails that jSBVLastStateConstraintsjk hold. tu
Concerning the size of the encoding fsbv, it is easy to see

that, since we introduce a bit-vector constraint of constant
size for each subformula c of f, the total size is OðnÞ, with n
the number of subformulae of f—notice that the number n
of subformulae of f is, in the worst case, OðlÞ, with l the
length of the formula, defined for example as the number of
connectives and temporal operators appearing in f (at
worst, each subformula appears only once in f).

4 EXPERIMENTAL EVALUATION

This section summarizes how we evaluated the efficiency of
the encoding presented in this paper by comparing it
against different state-of-the-art tools. Most of the experi-
ments exploit our checker Zot, which is an extensible
Bounded Model/Satisfiability Checker written in Common
Lisp. More precisely, Zot is capable of performing bounded
satisfiability checking of formulae written both in LTL (with
past operators) and in the propositional, discrete-time frag-
ment of the metric temporal logic TRIO [30], which is
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equivalent to LTL, but more concise. The user feeds Zot
with the specification to be checked and selects the plugin
and the time bound (i.e., the value of bound k) to be used to
perform the verification. Zot encodes the received specifica-
tion in a target logic (e.g., propositional logic, or bv logic)
and provides the result to a solver that is capable of han-
dling the target logic. The result obtained by the solver is
parsed back and presented to the user in a textual
representation.

To assess the new encoding, we selected five benchmark
specifications, two from the literature and two from our pre-
vious work. We wanted to work with complex specifica-
tions to better highlight the strengths and weaknesses of
each tool. What follows is a brief presentation of the five
case studies, but we refer the reader to cited literature for
more details. These studies employ a BSC approach, that is,
they use temporal logic to describe both the system under
verification and the properties to be checked (Section 2.2).

Kernel Railway Crossing (KRC). This problem is frequently
used for comparing real-time notations and tools [31]. A
railway crossing system prevents vehicles from crossing the
railway while trains are passing through it by controlling a
gate. A temporal logic-based version of the KRC problem
was developed in [9] for benchmarking purposes. It only
considers one track, trains can only move in a direction, and
uses an interlocking system. We experimented with two
sets of time constants that allow different degrees of non-
determinism, denoted as krc2 and krc3 in our experi-
ments. The level of non-determinism is increased by using
bigger time constants—e.g., the time a train takes to go
through the railway crossing—that increase the number of
possible combinations of events in the system. We also car-
ried out formal verification with two properties of interest:
a safety property that says that as long as a train is in the
critical region the gate is closed (P1); and a utility property
that states that the gate must be open when it is safe to do so
(i.e., the gate should not be closed when unnecessary),
where the notion of “safe” is captured through suitable time
constants (P2).

Fischer’s Protocol. It is a classic algorithm for granting
exclusive access to a resource that is shared among many
processes. Fischer’s protocol is a typical benchmark for veri-
fication tools capable of dealing with real-time constraints.
The version we used is taken from [9]. It includes 4 pro-
cesses, and the delay that a process waits after sending a
request, which is the key parameter in the protocol, is 5
time instants. We then formally verified a safety property
that states that it is never the case that two processes are
simultaneously in their critical sections (P1). We identify
the models of this case study through prefix fischer.

Ping Application. Corretto3 is the toolset we developed to
perform formal verification of UML models [5]. Corretto
takes as input a set of UML diagrams and produces their
formal representation through temporal logic formulae. In
our tests we used the example diagrams introduced in [5] (a
Class Diagram, an Object Diagram, and a Sequence Dia-
gram with various combined fragments), which describe
the behavior of an ping application that pings two servers

and then sends queries to the server that responds first. The
model comprises a loop, and we performed tests on two
versions of the system, called sdserverl2, and sdser-

verl3, where the number of iterations in the loop is 2 and
3, respectively. Property P1 states that the search request is
always sent to the server that replies earlier.

On Board Radar System. Corretto was also used in the EU-
funded project MADES for the verification of two example
Radar Systems, one on board the airplane and a ground-
based one, provided by two industrial partners. In our tests,
we used the on board system, and more precisely a compo-
nent that carries out the delivery of the flight data from the
environment to the User Interface (UI) of the pilot. Such a
delivery is performed by a number of periodic tasks. The
UML model (whose corresponding LTL formalization is
identified by prefix txt4 in our experiments) comprises a
Class Diagram with five clocks, five Sequence Diagrams,
and five State Machine Diagrams. The model identified by
prefix txt8 is similar, but larger, as it includes four more
tasks—hence four more Sequence Diagrams and as many
State Machine Diagrams. The different Sequence Diagrams
illustrate how the data are read and processed by the differ-
ent periodic tasks.

Human Robot Collaboration. This model (which is taken
from [32]) formalizes the main elements a collaborative
robotic system: a robot, a physical working area, a human
operator, and a job executed by both the human and the
robot. The model also includes definitions of hazardous
physical contacts between the human and the robot based
on the definitions of a few adopted ISO standards. When-
ever the state of the model conforms with one of those defi-
nitions, a risk value that belongs to set {0,1,2} is assigned to
the relevant hazard based on its attributes to estimate its
harmfulness. Then, a risk reduction measure is activated
when risk is 1 or 2 in order to reduce it to 0 in an acceptable
amount of time. We use prefix hrc to identify the models of
this case study.

4.1 Efficiency of the Encoding

To evaluate the efficiency of sbvzot, we implemented it as
new Zot plugin and ran a first set of experiments to check
the aforementioned benchmark by means of different tools.
These first experiments exploit, in addition to sbvzot, the
meezot and bvzot Zot plugins presented in [9] and [11],
respectively: meezot implements an optimized encoding of
LTL formulae into propositional logic, while bvzot imple-
ments our first bv logic-based encoding.

We also ran both NuSMV and nuXmv to test their imple-
mentations of the classic bounded encoding (bmc) [18], the
corresponding optimized encoding (sbmc) [19], and its
incremental version (sbmcinc4) [33]. We also used nuXmv
for five additional, significant verification algorithms that
mainly differ in the way they check LTL properties. coisat
employs an incremental cone of influence reduction [34] to
eliminate unrelated variables with respect to a given prop-
erty. The flags used in the command specify that a SAT
engine is used for both verification and trace execution.

3. https://github.com/deib-polimi/Corretto

4. While running this verification procedure we did not activate the
completeness checking option since it often slows the verification
down, as shown in [33].
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coismt is the same as coisat, but it uses an SMT engine. klive
performs a K-Liveness algorithm with the IC3 engine, and
produces a counterexample using the bmc algorithm. Note
that this algorithm also checks the completeness bound. For
example, at a given point it may conclude that the LTL for-
mula is UNSAT and there is no need to check for larger
bounds. msatcoi employs an SMT-based incremental cone of
influence. msat is an SMT-based incremental sbmc.

Note that NuSMV, nuXmv and Zot also support other
encodings for LTL/TRIO; we have chosen to show the
results for the ones above because further experiments, not
reported here for the sake of brevity, shown them to be, on
average, the fastest ones for the tools. We also use S and X

before the labels identified above to distinguish between
NuSMV and nuXmv. To compare the performance of the
different algorithms, we built a simple translator to convert
specifications written in the Zot input language—such as
those used in [9] and [5]—into the SMV language (the input
language of NuSMV and nuXmv).

All experiments5 were carried out on a Linux desktop
machine with a 3.4 GHz Intel CoreTM i7-4770 CPU and
16 GB RAM. In all cases we performed two kinds of checks.
First, we took the temporal logic formula fS describing the
system, and we simply checked for its satisfiability. This
allowed us to determine whether the specification is realiz-
able or not. As a second type of check, we also considered
the logic formula fP that captures the property of interest,

and we fed the verification tool with formula fS ^ :fP to
determine whether the property holds for the system or not.
We also experimented with different bounds k to analyze
how the tools behave when k is increased.

Since NuSMV and nuXmv adopt a Bounded Model
Checking approach, we fed them with an empty system
model (for which any trace is possible), together with either
:fS or :ðfS ^ :fP Þ as property to check [35]. Indeed, a
BMC tool that receives a property c to be verified, first
builds :c, then looks for a trace that satisfies :c. As a con-
sequence, by feeding it :fS (resp., :ðfS ^ :fP Þ) as a prop-
erty, the tool looks for a trace satisfying fS (resp., fS ^ :fP ),
just like our tool does.

Table 4 shows the time (T) in seconds and memory (M)
in MBs consumed in each of the experiments we per-
formed.6 Column Model concatenates the name of the par-
ticular model with the verification type (either SAT or
property checking) and the maximum bound. For exam-
ple, the first row (krc2Sat_30) shows time/memory
consumption of each tool for the simple satisfiability
checking of model krc2 with the maximum bound
k ¼ 30. The two subsequent rows (krc2P1_60 and
krc2P1_90) are the results for the verification of prop-
erty P1 with maximum bound k ¼ 60 and k ¼ 90, respec-
tively. The last row (Solved Instances) is the percentage of
solved verification problems (models) by each tool on the
five benchmarks. To help the reader rank the tools at a
first glance, cell background colors indicate the best, sec-
ond best, and third best tools.

TABLE 4
Time/Memory Comparison Over the Five Benchmarks

5. We used version 2.6 of NuSMV and version 1.1.1 of nuXmv. The
SAT and SMT solvers used with Zot were, respectively, MiniSat version
2.2 and Z3 version 4.8. The code for all the experiments is available,
along with all Zot plugins, from the Zot repository [13].

6. Interested readers can refer to the Zot repository [13] for the com-
plete and detailed data about the experiments.
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For each experiment,we set amaximum bound k and the tools
iteratively (possibly incrementally) tried to find an ultimately
periodic model abv where the length of ab is 1; 2; . . . ; k. As
soon as amodel is found, the search stops, and themodel is out-
put; if nomodel is found for any boundup to k, the search stops
at k and the formula is declared unsatisfiable.

All the runs reported in Table 4 had a time limit of 1 hour
and a memory limit of 10 GB RAM; that is, if the verification
has taken longer than 1 hour or occupied more than 10 GB of
RAM, it would have been stopped. Hence, the possible out-
comes of a run are satisfiable, unsatisfiable, out of time (TO), and
out of memory (MO). In addition, in some cases the tool
stopped because of heap exhaustion (HE) while pre-processing
the specification to produce the encoding.

Table 4 suggests that the combination of sbvzot/Z3 is not
the fastest for 6 models, but altogether it only needs 53 more
seconds to perform the verification of those 6 models.
sbvzot, however, is the fastest for the remaining 28 models
and saves two hours in those experiments.

As Table 4 shows, among the algorithms implemented in
NuSMV and nuXmv, X-sbmcinc is the one with the highest
number of solved instances and mostly the one with the
lowest memory consumption, whereas X-sbmc is the fastest
on average. Indeed, X-sbmcinc solved 10 more models than
X-sbmc ; however, if one considers only the models on
which both encodings are applicable, X-sbmc is usually
faster than X-sbmcinc . Note that in the case of Fischer’s pro-
tocol X-klive is the most efficient encoding, but overall it
was able to solve only 11 models out of 34 (32 percent). All
in all, we can conclude that the experimental results show a
promising ability of sbvzot to scale as the size of the specifi-
cation and the time bound increase.

We also carried out some additional experiments with
the idea of letting sbvzot reach the 3600-second time limit.
Fig. 5 shows what happened for txt4P1 , txt8P1 ,
sdserverl2P1 , and sdserverl3P1 . sbvzot reached the
limit at bounds 241 and 228 for sdserverl2P1 and
sdserverl3P1 , respectively, and at bounds 115 and 105
for txt4P1 and txt8P1 , respectively. These values wit-
ness that the boundaries are very application-specific and
give an idea of what the limits of sbvzot are.

4.2 Independence of the SMT Solver

One might claim that efficiency of our tool comes mainly
from the underlying SMT solver (Z3), rather than from the

encoding itself. To reject this claim, we examined the top five
solvers in SMT competitions [21] in recent years, and thus,
besides Z3 (version 4.8), we selected four additional SMT
solvers. Boolector [22] (version 3) supports the quantifier-free
theories of fixed-size bit vectors and arrays. This SMT solver
won first place in divisions QF_ABV (main and application
track), QF_BV (main track) and QF_UFBV (main and applica-
tion track) in the 2018 SMT competition [36]. Yices2 [23] (ver-
sion 2.6) decides the satisfiability of formulae that contain
uninterpreted function symbols with equality, real and inte-
ger arithmetic, bit vectors, scalar types, and tuples. It also
supports nonlinear arithmetic, and has its own specification
language (apart from SMT languages). Mathsat [15] (version
5.5) supports equality and uninterpreted functions, linear
arithmetic, and bit vectors. It also provides additional fea-
tures like extraction of unsatisfiable cores, generation of mod-
els and proofs, and the ability of working incrementally.
CVC4 [24] (version 1.6) is an automatic theorem prover for
SMT problems. It supports first-order formulae in a large
number of theories and combinations thereof. CVC4 is
intended to be an extensible SMT engine.

Table 5 compares the five implementations of sbvzot,
that is, based on the five SMT solvers, against the first two
best options provided by NuSMV or nuXmv. If no data is
reported for NuSMV/nuXmv, these tools were not able to
complete the verification process within the given time/
memory limit. Again, cell background colors follow the
same convention as before to ease the comprehension of the
table. When one considers sbvzot in general, that is, with
any underlying SMT solver, it is, on average, 2 times faster
and 8 times more memory-efficient than the best algorithms
of NuSMV and nuXmv (column 1st best).

4.3 Lessons Learned

The results above allow us to draw some conclusions on the
effectiveness of sbvzot, and on the kinds of problems for
which it seems particularly well suited.

We noticed a trade-off, at the level of the SMT solver,
between the use of bit-blasting, which transforms bit-vector
constraints into Boolean constraints, and the simplifications
that can be obtained by using bit-vector arithmetic. For exam-
ple, bvzot exploits greater simplifications at the bit-vector level
because the encoding heavily depends on arithmetic opera-
tors (binary addition in the encoding ofU and S). This results
in more complex, heavier-to-handle Boolean formulae pro-
duced after bit-blasting. sbvzotmainly employs bit-wise oper-
ators, instead of bit-vector level arithmetic, and the Boolean
formulae that are ultimately solved after bit-blasting are easier
to handle. Although there are some simplification gains at the
bit-vector level, the trade-off seems to favor bit-blasting over
arithmetic simplification.

We also want to highlight that when we use MathSAT
with our encoding, and NuSMV, that uses MathSAT itself,
our use of MathSAT is actually faster. This is another evi-
dence of how the use of bv logic and our encoding help ver-
ify (complex) LTL specifications.

5 RELATED WORK

There are essentially two approaches to the problem of sat-
isfiability checking of LTL formulae: bounded and complete

Fig. 5. Excerpts of how sbvzot behaves given a one-hour time window.
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ones. This paper pursues a bounded approach, and Section 4
compares sbvzot against similar ones, and in particular
those presented in [18], [19], [20], [33] and [9]. Common
complete techniques include automata-based and tableaux-
based approaches. An exhaustive evaluation of several tech-
niques and tools (including some that are not based on
translation to B€uchi automata or on bounded approaches)
for LTL satisfiability checking can be found in [37].
Although, given their difference in nature, we did not not
compare our tools against complete ones, in this section we
also provide a brief overview of the latter.

As for automata-based approaches (e.g., SPIN [17]), Roz-
ier and Vardi [38] carried out a comparison of satisfiability
checkers for LTL formulae based on the translation of LTL
formulae into B€uchi automata. Rozier and Vardi [39] also
propose a novel translation of LTL formulae into Transi-
tion-based Generalized B€uchi Automata, inspired by the
translation presented in [40]. Such automata are used by
SPOT [41], which is claimed to be the best explicit LTL-to-
B€uchi automata translator for satisfiability checking based
on the experiments carried out in [38]. Li et al . [42] present
a novel on-the-fly construction of B€uchi automata from LTL
formulae that is particularly well suited for finding models
of LTL formulae when they exist.

In tableau-based approaches, the LTL formula is ana-
lyzed on a tableau—that is, a set of nodes. The root node is
labeled by the main LTL formula, and it is repeatedly
decomposed based on the tableau rules that create succes-
sors labeled by a set of formulae. The LTL formula is satisfi-
able if, and only if, there exists at least one successful

branch. Goranko et al . [43] report on the implementation
and experimental evaluation of two well-known tableau-
based approaches: Wolper’s multi-pass, LTL tableau pre-
sented in [44], and Schwendimann’s one-pass LTL tableau
procedure presented in [45], with an evident superior per-
formance to the latter.

Reynolds [46] introduces a novel traditional-style, one-
pass, tree-shaped tableau for LTL. The fact that branches
can be explored down independently makes this approach
particularly suitable for parallel implementation, whereas
Schwendimann’s approach [45] requires the full develop-
ment of branches.

Given the different nature of our approach with respect
to automata- and tableaux-based ones we did not compare
our tools against them, and focused on similar, BSC-based
approaches instead.

A simple translation of LTL formulae to Conjunctive
Normal Form (CNF) formulae is presented in [19], which
deals with the semantic equivalence of LTL and Computa-
tion Tree Logic (CTL) when each step has only one succes-
sor in the Kripke structure. Another bounded encoding is
presented in [20], which virtually unrolls the path up to
the maximum depth of past operators (d) in the LTL for-
mula. Unlike other bounded approaches (with bound k),
this encoding unfolds the LTL formula up to d 
 k steps,
instead of k.

NuSMV [47] is a symbolic model checker that supports
both BDD-based and SAT-based model checking. NuSMV
can check LTL and CTL properties against finite state sys-
tem models, so it can be used as a satisfiability checker for

TABLE 5
sbvzot, With the Five SMT Solvers, Against the Two Bests Results Produced by NuSMV/nuXmv on the Five Benchmarks
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LTL and CTL formulae. Several algorithms are imple-
mented in NuSMV for the satisfiability checking of LTL for-
mulae. nuXmv [48] is an extension of NuSMV that supports
both finite and infinite-state synchronous transition sys-
tems. nuXmv extends NuSMV by augmenting basic verifi-
cation algorithms for finite-state systems and providing
new data types and advanced SMT-based model checking
techniques for infinite-state systems. Furthermore, nuXmv
is the basis for various tools for requirements analysis, con-
tract-based design, model checking of hybrid systems,
safety assessment, and software model checking [16].
nuXmv offers more algorithms for checking the satisfiability
of LTL formulae than NuSMV.

6 CONCLUSION

This paper presents a new encoding of LTL formulae in bit-
vector logic. The encoding is used to solve the satisfiability
problem for LTL formulae through a bounded approach.
Besides demonstrating the benefits of the proposed encod-
ing by comparing it against the original bv logic-based
encoding and some well-known, more “classical” solutions,
the paper also investigates the gains provided by the spe-
cific SMT checker adopted. While the original proposal
exploits Z3, we also carried out experiments with Boolector,
Yices2, Mathsat, and CVC4. Obtained results show that the
benefits are mainly independent of the specific solver. All
proposed checkers are implemented as dedicated plugins of
Zot, our bounded satisfiability checker.
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Orderly Generation of Test Data via Sorting
Mutant Branches Based on Their Dominance

Degrees for Weak Mutation Testing
Xiangjuan Yao , Gongjie Zhang , Feng Pan , Dunwei Gong ,Member, IEEE, and Changqing Wei

Abstract—Compared with traditional structural test criteria, test data generated based on mutation testing are proved more effective at

detecting faults. However, not all test data have the same potence in detecting software faults. If test data are prioritized while

generating for mutation testing, the defect detectability of the test suite can be further strengthened. In view of this, we propose a

method of test data generation for weak mutation testing via sorting mutant branches based on their dominance degrees. First, the

problem of weak mutation testing is transformed into that of covering mutant branches for a transformed program. Then, the

dominance relation of mutant branches in the transformed program is analyzed to obtain the non-dominated mutant branches and their

dominance degrees. Following that, we prioritize all non-dominated mutant branches in descending order by virtue of their dominance

degrees. Finally, the test data are generated in an orderly manner by selecting the mutant branches sequentially. The experimental

results on 15 programs show that compared with other methods, the proposed test data generation method can not only improve the

error detectability of the test suite, but also has higher efficiency.

Index Terms—Software testing, mutation testing, test data generation, mutant branch, dominance degree

Ç

1 INTRODUCTION

THE purpose of software testing is to detect as many faults
or defects as possible in a software product. To this end,

we first need to generate a test suite according to a given
testing criterion. Then, the program under test will be exe-
cuted with the test data to determine whether the program
has defects. The more defects a test datum can find, the
higher the quality of the test datum is considered [1]. So,
how to find test data with higher defect detectability is a
crucial issue of software testing.

Various methods of test data generation are presented
based on specific adequacy criteria, e.g., statement coverage
criterion or branch coverage criterion. However, test data

generated based on structural coverage criteria generally
result in a low capability in detecting faults [2].

Mutation testing, proposed by Demillo et al. [3] and
Hamlet [4], can simulate real faults of a software product by
making one or more grammatical changes to the program
under test [5]. Mutation testing was used not only to vali-
date the fault detectability of existing test suites [6], but also
to generate test data that can find these seeded faults [7],
[8]. Previous studies has proved that test data generated
based on mutation testing are capable of finding more faults
than those generated under various structural coverage cri-
teria [9], [10]. In contrast, test data designed for traditional
coverage testing criteria, such as statement and branch cov-
erage, do not have similar fault detectability with mutation
testing [11], [12].

Despite its high defect detectability, mutation testing is
deeply suffered from the problem of high cost. Howden first
proposed the idea of weak mutation testing [13]. Although
weak mutation testing weakens the defect detectabilities of
test data to some extent comparing with strong mutation
testing [2], the computational cost of weak mutation testing
will be greatly reduced. In addition, weak mutation testing
is still much stronger than statement and branch coverage
testing [14]. So we used weak mutation criterion to generate
test data in this paper to achieve the balance between costs
and capabilities.

Although test data generated based on mutation testing
are more effective at detecting faults as a whole, different
mutants have different performance. Some mutants are
hard to be killed, but others are not [15]. Therefore, different
test data also have different defect detectabilities under the
criterion of mutation testing. During the period of software
testing, the earlier a software fault is discovered, the less the
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cost of correcting the fault will be. Consequently, we hope to
execute the test data that have high defect detectabilities as
earlier as possible, suggesting that it is significant to priori-
tize the test data for mutation testing.

In fact, there have beenmany studies on test data prioritiza-
tion in regression testing [16]. However, few studies consider
the order of test data when generating. If test data are priori-
tized while generating for mutation testing, the overall defect
detectability of the test suite can be further strengthened.

In view of this, we propose a method of test data genera-
tion for weak mutation testing based on the dominance
degrees of mutant branches. First, we transform all mutants
of the original program into mutant branches according to
the method proposed by Papadakis and Malevris [17], and
form a new program by inserting all these mutant branches
into the original program. Then, the dominance relation of
mutant branches in the transformed program is analyzed to
obtain the non-dominated mutant branches and their domi-
nance degrees. Following that, we prioritize all non-domi-
nated mutant branches based on their dominance degrees.
Finally, test data are generated in sequence according to the
priorities of the mutant branches. Given the fact that the test
data covering a mutant branch with a higher dominance
degree can find more program errors, the test data genera-
tion method according to the dominance degree can further
improve the defect detectability of the test suite. We apply
the proposed method to 15 programs. Experimental results
show that, compared with other methods, the proposed
method can improve the quality of test data, as well as
reduce the cost of mutation testing.

The main contributions of this paper are as follows:

1) Putting forward the concept of dominance degree
and proposing a method to calculate it.

2) Presenting a method of test data generation in an
orderly manner.

The rest of this paper is organized as follows. Section 2
reviews the related work. The preliminary of the proposed
method is presented in Section 3. Section 4 illustrates the
prioritization of non-dominated mutant branches. The
method of orderly generating test data based on the prioriti-
zation of non-dominated mutant branches is proposed in
Section 5. Section 6 provides the experimental results and
analysis. The threats to validity of the proposed method are
listed in Section 7. Finally, Section 8 concludes the whole
paper and points out several topics to research in the future.

2 RELATED WORK

Since the paper studies test data generation for mutation
testing, this section first summarizes the work on mutation
testing, and then reviews the methods of test data genera-
tion based on mutation testing.

2.1 Mutation Testing

As a fault-oriented testing technique [18], [19], mutation test-
ing can simulate real faults by injecting artificial fault(s) into a
program under test. The program after fault injection is called
a mutant, and the rules of fault injection are called mutation
operators. A mutant is killed if its output differs from that of
the original program. A mutant that is functionally identical

to the original programand cannot be killed by any test datum
is called an equivalent one. Generally, the mutation score that
reflects the adequacy of mutation testing, i.e., the capability of
test data in fault detection [20], is defined as the ratio of the
number of killed mutants to the total number of non-equiva-
lentmutants.

Compared with traditional structural test criteria, test
data generated based on mutation testing are more effective
at detecting faults [21]. Papadakis et al. investigated the rela-
tion between two independent variables, mutation score
and test suite size, with one dependent variable, the detec-
tion of (real) faults [22]. Their empirical study shows that
mutants provide good guidance for improving the fault
detection of test suites, but their correlation with fault detec-
tion are weak. In addition, the relation between defect
detection and mutation score is non-linear.

Despite its high defect detectability, mutation testing is
deeply suffered from the problem of high cost.

One of the main reasons for the high cost of mutation test-
ing is the large number of mutants, which not only increases
the cost of running programs, but also skews the measure-
ment of mutation score. Mutant sampling and selective muta-
tion testing are classical methods to solve this problem. Here,
mutant sampling randomly samples a small percentage of
mutants for mutation testing [23], [24], however, the loss in
mutation adequacy increases when decreasing the sampling
rate [25]. Selective mutation testing selectively omits some
mutation operators to generate a small number of mutants
[26], [27], but the test effectiveness will obtain bigger discount
when omitting more mutation operators. High order mutants
(HOMs, more than one injected fault in a program) can not
only reduce the number of mutants, but also simulate com-
plex faults in a software product, and therefore attract
researchers in the community of software engineering [28],
[29]. Nevertheless, the expensive computation of generating
HOMsprevents this technique frompractical applications.

To save time spent in executing mutants, Howden first
proposed the idea of weak mutation testing [13]. A mutant
is weakly killed by a test datum if after the execution of the
mutant statement, its state immediately differs from the cor-
responding state of the original program. Therefore, we can
judge whether the mutant is weakly killed or not according
to the mutant statement. As a result, running the codes after
the mutant statement is unnecessary [30].

Previous studies have shown that test data designed for
weak mutation testing have almost the same defect detect-
ability as strong mutation testing while saving 50 percent
execution cost [31], [32]. While the research of Chekam et al.
shows that there is a large difference in defect detectability
between weak and strong mutation testing [2].

Papadakis and Malevris structured mutant branches by
combining original and mutant statements, and then formed
a new program by integrating all these mutant branches into
the original program to further reduce the execution cost of
weak mutation testing [17]. Based on the work of Papadakis
and Malevris, Gong et al. reduced the number of mutant
branches according to their dominance relations [33]. In
addition, Zhang et al. further present a statistical method to
analysis the dominance relation of mutant branches [34].

Although weak mutation testing is not as powerful as
strong mutation testing, it greatly reduces the test cost. In
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addition, it is still much stronger than traditional coverage
testing, such as statement and branch coverage [14], [31]. So
we used weak mutation testing in this paper to achieve the
balance between costs and capabilities. Of course, the pro-
posedmethod can also be applied to strongmutation testing.

Although mutation testing can obtain stronger test suite,
not all test data have the same defect detectability. Some
mutants are hard to kill, whereas others are not [15], [35].
Test data generated based on mutants that are hard to kill
have higher ability to detect defects than mutants that are
easy to kill. During the period of software testing, the earlier
a fault is detected in the software life cycle, the cheaper the
cost of correcting the fault [36]. Consequently, we hope to
execute the test data that have high defect detectabilities as
earlier as possible. As a result, it is significant to prioritize
the test data in mutation testing.

2.2 Test Data Generation Based on
Mutation Testing

Generating test data is a critical task in software testing. As
a testing criterion, mutation testing can help to generate test
data by maximizing the mutation score. Constraint-based
test data generation (CBT) is an early method for mutation
testing [30]. CBT transforms conditions of killing a mutant
into a number of constraints, and generates test data by con-
straint-solving methods. Experimental results suggest that
test data generated by CBT can kill over 90 percent mutants.
Dynamic domain reduction (DDR) improves the effective-
ness of CBT, and generates test data by the backtracking
search [37]. However symbolic execution used in DDR and
CBT results in a high cost of test data generation. By opti-
mizing traditional symbolic execution [38] [39], dynamic
symbolic execution (DSE) first generates an initial test
datum, and then searches for conditions of a path to gener-
ate a new one by executing the initial test datum. The above
methods are mainly based on the control flow graph (CFG)
of a program under test. Taking both control and data
dependence relations into consideration, Liu et al. improved
the success rate and the efficiency of DDR [40]. But the abil-
ity of DSE is largely constrained by the performance of a
constraint solver.

In recent years, search-based software testing (SBST) has
attracted great attention from researchers in the community
of generating test data [41], [42], [43], [44], [45], [46], [47],
[48]. Zhang et al. intended to improve the efficiency of gen-
erating test cases for mutation testing by a set-based genetic
algorithm [49]. Papadakis and Malevris improved the prac-
ticability of the generated test data via path selection [50].
Jia et al. focused on searching HOMs which hard to kill by
evolutionary optimization [28]. May aimed at discerning
useful parameter settings to improve the overall effective-
ness of both the genetic algorithm and the immune inspired
algorithm [51]. Matnei Filho and Vergilio introduced a
multi-objective test data generation approach for mutation
testing [52]. According to the study of Carlos et al., SBST is a
very promising method for mutation-oriented test data gen-
eration [53]. In most cases, SBST is very efficient in generat-
ing test data. However, a large number of mutants result in
massive execution to evaluate the performance of the
mutants, which raises a huge computation cost.

The abovemethods of generating test data generally guar-
antee that the test suite has a high defect detectability as a
whole. Nevertheless, there have been seldommethods to pri-
oritize test data while generating in mutation testing. As a
result, we aim to generate test data in an orderly manner to
further enhance their performance inmutation testing.

3 PRELIMINARIES

This section first describes the transformation method of
Papadakis and Malevirs [17], by which mutant branches are
constructed and a new program is formed. Then, the mutant
reduction method based on the dominance relation of
mutant branches proposed by Gong et al. is presented [33].

3.1 Transformation Method for Weak Mutation
Testing

The original program is denoted as P , and a mutation point
(a statement or an expression) of P is denoted as s. By per-
forming a mutation operator on s, we will obtain a mutated
statement of s, denoted as s0. By substituting s0 for s, a
mutant, denoted as m, is created. A number of mutants can
be created by applying a series of mutation operators to dif-
ferent statements of P . The set composed of all mutants is
denoted asM.

If a test datum, t, can execute the mutant statement, s0,
and a different state appears after executing s0 in m, accord-
ing to the criterion of weak mutation testing, t kills mutant
m. Since the state of m differs from that of P just after the
execution of s0, the value of predicate “s != s0” is true. Taking
“s != s0” as the predicate, a branch statement, denoted as b, is
constructed. If a test datum covers the true branch of b, i.e.,
the value of “s != s0” is true, then the test datum kills m
under the criterion of weak mutation testing. Thus the prob-
lem of killing mutantmwill be transformed into that of cov-
ering the true branch of b.

Definition 1. In view that there is a one-to-one correspondence
between branch statement b and mutant m, b is called a
mutant branch.

The set of all mutant branches is denoted as B. Then B
andM have the same size, i.e., jBj ¼ jMj.

By inserting all mutant branches of B into P , a new pro-
gram is formed, denoted as P 0. If a test suite, T , can cover
the true branches of all mutant branches in P 0, according to
the criterion of weak mutation testing, T will kill all mutants
in M. Then the problem of killing mutants of P under the
criterion of weak mutation testing is transformed into that
of covering the true branches of all mutant branches in P 0.

It should be noted that mutant branch b generally does
not perform any operation in P 0, but indicates whether the
corresponding mutant m is killed or not. Therefore, regard-
less whether b is executed or not, P 0 has the same function
as P . For operators þþ v;�� v; vþþ and v��, the value
of variable v will change after the execution of the mutant
branch. In this circumstance, we insert a statement to P 0

after the mutant branch to recover the value of the variable.
For þþ v and vþþ, we add v ¼ v� 1; for �� v and v��,
we add v ¼ vþ 1.

Given the fact that equivalent mutants do not make any
sense for generating test data, we exclude them in the process.
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For this purpose, a semi-automatic method is proposed to
identify equivalent mutants before transforming a mutant
into the corresponding mutant branch. To fulfill this task, we
first run all the mutants against a test suite using the tool
MuClipse, and obtain alive mutants. MuClipse is a plugin in
Eclipse and performsmutation testing for Java programs. The
killedmutants are certainly not equivalent. For alive mutants,
artificial analysis is used to identify whether they are equiva-
lent or not. It is well known that whether a mutant is equiva-
lent or not is an undecidable problem [54]. In order to
improve the accuracy of the analysis results, if a alive mutant
is determined as nonequivalent, we will design new test data
to kill it; otherwise, we will use a large number of test data to
run thismutant to ensure that it will not be killed.

There have been a number of approaches to automatically
detecting equivalent mutants. Kintis and Malevris employed
data flow patterns to reveal locations that likely generate
equivalent mutants [55]. Additionally, they found that mir-
rored mutants often exhibit analogous behavior of equiva-
lence [56], and if one of mirrored mutants is equivalent, the
others are also equivalent. Papadakis et al. used a series of
classification strategies to isolate equivalentmutants after exe-
cuting test suites [57], and the experimental study suggested
that only a small number of live mutants need to be manually
analyzed. Although the above methods can automatically
detect equivalent mutants, thus reducing the cost of manual
analysis, they have low precision. As a result, manually ana-
lyzing equivalent mutants has been the most commonly used
method in software testing community up to date [58].

3.2 Mutant Reduction Based on Dominance
Relation

There is often close correlation between different branch
statements. By analyzing the dominance relation between
mutant branches in the new program P 0, the mutants corre-
sponding to the dominatedmutant brancheswill be reduced.

Definition 2. Consider two mutant branches, bi and bj, in P 0.
For any test datum of P , if the true branch of bi is executed,
that of bj must be executed, bi is said to dominate bj, denoted
as bi � bj. On this circumstance, bi is the dominant branch,
and bj is the dominated one.

From Definition 2, the dominance relation has transitiv-
ity: for three mutant branches, bi, bj, and bk, in P 0, if bi � bj
and bj � bk, then bi � bk.

Specially, if bi � bj and bj � bi, bi is said to be equivalent
with bj, denoted as bi ffi bj. In this circumstance, we select
the mutant branch having a front position in P 0 as the domi-
nant one, and the other dominance relationship is ignored.
The reason is that the mutant branch with a front position
will be executed early when generating test data so as to
potentially save the execution cost.

By Definition 2, test data that cover the true branch of a
dominant branch can also cover the true branches of all its
dominated ones. Therefore, any dominated mutant branch
can be reduced.

As mentioned in Section 2.3, Zhang et al. presented a
method of statistically determine the dominance relation of
mutant branches by running the program against a large
number of test data [34], whichwill be adopted in this paper.

For twomutant branches bi and bj, wewill present a statis-
tical method to determine the dominance relation them. Let

X ¼ 1; if the true branch of bi is covered
0; otherwise

�
(1)

Y ¼ 1; if the true branch of bj is covered
0; otherwise

�
: (2)

Then X and Y can be regarded as two random variables.
bi � bj if and only if PfY ¼ 1jX ¼ 1g ¼ 1. Let PfY ¼ 1jX ¼
1g ¼ p. The value of p can be estimated by the statistical
method.

First, we use the random method to automatically gener-
ate a test suite of sizeN . Then, each test datum is used to run
the program, and the coverage results of mutant branches
are counted. For each test datum t, we can obtain the value of
X and Y . Because there areN test data, we can obtain a sam-
ple of size N , i.e., ðX1; Y1Þ; . . . ; ðXN; YNÞ. By the maximum
likelihood estimationmethod, the estimator of p is:

p̂ ¼ SN
i¼1XiYi

SN
i¼1Xi

:

If p ¼ PfY ¼ 1jX ¼ 1g ¼ 1, we obtain bi � bj. The above
process can be implemented automatically, including the
generation of test data, the calculation of statistics and the
determination of dominance relation.

Because all mutant branches are inserted into the same
program, we only need to run the program one time with
each test datum, therefore, the cost of determining the dom-
inant relation is very small. However, the determination
may have a few errors due to the insufficient test suite. In
order to improve the accuracy of the determination results,
the test suite should be sufficient enough. In this paper, we
use decision-branch coverage criterion to generate test data.
In addition, the larger the value of N is, the more accurate
the result will be. Therefore, we can increase the value of N
as much as possible under the premise of computing power.

Definition 3. The set of all the dominance relations between
mutant branches in B is called the dominance relation setof
B, denoted asDB.

Definition 4. If for any bj 2 B, bj � bi is not held, bi is called a
non-dominated mutant branch. The set of all non-dominated
mutant branches is called the non-dominated mutant branch
set, denoted as Bnd.

By Definitions 2 and 4 we know that test data that cover
all branches of Bnd must cover all those of B. So we only
consider the mutant branches of Bnd to generate test data. In
this way, the number of mutant branches is greatly reduced.

The specific steps to obtain the non-dominant mutant
branches can be provided as follows.

� Step 1: For each m 2 M, construct a mutant branch b.
The set of all mutant branches is denoted as B.

� Step 2: Inserting all mutant branches of B into P , a
new program is formed, denoted as P 0.

� Step 3: By investigating the dominance relation of all
mutant branches in P 0, we obtain their dominance
relation set, denoted asDB.
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� Step 4: Obtain the set of all non-dominated mutant
branches according to their dominance relation,
denoted as Bnd.

4 PRIORITIZATION OF MUTANT BRANCHES BASED

ON DOMINANCE DEGREE

This section first gives the definition of dominance degree,
and then prioritizes all non-dominated mutant branches
according to their dominance degrees.

4.1 Dominance Degree

In order to describe the dominance relation more intuitively,
we introduce the concept of dominance relation graph.

Definition 5. The dominance relation graph of P 0 is a direc-
tional graph, denoted as DGðP 0Þ ¼ ðV ðBÞ; EðDBÞÞ, where the
vertex set V ðBÞ ¼ B, and EðDBÞ is the edge set such that for
8bi � bj 2 DB, there is an edge < bi; bj >2 EðDBÞ.
In the dominance relation graph, the in-degree of a ver-

tex, d�ðbÞ, represents the number of mutant branches that
dominate b, and the out-degree of a vertex, dþðbÞ, represents
the number of branches that are dominated by b. So the in-
degree of the non-dominated branch is 0.

Fig. 1a presents an example program. By applying muta-
tion operators to this program, 34 mutants are generated.
The mutant branches transformed from all these mutants
are listed in Table 1. For example, by changing “a > b” to
“a < b” in statement 3, we obtain a mutant. Then ifða >
bÞ! ¼ ða < bÞÞ will be a mutant branch. Among all these
mutants, 7 are equivalent under the criterion of strong
mutation testing, corresponding to mutant branches
b7; b20; b21; b26; b27; b32, and b33 (underlined). After analysis,
there are 64 dominance relations among these 27 non-equiv-
alent mutant branches, listed in Table 2. Based on the domi-
nance relations of mutant branches, a dominance relation
graph is built, shown as Fig. 1b, in which vertices of in-
degree zero correspond to non-dominated mutant branches.

Definition 6. The number of mutant branches dominated by bi 2
B is the dominance degree, denoted as dfðbiÞ.
From Definition 6, the dominance degree of bi 2 B equals

to the out-degree of bi in DGðP 0Þ. The value of dfðbiÞ

indicates the capability of a test datum that covers bi in cov-
ering all the dominated mutant branches of bi.

It is enough to consider only the non-dominated mutant
branches when generating test data. Table 3 lists all the non-
dominated mutant branches and their dominance degrees
of the example program in Fig. 1a. For example, b1 domi-
nates b3, b8, b30, b31 and b34, therefore dfðb1Þ ¼ 5.

Fig. 1. Dominance graph of an simple program, where (a) is the original program; and (b) is the dominance graph of mutant branches.

TABLE 1
The Mutant Branches

No. Mutant branch

1 ifðða > bÞ! ¼ ð� a > bÞÞ
2 ifðða > bÞ! ¼ ða >� bÞÞ
3 ifðða > bÞ! ¼ ða < bÞÞ
4 ifðða > bÞ! ¼ ða <¼ bÞÞ
5 ifðða > bÞ! ¼ ða ¼¼ bÞÞ
6 ifðða > bÞ! ¼ ða! ¼ bÞÞ
7 ifðða > bÞ! ¼ ða >¼ bÞÞ
8 ifðða > bÞ! ¼ !ða > bÞÞ
9 ifðða > bÞ! ¼ ððþ þ aÞ > bÞÞ
10 ifðða > bÞ! ¼ ðð� � aÞ > bÞÞ
11 ifðða > bÞ! ¼ ððaþþÞ > bÞÞ
12 ifðða > bÞ! ¼ ðða��Þ > bÞÞ
13 ifðða > bÞ! ¼ ða > ðþ þ bÞÞÞ
14 ifðða > bÞ! ¼ ða > ð� � bÞÞÞ
15 ifðða > bÞ! ¼ ða > ðbþþÞÞÞ
16 ifðða > bÞ! ¼ ða > ðb��ÞÞÞ
17 ifða! ¼ �aÞ
18 ifða! ¼ aþþÞ
19 ifða! ¼ a��Þ
20 ifða! ¼ aþþÞ
21 ifða! ¼ a��Þ
22 ifða! ¼� aÞ
23 ifðb! ¼ �bÞ
24 ifðb! ¼ þþ bÞ
25 ifðb! ¼ �� bÞ
26 ifðb! ¼ bþþÞ
27 ifðb! ¼ b��Þ
28 ifðb! ¼� bÞ
29 ifðmax! ¼ �maxÞ
30 ifðmax! ¼ þþmaxÞ
31 ifðmax! ¼ ��maxÞ
32 ifðmax! ¼ maxþþÞ
33 ifðmax! ¼ max��Þ
34 ifðmax! ¼� maxÞ
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4.2 Prioritization of Mutant Branches Based on the
Dominance Degree

As mentioned in the previous subsection, dfðbiÞ reflects the
capability of a test datum covering bi in covering other
mutant branches. The larger the dominance degree, dfðbiÞ,
the higher the defect detectability of the test datum that can
cover bi. So all the non-dominated mutant branches can be
prioritized according to their dominance degrees. To fulfill
this task, non-dominated mutant branches are first obtained
based on the in-degree of each vertex in DGðP 0Þ. Then the
priority of each non-dominated mutant branch is deter-
mined based on the dominance degree.

Suppose that the non-dominated mutant branch with the
maximal dominance degree in Bnd is bi1 . Then bi1 is chosen
and added to the prioritized branch set, denoted as
Priori set, i.e., Priori set ¼< bi1 > .

A non-dominated mutant branch generally dominates at
least one mutant branch. As a result, once bi1 is chosen, we
will also delete the mutants branches that bi1 dominates in
DGðP 0Þ. So the dominance degree of each remainder non-
dominated mutant branch should change.

Generally, suppose that the kth non-dominated mutant
branches, bik , is determined. Before determining the ðkþ 1Þ-th
non-dominated mutant branch, vertex bi and the vertices cor-
responding to the dominated mutant branches of bi will be
deleted fromDGðP 0Þ.

The above precess repeats until all non-dominated
mutant branches are ordered. The specific steps of prioritiz-
ing mutant branches can be provided as follows.

� Step 1: Construct the dominance relation graph
DGðP 0Þ according toDB.

� Step 2: Calculate the value of dfðbiÞ; bi 2 Bnd, based
on the out-degree of vertex bi inDGðP 0Þ.

� Step 3: Add the mutant branch, bi, which has the
maximal dominance degree in Bnd, to Priori set.

� Step 4: Delete bi and its dominated mutant branches
fromDGðP 0Þ.

� Step 5: Check whetherDGðP 0Þ is empty or not. If yes,
output Priori set; otherwise, go to Step 2.

Note. When more than one non-dominated mutant
branch has the same dominance degree, as a common rule,
we select the non-dominated mutant branch according to its
position in P 0.

For the example program in Fig. 1a, the non-dominated
mutant branch with the maximal dominance degree is b10
(dfðb10Þ ¼ 13), which is chosen and added to Priori set. As
a result, Priori set ¼< b10 > . Then DGðP 0Þ is updated by
deleting b10 and the mutant branches dominated by b10 from
DGðP 0Þ. Fig. 2 shows the process of updating the domi-
nance relation graph, where (a) is the graph after deleting
b10 from DGðP 0Þ. In Fig. 2a, the maximal dominance degree
is dfðb9Þ ¼ 6, thus Priori set ¼< b10; b9 > . Fig. 2b is the
dominance relation graph after deleting vertex b9 and the
vertices corresponding to its dominated mutant branches.
Now dfðb17Þ ¼ dfðb23Þ ¼ 1. We select the non-dominated
mutant branch according to its position in P 0. As a result,
b17 is chosen, and the dominance relation graph after delet-
ing vertex b17 is shown as Fig. 2c. Since the remaining verti-
ces are all with dominance degree 0 now, we successively
select them according to their positions, i.e., b1; b2; b6; b23.
According to the above steps, the prioritization of Bnd is
Priori set ¼< b10; b9; b17; b1; b2; b6; b23 > .

5 ORDERLY GENERATION OF TEST DATA BASED

ON PRIORITIES OF MUTANT BRANCHES

The above section proposes a method of prioritizing all non-
dominated mutant branches according to their dominance

TABLE 2
The Dominance Relations

Non-dominated
mutant branch

Dominated mutant branches

b1 b3; b8; b30; b31; b34
b2 b3; b8; b30; b31; b34
b6 b3; b4; b8; b24; b25; b28; b30; b31; b34
b9 b4; b5; b8; b11; b14; b16; b24; b25; b28; b30; b31; b34
b10 b3; b4; b5; b8; b12; b13; b15; b18; b19; b22; b30; b31; b34
b17 b3; b4; b5; b8; b18; b19; b22; b29; b30; b31; b34
b23 b4; b8; b24; b25; b28; b29; b30; b31; b34

TABLE 3
The Dominance Degrees of Non-Dominated Mutant Branches

Non-dominated mutant branch Dominance degree

b1 5
b2 5
b6 9
b9 12
b10 13
b17 11
b23 9

Fig. 2. The update of dominance relation graphs, where (a) is the graph after deleting b10; (b) is the graph after deleting b9; and (c) is the graph after
deleting b17.
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degrees. In this section, we focus on generating test data
based on the priorities of mutants.

Generally, the earlier a defect is discovered in a program,
the less harm it will bring. So we hope that the test data with
higher defect detectabilities can be executed earlier. There-
fore it is meaningful to prioritize test data according to their
defect detectabilities. According to Section 4, a test datum
that covers a non-dominated mutant branch must also cover
all its dominated mutant branches. Thus a test datum that
can cover a mutant branch with higher priority could cover
more other mutant branches, and therefore have higher
defect detectabilities. So the main idea of our test data gener-
ation method is that a mutant branch with the highest prior-
ity is first considered in generating test data.

First, the mutant branch with the highest priority in
Priori set is selected. Then a test datum that can cover this
branch is generated, denoted as t. Finally, t is added to the
test suite, TCS, and delete all mutant branches that covered
by t in Priori set. The above precess is repeated until
Priori set is empty.

Because the focus of this paper is how to generate high-
quality test data, rather than improving the efficiency of test
data generation, we just use the random method to generate
test data to cover the selected mutant branch. Of course, we
can also use some more efficient algorithms here.

In addition, a test datum that kills one non-dominated
mutant branch can also kill some other non-dominated
mutant branches. Therefore, it is possible that the number
of generated test data is less than the number of mutant
branches.

The main steps of test data generation are provided as
follows.

Step 1: Select the mutant branch with the highest priority
in Priori set, and generate a test datum that can cover this
branch using the random method, denoted as t. Add t to the
test suite, TCS.

Step 2: Delete all the mutant branches covered by t in
Priori set.

Step 3: Check whether Priori set is empty or not. If yes,
output Priori set and TCS; otherwise, go to Step 1.

According to the above method, in the example program,
the mutant branch with the highest priority, i.e., b10
(dfðb10Þ ¼ 11 ), is selected from Priori set ¼< b10; b9; b17; b1;
b2; b6; b23 > . Then the test datum of b10, “t1 ¼ ð0;�1Þ”, is
generated by the random method. Besides b10, t1 also covers
b1, b2 and b23 in Priori set. So we obtain CSA ¼ ft1g. By
deleting b10; b1; b2; b23, we obtain the updated Priori set ¼<
b9; b17; b6 > . Following that, the mutant branch with the
maximal dominance degree is b9. The test datum of b9,
“t2 ¼ ð�10;�10Þ”, is generate by the same method. So we
obtain CSA ¼ ft1; t2g and Priori set ¼< b17; b6 > . We gen-
erate test data for b17, and obtain t3 ¼ ð�6;�7Þ. Then CSA ¼
ft1; t2; t3g and Priori set ¼< b6 > . At last, we generate
t4 ¼ ð0; 3Þ to cover b6. So we obtain CSA ¼ ft1; t2; t3; t4g and
Priori set ¼ ;.

The main steps of the proposed technique of our test data
generation method for mutation testing can be shown in
Fig. 3. First, the set of mutant branches is constructed by the
transformation method for weak mutation testing. Then,
the non-dominated mutant branch set is obtained according
to the dominance relations of all mutant branches. Next, the

non-dominated branches are prioritized based on their
dominance degrees. Finally, the test data are generated in
order according to the priorities of the non-dominated
branches.

6 EXPERIMENTS

This section validates the effectiveness of the proposed
method through a series of experiments. First, the research
questions are raised. Then, the programs, mutation opera-
tors and the experimental design are given. Finally, the
experimental results are provided and analyzed.

6.1 Research Questions

This paper proposes a method of test data generation via
sorting mutant branches based on their dominance degrees
for weak mutation testing, so as to improve the defect
detectability of the generated test suite. The order of mutant
branches determines the order of test data. Therefore, one
natural research question that we concern is:

� RQ1: Whether the method of sorting mutant branches
according to their dominance degrees is reasonable?

In order to answer RQ1, we select two other strategies to
sort the mutant branches: one is the position-based strategy
(PS), and the other is the random strategy (RS). PS priori-
tizes the mutant branches in Bnd according to their position-
orders in P 0, while RS randomly sorts all mutant branches
in Bnd. Because our method sorts mutant branches accord-
ing to their dominance degrees, we label it DS.

It should be noted that the difference between these three
methods is mainly due to the different strategies of prioritiz-
ing mutant branches. For all strategies, we apply the same
technique, i.e., the random method to generate test data to
cover mutant branches.

We set up three sub-questions to compare the perfor-
mance of these three methods from different perspectives.

� RQ1.1: How is the overall defect detectability of the gener-
ated test suite?

To answer this question, we use both weak mutation test-
ing and strong mutation testing to measure the capability of

Fig. 3. Main steps of the proposed technique of the test data generation
method for mutation testing.
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test suite in fault detection. The mutation scores of the gener-
ated test suites for weak mutation testing and strong muta-
tion testing are calculated respectively. Suppose that the
number of killed mutants is ]Killed, and that of non-equiva-
lent mutants is ]Non-equivalent, then themutation score:

MS ¼ ]Killed

]Non-equivalent
:

The higher the mutation score, the higher the defect detect-
ability of the test suite. In order to distinguish, the mutation
scores of weak mutation testing and strong mutation testing
are denoted asMSw andMSs, respectively.

� RQ1.2: How is the fault detection rate of the test suite?
Mutation score can reflect the overall defect detectability

of a test suite, but can not measure the effect of sorting test
data. To illustrate the fault detection rate of the test suite,
we adopt a commonly used index in regression testing, i.e.,
APFD, which is a measure of how rapidly a prioritized test
suite detects faults [35], [59], [60]. The value of APFD is in
the range of [0, 100](%), and a high APFD value means a
fast (good) fault detection rate.

In addition to the fault detectability of the test suite,
another concern of mutation testing is the cost. If the speed
of the mutants being killed is improved by prioritization,
the efficiency of the mutation testing will also be improved.
So, our next concern is:

� RQ1.3: How is the efficiency of generating test data?
The cost of generating test data for these three methods is

mainly caused by the execution of mutants which deter-
mines whether the mutants are killed or not. So we use the
total execution times of mutants to reflect the cost of gener-
ating test data. Here the test data are generated under the
criterion of strong mutation testing.

The main aim of this paper is to generate test data for
mutation testing based on the priorities of mutation
branches, so the second research problem is:

� RQ2: How does our method compare with traditional
mutation testing methods?

In order to verify the performance of our method, we
choose two evolutionary mutation testing methods for com-
parison, which are from references [51] and [52], respec-
tively. The objective function of reference [51] is to maximize
the mutation score. It investigated two evolutionary optimi-
zation methods: the genetic algorithm and the immune
inspired algorithm. In the experiment, we choose the genetic
algorithm to generate test data because of its popularity. All
parameters of the genetic algorithm are set according to the
instructions of Chapter 6 in reference [51]. The optimization
model in Reference [52] includes three objective functions,
i.e., the number of test cases and dead mutants, and the pair-
wise coverage. Evolutionary algorithms NSGA-II is selected
to solve the optimization problem.

For mutation testing, one important problem is the fault
detectability of the generated test data. So the first sub-prob-
lem is:

� RQ2.1: Whether the test suite obtained by our method has
higher defect detectability than two comparison methods?

In addition, the efficiency of generating test data is
another important issue for mutation testing. Therefore, we
will compare the time consumption with the other two
methods. Thus the second sub-problem is:

� RQ2.2: Can our method improve the efficiency of test data
generation comparing with the other two methods?

Finnaly, because the test suite we generate are orderly,
we also want to examine its rate of error detection. So we
set up the third research question as follows:

� RQ3: Can our method improve the rate of fault detection?
There are many test data prioritization methods to

improve the rate of fault detection of a given test suite in
regress testing [54], [59], [61], [62], [63]. Our method is quite
different from these existing ones. Test data prioritization
method aims to sort an existing test suite, nevertheless our
method prioritizes the test data while generating. So for
comparison, we need first generate a test suite, and then pri-
oritize it by some test data prioritization method.

To generate the test suite, first, we randomly select a
mutant branch b in the mutant branch set B, and generate a
test datum t that can cover b. Then all mutant branches that
are covered by t are deleted from B. The above process con-
tinues until B is empty. In our method the test data covering
a given mutant branch are generated by randomly search-
ing in the input domain. For fairness, we still adopt the ran-
dom method to generate test data here. By this way a test
suite is generated.

Next, the test suite is sorted by traditional test data prior-
itization method. We adopt the Additional Strategy (AS)
proposed in reference [59] to prioritize the test suite. In
addition, because the random prioritization (RP) is often the
lowest bound method, we also use it to prioritize the test
suite. It is noted that in the first group of experiments, we
use the random strategy (RS) to prioritize the mutant
branches, but here we use the random prioritization method
(RP) to directly prioritize the test suite.

6.2 Programs

Fifteen programs are selected for the experiments, listed in
Table 4. Among these programs, J1, J2 and J4 are experimen-
tal programs from [17], J3 is from [64], and J5-J14 are from
http://commons.apache.org. In addition, J1-J4 are bench-
mark programs which are well known in mutation testing
and usually as example and experimental programs in
many studies. J5-J15 are from open-source projects. All
these programs are programmed in Java.

Table 4 lists the badic information for each program
under test. We can see from Table 4 that the total numbers
of LOCs and methods of these programs under test are
43262 and 3970, respectively. The biggest program is Colt
with LOCs 31407.

6.3 Mutation Operators

The rule of grammatically changing a program is called a
mutation operator. King and Offutt presented 22 kinds of
mutation operators, each of which is represented by a three
letter acronym [65]. The research of Offutt and Lee found
that five classes of operators (ABS, AOR, LCR, ROR, and
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UOI) are deemed to be sufficient to achieve almost full
mutation coverage [66].

We use MuClipse to perform mutation testing for Java
programs in this paper. There are total 15 kinds of Method-
Level mutation operators in MuClipse. We use Eclipse to
generate mutants by applying all these 15 kinds of mutation
operators. Different mutation operators can be used for dif-
ferent types of statements. Detailed information of these 15
kinds of mutation operators is listed in Table 5, including
their representation and description, etc.

6.4 Experimental Design

The experimental environment is as follows: Intel(R) Core
(TM) i5-6200U @ 2.30GHz 2.30GHz, 12.00GB RAM, Win-
dows 7 Operating System, and Eclipse SDK 4.2.2 with
MuClipse 1.3. MuClipse is an Eclipse plug-in of MuJava,
which can automatically generate and execute mutants
against test data. The most steps of the experiments in this
paper are realized by MuClipse.

In the experiments, mutants are generated after perform-
ing all these 15 Method-Level mutation operators of
MuClipse on the programs in Table 4. To obtain the

dominance relations, mutant branches are first automatically
constructed by parsing “mutation_log” created by MuClipse
when generating mutants. Then, the new program, P 0, is
formed by inserting all the mutant branches into the original
program, P . Finally, the dominance relations are identified
by statically analyzing P 0 to obtain DB and Bnd.

6.5 Results and Analysis

6.5.1 The Results and Analysis of the First Group of

Experiments

� RQ1: Whether the method of sorting mutant branches
according to their dominance degree is reasonable?

To illustrate the effectiveness of our method, the number of
generated test data, the mutation scores of weak and strong
mutation testing, and the APFD value are recorded. For each
method, each program in Table 4 is independently run 20
times. The average results of numbers of generated test data
and mutation scores are given in Tables 6, 7 and 8, respec-
tively. Fig. 4 shows the APFD boxplot for each program.

� RQ1.1: How is the overall defect detectability of the gener-
ated test suite?

It can be observed fromTable 6 that, (1) there are total 119748
mutants for these 15 programs, including 16076 equivalent
ones. The proportion of equivalent mutants is 13.42 percent,
which provides a valuable reference for mutation testing. It
should be noted that if the types ofmutation operators and pro-
grams are different, the results will be changed accordingly. (2)
The number of non-equivalent mutants is 103672 (
¼ 119748� 16076), which can simulate 103672 injected faults.
After dominance analysis, 5202 non-dominated mutant
branches are obtained, which means the reduction ratio is
ð103672� 5202Þ=103673 ¼ 94:98%. The results fully verify that
the number of mutants can be greatly reduced according to
their dominance relations, and thus the cost of mutation testing
will decrease. (3) To cover all non-dominatedmutant branches,
PS generates 2248.1 test data, RS generates 2266.4 test data,
whereasDS generates 2178.5 test data.

Although the number of test data using our method is
smaller than those generated by PS and RS, the difference is

TABLE 5
15 Kinds of Method-Level Mutation Operators in MuClipse

Method level Operator description

Arithmetic AORB Arithmetic Operator Replacement(binary)
AORS Arithmetic Operator Replacement(binary)
AOIU Arithmetic Operator Insertion(unary)
AOIS Arithmetic Operator Insertion(short-cut)
AODU Arithmetic Operator Deletion(unary)
AODS Arithmetic Operator Deletion(short-cut)

Relational ROR Relational Operator Replacement

Conditional COR Conditional Operator Replacement
COI Conditional Operator Insertion
COD Conditional Operator Deletion

Shift SOR Shift Operator Replacement

Logical LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Deletion

Assignment ASRS Assignment Operator Replacement(short-cut)

TABLE 4
Basic Information of Experimental Programs

Program LOCs Methods Description

J1 Mid 26 1 Return the middle value of three integer
J2 TrashAndTakeOut 30 2 Not reported
J3 Triangle 36 1 Return the type of a triangle with three integer inputs
J4 Cal 50 2 Calculate the days between tow dates in the same year
J5 Md5Crypt 107 7 Class from org.apache.commons.codec.digest
J6 WordUtils 173 12 Class from org.apache.commons.lang3.text
J7 UnixCrypt 311 12 Class from org.apache.commons.codec.digest
J8 DurationFormatUtils 365 9 Class from orgapache.commons.lang3.time
J9 HelpFormatter 416 39 Class from org.apache.commons.cli
J10 NumberUtils 636 47 Class from org.apache.commons.lang3.math
J11 Dfp 1702 113 Class from org.apache.commons.math3.dfp
J12 FastMath 2311 100 Class from org.apache.commons.math3.util
J13 StringUtils 2434 200 Class from org.apache.commons.lang3
J14 ArrayUtils 3258 319 Class from org.apache.commons.lang3
J15 Colt 31407 3106 Project for high performance scientific and technical computing

Sum. 43262 3970
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not very obvious. This is because the mutant branches have
been reduced according to their dominance relations. The
remaining mutant branches are non-dominated ones. A test
datum that can cover a non-dominated mutant branch must
cover all its dominated mutant branches, but is not neces-
sarily covering other non-dominated branches. That is to
say, a test datum killing a non-dominated mutant branch
with higher dominance degree is not necessarily covering
more non-dominated branches. Therefore, our method does
not necessarily reduce the number of test data. Neverthe-
less, our method still has slight advantage, indicating that
the prioritization method according to dominance degree is
reasonable.

In addition, our main purpose is to prioritize test data. So
we will validate the error detectabilities of these test data by
weak mutation testing and strong mutation testing, respec-
tively. Table 7 provides the experimental results of test data
generated by different methods for weak mutation testing.

We can learn from Table 7 that, (1) test data generated by
PS cover 98287.1 out of 103672 mutant branches, and the
average mutation score is 94.81 percent, (2) The average
mutation score of RS is 95.00 percent that is slightly higher
than that of PS, and (3) The average mutation score of DS is
96.32 percent that is slightly higher than that of RS. From
the above observations, the overall performance of the test
suite generated by our method is slightly better than those
of the other two methods.

When generating test data, we aim to cover all non-
dominated mutant branches. Theoretically, the test data
that cover all non-dominated mutant branches can also
cover all mutant branches, including the dominated ones.
However, there are a small number of mutant branches that
cannot be covered, for example, 5384.9 ð103672� 98287:1Þ
mutant branches in Table 6 cannot be covered by test data
generated using PS. The reason why not all mutant
branches can be covered is provided as follows. We analyze

TABLE 6
The Mutants and Generated Test Data

Program ]Mutants ] Equivalent mutants ]Non-dominated mutant branches ] Test data

PS RS DS

J1 115 18 30 12.8 13.8 11.6
J2 111 29 5 5.0 5.0 5.0
J3 325 40 46 25.7 24.2 23.9
J4 316 43 43 19.6 19.0 18.0
J5 158 12 14 4.7 4.3 4.5
J6 243 34 36 5.9 6.0 5.8
J7 1097 209 116 6.7 6.5 6.6
J8 576 65 83 22.5 21.7 20.8
J9 291 42 91 21.3 20.1 19.9
J10 1406 212 293 85.6 82.9 79.3
J11 2133 258 154 73.4 79.4 69.7
J12 6486 967 284 84.4 82.1 81.8
J13 4955 603 982 216.1 203.7 195.8
J14 7551 795 660 357.8 358.2 352.4
J15 93985 12749 2365 1306.6 1339.5 1283.4

Sum. 119748 16076 5202 2248.1 2266.4 2178.5

TABLE 7
Defect Detectability of the Generated Test Data by Weak Mutation Testing

Program ]Mutant branches PS RS DS

Covered MSw (%) Covered MSw (%) Covered MSw (%)

J1 97 97.0 100.00 97.0 100.00 97.0 100.00
J2 82 82.0 100.00 82.0 100.00 82.0 100.00
J3 285 285.0 100.00 285.0 100.00 285.0 100.00
J4 273 273.0 100.00 273.0 100.00 273.0 100.00
J5 146 146.0 100.00 146.0 100.00 146.0 100.00
J6 209 209.0 100.00 209.0 100.00 209.0 100.00
J7 888 872.4 98.24 874.2 98.45 873.9 98.41
J8 511 507.7 99.36 508.1 99.44 508.1 99.44
J9 249 247.4 99.37 247.6 99.43 247.6 99.45
J10 1194 1175.8 98.31 1174.2 98.34 1177.5 98.62
J11 1875 1852.0 98.77 1846.0 98.45 1869.0 99.68
J12 5519 5328.0 96.54 5331.2 96.60 5402.8 97.89
J13 4352 4264.2 97.98 4283.1 98.42 4306.3 98.95
J14 6756 6569.5 97.24 6569.5 97.24 6569.5 97.24
J15 81236 76378.1 94.02 76564.9 94.25 77807.8 95.78

Sum. 103672 98287.1 94.81 98490.8 95.00 99854.5 96.32
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the dominance relations among mutant branches by statical
method, which may lead to some mistaken dominance rela-
tions. As a result, a few non-dominated mutant branches
are classified as dominated ones, and thus reduced. In addi-
tion, although we deleted the equivalent mutants that are
detected, there may still be some unidentified ones. These
two kinds of mutants have no opportunity to be covered. In
addition, it is also possible that some mutant branches are
difficult to cover, so no corresponding test data is generated.

Table 8 is the experimental results of fault detection of
test data generated by different methods for strong muta-
tion criterion. From Table 8, we have two observations, (1)
test data generated by PS and RS detect 96189.8 and 97277.6
injected faults with the mutation scores of 92.78 and
93.83 percent, respectively, and (2) the mutation score of
test data generated by DS is 95.61 percent, which is higher
than those generated by PS and RS. Moreover, our method
has more advantages than the other two methods compared
with the weak mutation testing.

The number of killed mutants in Table 8 is smaller than
that of covered mutant branches in Table 7 by the same test
data. For instance, test data generated by DS cover 99854.5
mutant branches, whereas they only kill 99122.1 mutants for
strong mutation criterion. The reason can be provided as fol-
lows: the condition of killing a mutant under the criterion of
weakmutation testing is weaker than that of strongmutation
testing. As a result, some mutants killed for weak mutation
testing may not be killed for strong mutation testing. But we
also see that, on the whole, the test data generated by our
method still has a good effect on strongmutation testing.

The mutation score can only reflect the overall perfor-
mance of the test suite, but cannot reflect the advantage of
test data prioritization. The purpose of our method is to
make test data with higher defect detection capability have
higher priority, so that it can be executed earlier. Thus more
errors can be detected as early as possible. In view of this,
we will evaluate the performance of the test suite by the
fault detection rate.

� RQ1.2: How is the fault detection rate of the test suite?
Fig. 4 shows the boxplots of the APFD values of these

three methods for each program. We can see from the figure

that our method performs better than the other two meth-
ods. In fact, the average APFD values of PS and RS are 66.88
and 75.10 percent, respectively. While the average APFD
value of DS is 82.94 percent. To be specific, our method
improved the average APFD value of PS by 24.01 percent,
and that of RS by 10.44 percent.

In order to make a more scientific analysis of the experi-
mental results, we also used statistical tool Spass to conduct
hypothesis test. The statistical results show that the APFD
value of our method is significantly higher than those of the
other two methods.

The experimental results fully show that the method of
sorting mutant branches according to their dominance
degrees is reasonable. Meanwhile, it is necessary to prioritize
the test suite. If we run the test data randomly, we can kill the
same mutants eventually, but the speed of killing mutants is
different. In addition,we also see that the results of RS is better
than those of PS. PS sorts the mutant branches according to
their positions in the program. The experimental results verify
that this sorting method has not any advantage. Instead, RS
synthesizes the advantages and disadvantages of different
sortingmethods, so gets better results than PS.

� RQ1.3: How is the efficiency of generating test data?
To compare the efficiency of different methods, the num-

ber of executing mutants for strong mutation testing by the
generated test data is calculated. For a selected test datum,
we employ it to execute all the remaining mutants to deter-
mine whether they can be killed or not. If yes, the mutants
will be deleted from the mutant set. This process continues
until all mutants are killed. For the same test suite, different
orders of test data generally result in different numbers of
executing mutants.

The experimental results are provided in Table 9, in
which “Times” represents the numbers of executing
mutants by different methods when killing all mutants, and
“Comparison” means the comparison of Times between our
method and PS or RS.

As shown in Table 9, DS has less times than PS and RS.
When employing the 2248.1 test data (listed in Table 6) gen-
erated by PS to kill the 98287.1 mutants (listed in Table 8),
the times of executing mutants is 397865.4. For test data

TABLE 8
Defect Detectability of the Generated Test Data by Strong

Mutation Testing

Program PS RS DS

Killed MSs (%) Killed MSs (%) Killed MSs (%)

J1 97.0 100.00 97.0 100.00 97.0 100.00
J2 82.0 100.00 82.0 100.00 82.0 100.00
J3 274.5 96.32 274.3 96.25 275.1 96.53
J4 254.4 93.19 256.6 93.99 259.1 94.91
J5 146.0 100.00 146.0 100.00 146.0 100.00
J6 196.6 98.81 195.7 98.33 196.9 98.93
J7 840.3 94.63 843.2 94.95 843.7 95.01
J8 496.3 97.13 501.1 98.07 506.2 99.06
J9 239.1 96.05 240.2 96.45 241.4 96.93
J10 1135.8 95.13 1143.5 95.77 1145.5 95.94
J11 1712.2 91.32 1773.1 94.56 1829.7 97.58
12 5221.4 94.61 5224.6 94.67 5348.8 96.92
J13 4050.9 93.08 4111.8 94.48 4277.1 98.28
J14 6438.1 95.29 6457.2 95.58 6504.4 96.28
J15 75005.2 92.33 75931.3 93.47 77369.2 95.24

Sum. 96189.8 92.78 97277.6 93.83 99122.1 95.61

TABLE 9
Numbers of Executing Mutants for Strong Mutation Testing

Program Times Comparison

PS RS DS DS / PS(%) DS / RS(%)

J1 416.5 392.8 340.2 81.68 86.61
J2 179.0 159.1 118.0 65.92 74.17
J3 3758.9 2294.7 1491.5 39.68 65.00
J4 1496.5 1226.3 800.1 53.46 65.25
J5 336.6 202.8 155.3 46.14 76.58
J6 511.6 375.0 262.3 51.27 69.95
J7 2361.8 1910.3 1098.3 46.50 57.49
J8 1316.9 1231.6 872.3 66.24 70.83
J9 1629.9 1083.0 719.3 44.13 66.42
J10 6483.7 5558.6 3987.1 61.49 71.73
J11 5823.9 4996.1 3701.5 63.56 74.09
J12 11612.4 11842.5 10340.9 89.05 87.32
J13 17585.7 14002.2 10349.0 58.85 73.91
J14 32163.7 18015.5 14155.6 44.01 78.57
J15 312188.3 229891.1 179226.5 57.41 77.96

Sum. 397865.4 293181.6 227617.9 57.21 77.64
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generated by RS, mutants are executed 227617.9 times when
killing all the 98490.8 mutants. However, in order to kill all
the 99854.5 mutants, mutants are executed 227617.9 times
by test data generated by DS. The comparison shows that
the times of executing mutants of DS is only 57.21 and 77.64
percent of that achieved by PS and RS, respectively, which
means our method reduced time cost by 42.79 percent com-
paring with PS and 22.36 percent comparing with RS.

The significant reduction in the times of executing
mutants for strong mutation testing by our method is bene-
fit from the prioritization of test data based on the

dominance degree, such that the generated test data that
can detect more faults are executed earlier. The above
results show that sorting the mutant branches according to
their dominance degrees can effectively improve the effect
of generating test data. This is because test data that can kill
mutant branches with higher dominance degrees have bet-
ter defect detectabilities, so are possible to kill more other
mutant branches.

In fact, the data presented in Table 9 should be highly
negatively correlated with the value of APFD, as the higher
APFD means the fewer times to reach the maximum value.

Fig. 4. APFD boxplots: by program, by technique (vertical axis is APFD score).
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We calculate the correlation coefficient between Times and
APFD for these three methods. The result is �1, which
means that there is a strong negative correlation between
Times and APFD.

Combining Tables 6, 7, 8, and 9 and Fig. 4, we can draw
the following conclusion. (1) Compared with PS and RS, the
proposed method generates a smaller number of test data,
and achieves a higher mutation score for strong mutation
testing, and (2) when detecting the injected faults, DS needs
smaller times of executions of mutants, and obtains a higher
APFD value. Therefore, the test suite generated by the pro-
posed method are cost-efficient in detecting faults.

The above experimental results fully demonstrate that it
is reasonable to sort the mutant branches according to their
dominance degrees.

6.5.2 The Results and Analysis of the Second Group of

Experiments

� RQ2: How does our method compare with traditional test
data generation method?

In this group of experiments, the number of generated test
data, the mutation scores of strong mutation testing, and
the runtime are recorded. For each method, each program
in Table 4 is independently run 20 times, and the average
results are given in Table 10 and Fig. 5, respectively. It is
noted that the runtime of our method includes the time of
mutant branch reduction and sorting, and the time of gener-
ating test data. All the above processes can be realized
automatically.

� RQ2.1: Whether the test suite obtained by our method has
higher defect detectability than two comparison methods?

We can learn from Table 10 that, (1) for each program, the
number of test data obtained by our method is always the
least. The total number of test data generated by our method
is 2178.5, while that of method in [51] and method [52] are
2770.0 and 2545.7, respectively, (2) the averagemutation score
of test data generated by ourmethod is 97.44 percent, which is
higher than those generated by method in [51] and method in

[52], and (3) Because method in [52] presents multiple optimi-
zation objectives, its result is better than that ofmethod in [51].

The above results fully demonstrate that our method can
obtain higher mutation score with less test data. This can
not only reduce the cost of mutation testing, but also
improve the quality of the test suite.

� RQ2.2: Can our method improve the efficiency of test data
generation comparing with the other two methods?

Fig. 5 shows the time consumption for each method and
program. We can see that the time consumption of our
method is always less than that of the other two methods.
The main reason is that by reducing mutant branches, the
number of test objects is greatly reduced. In addition, the
test data covering mutant branches with higher dominance
degrees are generated preferentially in our method. These
test data can kill more mutants. Once a test datum is gener-
ated, we will delete all mutants that it can kill. Therefore,
prioritization of mutant branches can speed up the genera-
tion of test data.

TABLE 10
Number of Test Data and Mutation Score of the Second Group of Experiments

Program Number of test data Mutation scoreMSs(%)

Our method Method in [51] Method in [52] Our method Method in [51] Method in [52]

J1 11.6 20.0 15.3 100.00 100.00 100.00
J2 5.0 10.0 7.3 100.00 100.00 100.00
J3 23.9 30.0 29.1 96.53 95.31 95.81
J4 18.0 20.0 19.2 94.91 93.03 93.85
J5 4.5 10.0 6.5 100.00 99.79 99.99
J6 5.8 10.0 6.6 98.93 97.95 98.48
J7 6.6 10.0 8.1 95.01 94.17 94.91
J8 20.8 30.0 25.2 99.06 96.78 98.04
J9 19.9 20.0 20.3 96.93 95.62 95.95
J10 79.3 120.0 90.8 95.94 94.63 95.27
J11 69.7 100.0 82.9 97.58 91.29 94.08
J12 81.8 120.0 98.1 96.92 93.41 94.49
J13 195.8 230.0 217.9 98.28 92.93 94.22
J14 352.4 410.0 394.6 96.28 94.96 95.36
J15 1283.4 1630.0 1523.8 95.24 92.19 93.10

Sum. 2178.5 2770.0 2545.7 Ave. 97.44 95.47 96.24

Fig. 5. Runtime of generating test data of the second group of
experiments.
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6.5.3 The Results and Analysis of the Third Group of

Experiments

� RQ3: Can our method improve the rate of fault detection?
In order to observe the error detection rate of different test
suite more intuitively, we use APFD graph to show the
growth process ofmutation score.Here, the test data increases
by 20 percent each time. The results are shown as Fig. 6.

From Fig. 6 we see that the mutation score of our method
always grows fastest, which indicates that the defect detec-
tion rate of the test suite generated by our method is the
highest. In addition, the results of AS are better than that of
RP. The experimental results further illustrate that prioritiz-
ing mutant branches according to their dominance degrees
is reasonable.

The above three groups of experimental results show that
the test data generation method proposed in this paper can
not only improve the overall error detectability of the test
suite, but also improve the rate of error detection.

7 THREATS TO THE VALIDITY

This section proposes main threats to the validity of the
experiments and the methods of addressing them.

The first threat is the determination of equivalent mutants.
In this paper, we use a semi-automatic method to judge
whether a mutant is equivalent. For eachmutant that is deter-
mined as non-equivalent, we will ensure that at least one test
datum can kill it. So it is possible for a tester to identify a non-
equivalent mutant as an equivalent one. To reduce this kind
of threats, we will be as familiar with the structure and the
function of each program as possible. In addition, we will use
more test data to run the mutant, guaranteeing the equiva-
lence of its functionwith the source program.

In addition, this paper sorts mutant branches based on
their dominance degrees. So, the correctness of the domi-
nant relation is the second major threat. We use statistical
methods to determine dominance relations, which may

result in some errors. If test data are insufficient, a pseudo
dominant relation may be identified as the dominant one.
To reduce this kind of threats, we use decision-branch cov-
erage criterion to generate test data, so as to ensure the accu-
racy of the statistical results.

In the experiments, we utilize the random method to
generate test data to cover non-dominated mutant branches.
Although the randommethod is highly intuitive and easy to
implement, it is not an approach with the highest efficiency
in the field of test data generation. However, the target of
this paper is to improve the defect detectability of test data
by prioritization, instead of the efficiency of test data gener-
ation. As a result, we will not put much effort at the means
of generating test data. Nevertheless, we will explore more
effective methods to fulfil this task in the future.

Additionally, although the preliminary experimental
studies suggest that our approach is effective for the pro-
grams under test, the above conclusion cannot be directly
generalized to more complicated real programs. So the pro-
posed method needs further examination in practice.

8 CONCLUSION

Mutation testing can help to generate test data with a high
capability in fault detection. However, not all test data have
the same potence in detecting software faults. If test data are
prioritized while generating for mutation testing, the defect
detectability of the test suite can be further strengthened.

Considering this, we propose a method of test data gener-
ation for weak mutation testing via sorting mutant branches
based on their dominance degrees. First, we obtain the non-
dominated mutant branches by analyzing the dominance
relation of mutant branches in the transformed program,
and calculate the dominance degree of each non-dominated
branch. Then, we prioritize all the non-dominated mutant
branches in descending order by virtue of their dominance
degrees. Finally, when generating test data, we select the
mutant branches sequentially and the test data are also

Fig. 6. APFD graph of test data generated by DS, AS and RP.
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prioritized according to the order of generation. The experi-
mental results on 15 programs show that compared with
other methods, the proposed test data generation method
can not only improve the error detectability of the test suite,
but also has higher efficiency.

We adopt the criterion of weak mutation testing to
achieve the balance between costs and capabilities. In fact,
all of these methods can be extended to the strong mutation
testing, including the dominance relation between mutants,
dominance degree, and prioritization of mutants. However,
each mutant (a program) needs to be executed using the test
data. As a result, the workload will increase. However, the
defect detectability of the test suite will be strengthened
accordingly. The experimental results show that the test
data generated by our method also has a high mutation
score for strong mutation testing.

In the experiments, weak mutation testing and strong
mutation testing are employed to investigate the error
detectabilities of test data via the mutation score. Given the
fact that only traditional (method- level) mutation operators
are utilized to the programs under test, the generated
mutants may not represent all actual defects. Therefore, in
the future work, we will apply more mutation operators to
more practical programs, so as to measure the capability of
test data in detecting actual defects.
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Chatbot4QR: Interactive Query Refinement
for Technical Question Retrieval

Neng Zhang , Qiao Huang, Xin Xia , Ying Zou, David Lo , and Zhenchang Xing

Abstract—Technical Q&A sites (e.g., Stack Overflow (SO)) are important resources for developers to search for knowledge about

technical problems. Search engines provided in Q&A sites and information retrieval approaches (e.g., word embedding-based) have

limited capabilities to retrieve relevant questions when queries are imprecisely specified, such as missing important technical details

(e.g., the user’s preferred programming languages). Although many automatic query expansion approaches have been proposed to

improve the quality of queries by expanding queries with relevant terms, the information missed in a query is not identified. Moreover,

without user involvement, the existing query expansion approaches may introduce unexpected terms and lead to undesired results.

In this paper, we propose an interactive query refinement approach for question retrieval, named Chatbot4QR, which can assist users

in recognizing and clarifying technical details missed in queries and thus retrieve more relevant questions for users. Chatbot4QR

automatically detects missing technical details in a query and generates several clarification questions (CQs) to interact with the user

to capture their overlooked technical details. To ensure the accuracy of CQs, we design a heuristic-based approach for CQ generation

after building two kinds of technical knowledge bases: amanually categorized result of 1,841 technical tags in SO and themultiple

version-frequency information of the tags. We develop a Chatbot4QR prototype that uses 1.88million SO questions as the repository for

question retrieval. To evaluate Chatbot4QR, we conduct six user studieswith 25 participants on 50 experimental queries. The results

are as follows. (1) On average 60.8 percent of the CQs generated for a query are useful for helping the participants recognize missing

technical details. (2) Chatbot4QR can rapidly respond to the participants after receiving a query within approximately 1.3 seconds.

(3) The refined queries contribute to retrievingmore relevant SO questions than nine baseline approaches. For more than 70 percent of

the participantswho have preferred techniques on the query tasks, Chatbot4QR significantly outperforms the state-of-the-art word

embedding-based retrieval approach with an improvement of at least 54.6 percent in terms of twomeasurements: Pre@k and NDCG@k.

(4) For 48-88 percent of the assigned query tasks, the participants obtain more desired results after interacting with Chatbot4QR than

directly searching fromWeb search engines (e.g., the SO search engine andGoogle) using the original queries.

Index Terms—Interactive query refinement, chatbot, question retrieval, stack overflow

Ç

1 INTRODUCTION

ONLINE technical Q&A sites, e.g., Stack Overflow1 (SO)
have emerged to serve as an open platform for knowl-

edge sharing and acquisition [1], [2], [3]. The Q&A sites

allow users to ask technical questions or provide answers to
questions asked by others. For example, SO, which has been
gaining increasing popularity in the software programming
domain, has accumulated more than 19 million questions
and 28 million answers as of December 20, 2019.2 The ques-
tions and answers in the Q&A sites form a huge resource
pool for developers to search for and solve programming
problems [4], [5].

Question retrieval is a key step for users to seek for knowl-
edge from Q&A sites, as well as a requisite step for many
automatic tasks, such as answer summarization [6], API rec-
ommendation [5], and code search [7]. Most of the Q&A sites
provide a search engine for users to retrieve questions using
a query. Typically, a query is simply a free form text that
describes a technical problem [8]. The search engines mainly
rely on traditional information retrieval (IR) techniques (e.g.,
keyword matching and term frequency-inverse document
frequency (TF-IDF) [9]), which cannot retrieve semantically
similar questions for queries due to the lexical gaps between
questions and queries [5]. Recently, word embedding techni-
ques (e.g., word2vec [10]) are widely used by the state-of-
the-art question retrieval approaches to bridge the lexical
gaps [3], [5], [6], [11]. Such word embedding-based
approaches have shown to be able to achieve better perfor-
mance than traditional IR techniques.
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A practical issue overlooked by the existing search
engines and question retrieval approaches is that it is not an
easy task for users to formulate a good query [8], [12]. A survey
conducted by Xu et al. [6] with 72 developers in two IT com-
panies shows that a query could be imprecisely specified as
users may not know the important keywords that the search
engines expect. Rahman et al. [13] conducted an empirical
study on code search using Google, which reveals that it is
common for developers to miss some important technical
details (e.g., programming languages and operating sys-
tems) in the initial queries. Consequently, inaccurate queries
will lead to unsatisfactory results of question retrieval, as illus-
trated in the motivating example (see Section 2). To enhance
the quality of queries, many automatic query expansion
approaches have been proposed to expand queries with rele-
vant terms extracted from a thesaurus (e.g., WordNet [14])
or similar resources [8], [12], [15]. Although the approaches
can help retrieve relevant results, they are insufficient to
obtain accurate results due to two reasons: (1) lack of techni-
ques to identify the missing information in a query; and (2)
queries expanded with unexpected terms without user
involvement (as demonstrated in Section 6.1).

In this paper, we propose to interactively refine queries
with users using a chatbot, named Chatbot4QR, in order to
retrieve accurate technical questions from SO (or other Q&A
sites) for users. Chatbot4QR focuses on accurately detecting
the missing technical details in a query. It first retrieves an
initial set of top-n SO questions similar to the query. To build
a responsive chatbot, we adopt a two-phase approach to
explore a large-scale repository of SO questions by combin-
ing Lucene [16] (an ultra-fast text search engine that imple-
ments BM25) and a word embedding-based approach. Next,
several clarification questions (CQs)3 [17] are generated using
a heuristic-based approach based on the technical SO tags
appearing in the query and the top-n similar questions. To
identify the types of technical details missed in a query for
CQ generation, we build two technical knowledge bases: a
manually categorized result of 1,841 SO tags and the multi-
ple version-frequency information of the tags. Then, Chat-
bot4QR interacts with the user by prompting the CQs to the
user and gathers the user’s feedback (i.e., a set of technical
tags and versions answered by the user to CQs). Finally, the
user’s feedback is used to adjust the initial similarities of SO
questions (by assigning a weight coefficient h to the feed-
back), which results in a refined list of top-k similar questions
for recommendation.

To evaluate Chatbot4QR, we collected 1,880,269 SO ques-
tions as a large-scale repository for implementing a Chat-
bot4QR prototype and testing the performance of question
retrieval for queries. Since our evaluation process contains six
user studies that require a great amount of manual efforts, we
built 50 experimental queries from the titles of another 50 SO
questions. We conducted the user studies with 25 recruited
participants to investigate the following research questions:

RQ1. What are the proper settings of the parameters n and h in
Chatbot4QR?

In Chatbot4QR, there are two key parameters: (1) n is the
number of the initial top similar SO questions used for CQ

generation; and (2) h is the weight coefficient used for simi-
larity adjustment of SO questions. We conducted a user
study to evaluate the quality of CQs generated for queries
by setting n from 5 to 50 and the quality of the top ten SO
questions recommended by setting h from 0 to 1. Based on
the results, we determine the proper settings of n and h as
15 and 0.2, respectively.

RQ2. How effective can Chatbot4QR generate CQs?
We conducted a user study to examine the usefulness of

the CQs, i.e., whether the CQs can help the participants rec-
ognize the missing technical details in queries. The results
show that on average, 60.8 percent of the generated CQs are
useful for a query.

RQ3. Can Chatbot4QR retrieve more relevant SO questions
than the state-of-the-art question retrieval and query expansion
approaches?

We conducted a user study to evaluate the relevance of
the top ten SO questions retrieved by Chatbot4QR and nine
baselines, which apply two popular retrieval approaches
(i.e., the Lucene search engine and a word embedding-
based approach) and four query expansion approaches (see
Section 5.3). The results show that Chatbot4QR outperforms
the baselines by at least 54.6 percent in terms of two popular
metrics: Pre@k and NDCG@k. For more than 70 percent of
the participants, the improvement of Chatbot4QR over the
baselines is statistically significant.

RQ4. How efficient is Chatbot4QR?
We recorded the execution time of Chatbot4QR during

the experiments. Chatbot4QR takes approximately 1.3 sec-
onds to start interaction with the user after receiving a
query, which is efficient for practical uses.

RQ5. Can Chatbot4QR help obtain better results than using
Web search engines alone?

We conducted four user studies (including the user
study conducted in RQ3) for answering this research ques-
tion. We asked the participants to search for their satisfied
results for queries using Web search engines (e.g., the SO
search engine and Google [18]) by applying the original
queries and the refined queries after interacting with Chat-
bot4QR. Then, the participants evaluated the relevance of
the search results. Finally, the participants chose their pre-
ferred results from three kinds of results: the two kinds of
Web search results and the SO questions retrieved by Chat-
bot4QR. The results show that for 48-88 percent of the
assigned query tasks, the participants obtain more desired
results either from Chatbot4QR or by applying the queries
reformulated after the interaction with Chatbot4QR to Web
search engines.

Paper Contributions:

1. We propose a novel chatbot to assist users in refining
queries. To the best of our knowledge, this is the first
work that uses an interactive approach to improving
the quality of queries for technical question retrieval.

2. We conduct six user studies to evaluate Chatbot4QR.
The evaluation results show that Chatbot4QR can
generate useful CQs to help users recognize and clar-
ify the missing technical details in queries efficiently.
The refined queries contribute to retrieving better
results than using the existing question retrieval
approaches and Web search engines alone.

3. We define “clarification question” as a question that asks for some
unclear information that is not given in the context of a query.
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3. We release the source code of Chatbot4QR and the
experimental dataset [19] to help other researchers
replicate our experiments and extend our study.

Paper Organization. Section 2 describes a motivating
example for our interactive query refinement approach.
Section 3 presents the details of Chatbot4QR. Sections 4
and 5 report the experimental setup and results, respec-
tively. Section 6 discusses several key aspects of Chat-
bot4QR and the threats to validity of our work. Section 7
reviews the related work. Section 8 concludes the paper and
discusses future work.

2 MOTIVATING EXAMPLE

To motivate the use of an interactive approach to assisting
users in refining queries, we illustrate the impact of a vague
query on the quality of the questions retrieved by the SO
search engine, and explain the key idea of Chatbot4QR.

Fig. 1 shows an annotated screenshot of the top three
questions retrieved by the SO search engine for a query
“prevent SQL injection”. Each retrieved question is tagged
with a set of relevant technical terms, i.e., tags. For example,
the first question is tagged with techniques, such as ‘php’
and ‘mysql’. Obviously, the query is vague due to missing
some important technical details, e.g., the preferred pro-
gramming languages and databases. Looking at the tags
associated with each question, the first and the second ques-
tions are related to the programming language ‘php’, while
the third question is related to ‘java’. Only the first question
is explicitly tagged with the database ‘mysql’. Although the
titles of the three questions are similar to the query, they are
not satisfactory to every potential user as the users may
have different technical background or programming con-
text. For example, if a user prefers ‘java’, the top two ques-
tions are undesirable, while the third question may be
suitable depending on the user’s preferred database. If a
user is only familiar with the programming language ‘c#’,
none of the three questions is relevant to the user. However,
we find that there are similar questions tagged with ‘c#’ out-
side the top three returned results. To retrieve more desired
questions for a user, it is necessary to assist the user in clari-
fying technical details that are not initially specified.

We propose Chatbot4QR to work interactively with users
to improve the quality of queries. Chatbot4QR can heuristi-
cally generate several CQs to ask for two kinds of technical
details: (1) the types of techniques widely adopted in soft-
ware development, such as programming languages, data-
bases, and libaries; and (2) the version of a technique as
different versions of the technique may have substantial
changes (e.g., ‘python-2.x’ and ‘python-3.7’), which may
cause version-sensitive problems. In Fig. 1, there are two
programming languages in the top three retrieved ques-
tions, but no programming language is specified in the
query. Therefore, a CQ can be generated, e.g., “What pro-
gramming language, e.g., php or java, does your problem refer
to?”. Suppose that the user answers the CQ with ‘java’, since
‘java’ can have tags with multiple versions (e.g., ‘java-7’ and
‘java-8’), a new CQ is generated to ask for a specific version,
e.g., “Can you specify the version of ‘java’, e.g., 7 or 8?”.

We strive to make our generated CQs easy for users to
understand and answer, for the purpose of adoption in
practice. Although a user needs to interact with our chatbot
to answer the CQs, the amount of time spent is acceptable
by the participants in our user studies (see Section 5.4). The
feedback to CQs can help retrieve more relevant results and
reduce the time required for the manual examination of
undesirable results.

3 THE APPROACH

Fig. 2 gives an overview of our approach, which consists of
two components: (1) offline processing which builds the
Lucene index of SO questions, two language models (i.e.,
word2vec and word Inverse Document Frequency (IDF)
vocabulary), and the categorization and version-frequency
information of SO tags; and (2) Chatbot4QR which contains
four main steps, namely �1 retrieving the initial top-n simi-
lar SO questions for a query, �2 generating CQs by detecting
the missing technical details in the query, �3 interacting
with the user by asking the CQs to assist them in refining
the query, and �4 producing the final top-k recommended
questions by adjusting the similarities of questions based on
the user’s feedback to CQs.

3.1 Offline Processing

As shown in Fig. 2, Chatbot4QR needs to retrieve the initial
top-n similar SO questions for a query before generating
CQs. We build two language models, i.e., word2vec and
word IDF vocabulary, to measure similarities between SO
questions and queries, similar to the previous work [5], [6],
[20]. The word2vec model is used to measure the semantic
similarities among words; and the word IDF vocabulary
measures the importance of words in the corpus. However,
it is time-consuming to compute the semantic similarity
between a query and each question in a large-scale reposi-
tory, e.g., SO. To reduce the search space, we utilize Lucene
to build the index for SO questions and retrieve a set of possi-
bly similar questions before applying the word embedding-
based approach. Moreover, we build two technical knowl-
edge bases from SO tags for SO generation, i.e., the categori-
zation andmultiple version-frequency information of tags.

Weuse the text corpus of SO questions (including the titles,
tags, and bodies) and the SO tags (including the descriptions

Fig. 1. The top three questions retrieved for a query by the SO search
engine.

ZHANG ETAL.: CHATBOT4QR: INTERACTIVE QUERY REFINEMENT FOR TECHNICAL QUESTION RETRIEVAL 1187



and synonyms crawled from the SO TagWiki [21]) as the
input of the offline processing component. Fig. 3 shows the
description and ten synonyms of SO tag ‘java’. For questions,
we remove the long code snippets enclosed in HTML tag
preh i from the bodies. We also reduce each word to its root
form (aka. stemming) using the Porter stemmer inNLTK [22],
a Python toolkit for natural language processing. As typical
users would decide the relevance of a SO question to a query
using the title and tags before checking the long body, we
only consider the titles and tags of SO questions for question
retrieval.

3.1.1 Lucene Index Building

We create a document for each SO question by gathering the
title and tags, and build the index for all questions using
Lucene.

3.1.2 Word Embedding

We apply the sentence tokenizer in NTLK to the titles and
bodies of SO questions. Using the collected sentences, we

train a word2vec model using Gensim [23] with the default
parameter setting.

3.1.3 Word IDF Computation

We remove the stopwords provided in NLTK from SO
questions and build the word IDF vocabulary by computing
the IDF metric of each word.

3.1.4 Tag Version-Frequency Extraction

Many SO tags have multiple versions due to the update of
techniques; and each version has its own frequency. The fre-
quency of a SO tag reflects the number of SO questions that
have been tagged with it. For example, the tag ‘java’ has sev-
eral versions, e.g., ‘7’ and ‘8’; and the frequencies of ‘java-7’
and ‘java-8’ are 2,861 and 18,302, respectively. We extract
the multiple version-frequency information of SO tags for
generating a particular kind of CQs that ask users to specify
the version of a technique that they are interested in.

By examining the SO tags with versions, there are two
common templates of a technique and the corresponding
versions: (1) concatenate a technique and a version number
by ‘-’, e.g., ‘java-8’ and ‘python-3.x’; and (2) append a version
number to a technique, e.g., ‘sqlite3’ and ‘sslv2’. We extract
the version numbers in SO tags using regular expressions.
The extracted versions and the corresponding frequencies of
each tag t are stored in a dictionary, denoted as ver freqsðtÞ.
For example, two elements in ver freqsð‘java’) are {‘7’: 2,861,
‘8’: 18,302}.

3.1.5 Tag Categorization

Categorizing SO tags to a set of meaningful types is critical
for generating CQs for queries. Existing work that catego-
rizes SO tags (e.g., [24], [25], [26]) is either incomplete or too
fine-grained for our CQ generation. For example, only six
types of SO tags were considered by Ye et al. [24] while
neglecting some important types, e.g., operating system and
plugin. Chen et al. [25] automatically generated 167 types

Fig. 2. An overview of our approach.

Fig. 3. An example SO tag “java”.
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where the analogous types (e.g., library and module) should
be better merged. Incomplete types result in missing useful
CQs, while fine-grained types lead to redundant CQs.

We strive to manually build a high-quality categorization
of SO tags. However, the manual categorization of more than
50 thousands tags in SO is a cumbersome task. As the chances
for querying the low frequency tags are low, we focused on
the tags with the frequency of more than 1,000. As a result,
we selected 4,158 tags. Despite the synonyms defined in SO,
we also considered the tags marked with version numbers to
be synonyms. For example, an extended synonyms set is
{‘java’, ‘java-se’, ‘jdk’, ‘java-7’, ‘java-8’, ...}. We kept only the
most frequent tag in each set of synonyms. Consequently, we
obtained 3,772 tags. Then, we categorized the tags by using
two iterations of a card sorting approach [27] as follows.

� Build a set of types. We observed that many SO tags
have a noun phrase in the first description sentence to
indicate the types of them, which are typically
expressed in the form of “X is a/an noun phrase ...” [26].
As shown in Fig. 3, the first description sentence of
‘java’ shows that it is a programming language. We
randomly sampled 349 tags from the 3,772 tags, which
is a statistically significant sample size considering a
confidence level of 95 percent and a confidence inter-
val of 5. We used the Stanford POS (Part-of-Speech)
tagger in NLTK to parse the first description sentence
of each tag and extracted the first noun phrase behind
the articles ‘a’ or ‘an’. The first two co-authors indepen-
dently examined the noun phrases and built their own
sets of types. Then, the two co-authors and a postdoc
(who is not a co-author of the paper) together dis-
cussed the disagreements, eventually resulting in 20
types, as presented in Table 1. The two types ‘non-PL
Language’ and ‘non-OS System’ respectively represent
the non-programming languages (e.g., the query

language ‘sql’) and the non-operating systems, e.g., the
version-control system ‘svn’.

� Categorize tags based on types. Based on the built types,
the two co-authors further independently categorized
each of the 3,772 tags. In total, 1,641 tags were initially
categorized by at least one co-author. The uncatego-
rized tags belong to the ignored types which are too
general and are likely to be useless for CQ generation,
e.g., concept and keyword. There were 215 tags with
disagreement. The Fleiss Kappa [28] value of the two
categorization results is 0.86, meaning an almost per-
fect agreement. The two co-authors and the postdoc
worked together again to discuss the disagreements.
Finally, they reached consesus on the categorization
of 1,548 tags. The synonyms of a tagwere then catego-
rized to be the same type(s) as the tag. Table 1
presents the numbers of tags categorized to each of
the 20 types, along with example tags. The numbers
in parentheses are the numbers of synonyms catego-
rized to the corresponding types. For example, “1,841
(305)” in the bottom rowmeans that 1,841 tags includ-
ing 305 synonyms are categorized to the 20 types.
Note that the sum of the number of SO tags catego-
rized to the 20 types is 1,897, which is larger than
1,841, since some tags are categorized to multiple
types. For example, the tag ‘xml’ is categorized to the
two types ‘non-PL Language’ and ‘Format’.

In our approach, tag categorization is a semi-automatic
step. We took approximately 65 hours and nine hours to
complete the two iterations, respectively. It is worth to men-
tion that the categorized tags are reusable and can be incre-
mentally updated easily. More specifically, when the
frequencies of a number of (e.g., 50) uncategorized SO tags
exceed 1,000, we can automatically extract the noun phrases
from the first description sentences of the tags and then cat-
egorize them.

TABLE 1
Twenty Types of SO Tags

Type #Tags Categorized to the Type Example Tags

Library 418(36) jquery, winforms, pandas, opencv, numpy
Framework 285(83) .net, node.js, hibernate, spring, twitter-bootstrap
Tool 211(27) maven, curl, gcc, ant, openssl
Class 171(3) uitableview, listview, , httprequest, imageview, applet
Programming Language 96(31) javascript, java, c#, python, c++
non-OS System 77(12) wpf, git, svn, gps, hdfs
Platform 74(14) azure, github, amazon-ec, google-cloud-platform, ibm-cloud
Service 65(2) outlook, firebase-authentication, gmail, google-cloud-messaging, google-play-services
Technique 64(2) jsp, reflection, proxy, nlp, deep-learning
Database 63(16) mysql, sql-server, mongodb, oracle, neo4j
non-PL Language 60(4) css, sql, wsdl, plsql, sparql, xml
Operating System 58(28) android, ios, linux, windows, macos
Server 55(17) tomcat, nginx, websphere, weblogic, jboss
Format 46(6) json, xml, csv, pdf, jar
Plugin 44(6) silverlight, jquery-validate, android-gradle, pydev, jstree
Environment 33(9) eclipse, netbeans, visual-studio, webstorm, spyder, jdeveloper
Engine 32(2) apache-spark, google-app-engine, elasticsearch, andengine, innodb
Design Pattern 15(0) model-view-controller, singleton, adapter, inversion-of-control, decorator
Model/Algorithm 15(1) dom, classification, rsa, svm, logistic-regression
Browser 15(6) google-chrome, internet-explorer, firefox, safari, opera

Total 1,841(305)

For each value in the “#Tags Categorized to the Type” column, the first number is the total number of tags categorized to the corresponding type; and the sec-
ond number in the parenthesis is the number of tag synonyms categorized to the type.
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3.2 Chatbot4QR

Once the offline processing component is completed, the
Chatbot4QR component shown in Fig. 2 is launched when a
user submits a query. The query is processed first by two
steps: stemming and stopword removal. Then, the four
steps �1 -�4 in Fig. 2 are conducted to help the user refine the
query if it has unclear technical details and recommend the
top-k similar SO questions to the user.

3.2.1 Two-Phase Similar Question Retrieval

To detect if there are technical details left out in the query,
denoted as q, we obtain the initial top-n SO questions simi-
lar to q using a two-phase approach. More specifically, we
first use the Lucene search engine to retrieve a reduced set
of N possible similar questions based on the Lucene index
built for SO questions. Then, we use the word embedding-
based approach adopted in the previous work [5], [6], [20]
to retrieve the top-n semantically similar questions, denoted
as iSimQnðqÞ, from the reduced set. To ensure that the
majority of semantically similar questions can be covered
by the reduced set, we set N = 10,000.

3.2.2 Heuristic Clarification Question Generation

Based on the initial top-n similar SO questions obtained for
query q, we design a heuristic-based approach to automati-
cally detecting the missing technical details in q and gener-
ate a set of CQs to help the user refine q interactively. The
approach contains two sub-steps: tag indentification and
rule-based CQ generation & ranking.

Tag Identification. To generate CQs, we identify the SO
tags appearing in q and the top-n similar questions
iSimQnðqÞ. This is not an easy task due to the diverse
appearances of SO tags in natural language texts. More spe-
cifically, every SO tag is lowercase and multiple tokens are
concatenated by ‘-’, e.g., ‘sql-injection’. Moreover, SO tags
can have versions, e.g., ‘java-8’. In contrast, the tags and ver-
sions can appear in a variety of forms in queries and the
titles of SO questions, e.g., ‘java 8’, ‘Java8’, and ‘Java 8’s’.
Before identifying tags in q and the similar questions, we
transform each categorized SO tag by removing the possible
version and replacing ‘-’ with a blank character. We also
transform the original query as well as the original title and
tags of each question in iSimQnðqÞ by (1) converting them
to lowercase, (2) replacing punctuations (except ‘#’ and ‘+’
as such symbols can be used as a part of a tag, e.g., ‘c#’ and
‘c++’) with a blank character, and (3) separating the possible
version at the end of each token.

Using the transformed results described above, we iden-
tify the tags in q and each question Q 2 iSimQnðqÞ. We also
extract the version number, if it exists, of each tag identified
from q. We filter out the version numbers of tags in the top-
n similar questions as we directly use the version-frequency
information of tags stored in ver freqs (see Section 3.1.4) to
generate CQs, which may help cover more similar questions
outside the top-n. We group the two sets of tags identified
from q and similar questions by the types of tags. The two
grouped sets of tags are denoted as typed tagsðqÞ and
typed tagsðiSimQnðqÞÞ, respectively. Table 2 presents the
grouped tags identified from the query and the top three SO

questions shown in Fig. 1. In the table, we display the two
most frequent versions of each tag in typed tagsðiSimQ3ðqÞÞ.

Rule-Based CQ Generation & Ranking. By comparing the
two sets of identified tags, we generate three kinds of CQs
for query q using the following three heuristic rules:

� Rule 1 (version related CQ generation). For each tag t in
typed tagsðqÞ, if it has no specified version in q and it
is a multi-version tag (i.e., lenðver freqsðtÞÞ � 2), a
version related CQ is generated, such as “Can you
specify the version of t, e.g., v1 or v2?”. v1 and v2 are the
two most frequent versions of t in ver freqsðtÞ, which
are displayed to help the user better understand the
CQ and provide feedback correctly.

� Rule 2 (selection related CQ generation). For each type
type in typed tagsðiSimQnðqÞÞ but not in typed tagsðqÞ,
if there are two or more tags included in the type, a
selection related CQ is generated, such as “What
type, e.g., t1 or t2, are you using?”. t1 and t2 are the two
most frequent tags belonging to type in typed tags
ðiSimQnðqÞÞ. To make the selection related CQs
soundedmore natural, we customized the CQ expres-
sions for the 20 types of SO tags, as shown in Table 3.

� Rule 3 (confirmation related CQgeneration). For each type
type in typed tagsðiSimQnðqÞÞ but not in typed tagsðqÞ,
if only one tag t is included in the type, a confirma-

tion related CQ is generated, such as “Are you using
t? (y/n), or some other types.”.

Rule 3 is a special case of Rule 2. We distinguish them
because a confirmation related CQ is more informative,
implying that only one tag belonging to that type is identified
from the initial top-n similar questions. If a user indeed uses
the asked technique, they can easily answer the CQwith ‘y’.

In the subsequent interaction with the user, CQs that are
more relevant to the query should be asked first. We rank the
generated CQs by assigning a score to each CQ as follows:

� If cq is a version related CQ, its score is set to 1.0
because the tag asked in cq is explicitly specified by
the user.

� If cq is a selection or confirmation related CQ, its score
is calculated according to the similarities of the ques-
tions that contain any tags belonging to the type asked

in cq, i.e.,

P
Q2iSimQðtypeÞ simðq;QÞ

P
Q2iSimQnðqÞ simðq;QÞ , where iSimQðtypeÞ

denotes the subset of questions in iSimQnðqÞ that con-
tains a tag categorized to type; and simðq;QÞ is the
semantic similarity between q andQ.

TABLE 2
Tags Identified From the Query “Prevent SQL injection” (q)

and the Top Three SO Questions Shown in Fig. 1

Type typed_tags(q) typed_tags(iSimQ3(q))

Programming Language { php: [‘7’ , ‘5.3’ ],
java: [‘8’ , ‘7’ ] }

non-PL Language { sql: ‘’ } { sql: [] }
Database { mysql: [‘2’ , ‘5.7’ ] }
Framework { .net: [‘4.0’ , ‘3.5’ ] }
Library { jdbc: [] }
Class { pdo: [] }
Technique { sql-injection: ‘’ } { sql-injection: [] }
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3.2.3 Interaction With the User

Based on the ranked CQ list, Chatbot4QR interacts with the
user by asking each CQ one-by-one and gathers the user’s
feedback. Fig. 4 illustrates the chat process with a user by
submitting the query shown in Fig. 1 to Chatbot4QR. The
five CQs without a dotted frame are initially generated
based on the top 15 (the proper value of the parameter n in
Chatbot4QR, as evaluated in Section 5.1) similar SO ques-
tions retrieved using the two-phase approach. As shown in
Fig. 4, Chatbot4QR has the following features:

1. It can interact with the user in multiple rounds.
2. It can generate new version related CQs to ask for

the versions of the multi-version tags (e.g., ‘java’ and
‘mysql’) that are answered by the user to confirma-
tion or selection related CQs.

3. To be user-friendly, it allows the user to skip any
CQs that might be not useful or difficult to answer
by pressing Enterh i, or to terminate the interaction
anytime.

3.2.4 Similarity Adjustment of Questions

We distinguish two kinds of a user’s feedback to the CQs of
query q: (1) positive feedback, denoted as pfbðqÞ, which
includes the tags and versions answered by the user; and (2)
negative feedback, denoted as nfbðqÞ, which includes the tags
involved in the confirmation related CQs whose answers are
explicitly ‘n’ (means that the user does not use the asked
technique). We do not consider the possible negative feed-
back to CQs since the user’s rationale is unknown. For exam-
ple, if a confirmation related CQ has no answer (i.e., the CQ
was skipped), it is not certain that the user does not use the
asked technique. It might be the reason that users are not
familiar with the programming context and thus have diffi-
culties in answering. In Fig. 4, the positive and negative feed-
back given by the user are

� pfbðqÞ = {‘java 9’, ‘mysql 5.7’, ‘jdbc’},
� nfbðqÞ = {‘sqlalchemy’}.
Using the two kinds of feedback, we adjust the semantic

similarity between q and each question Q in the reduced set
retrieved using Lucene as

simðq;QÞ ¼ simðq;QÞ �
 

1þ h�
 
X

e2pfbðqÞ
mdðe;QÞ

�
X

e2nfbðqÞ
mdðe;QÞ

!!

;

(1)

where mdðe;QÞ measures the degree that Q matches the tag
and its possible version in the feedback element e ¼ ðt; vÞ
(where t is the tag and v is the version), e.g., ‘java 9’. The coef-
ficient h 2 ½0; 1� is used to weight the importance of the tech-
nical feedback. A larger h means to put more weight on the
feedback.More specifically, h ¼ 0 ignores the feedback, while
h ¼ 1means that the feedback has the same importance as the
original query. In thiswork, we definemdðe;QÞ as

TABLE 3
Customized CQ Expressions for the 20 Types of SO Tags Shown in Table 1

Type Customized Selection Related CQ Expression for the Type

Library Which library, e.g., X or Y, are you using?
Framework If you are using a framework, e.g., X or Y, please specify:
Tool Maybe you are using a tool, e.g., X or Y, for the problem. If so, what is it?
Class Are you using a specific class, e.g., X or Y? Please input it:
Programming Language What programming language, e.g., X or Y, does your problem refer to?
non-OS System Apart from the operating system (OS), is there a non-OS, e.g., X or Y, used for your problem?
Platform Tell me a possible platform, e.g., X or Y, you are using:
Service For the problem, if you are using a service, e.g., X or Y, please provide:
Technique Please give a possible technique, e.g., X or Y, you might use for the problem:
Database I want to know whether you are using a database, e.g., X or Y. Can you provide it?
non-PL Language Despite the programming language (PL), are you using any non-PL languages, e.g., X or Y?
Operating System Could you provide an operating system, e.g., X or Y?
Server Which server, e.g., X or Y, does your program intend to run on?
Format What is the format, e.g., X or Y, of the data/file you are handling?
Plugin I am wondering if you are using a plugin, e.g., X or Y. Specify it if there is one:
Environment Would you like to provide an environment, e.g., X or Y, you are using?
Engine Give me a possible engine, e.g., X or Y, that you need to execute your program:
Design Pattern Any design patterns, e.g., X or Y, used for your problem?
Model/Algorithm Do you use a model or an algorithm, e.g., X or Y? Please specify:
Browser Your problem may be related to a browser, e.g., X or Y. Can you specify it?

In each CQ expression, “X” and “Y” are two example SO tags of the corresponding type that appear in the initial top similar SO questions retrieved for a query.

Fig. 4. The interaction with a user for the query shown in Fig. 1.
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mdðe;QÞ ¼
1:5; if e:v exists and both

e:t and e:v are matched by Q
1:0; if only e:t is matched by Q
0; otherwise.

8
>><

>>:
(2)

The idea of Eq. (1) is to increase (resp. decrease) the
semantic similarity of Q according to the amount of positive
(resp. negative) feedback matched by Q. A refined list of the
top-k similar questions is produced based on the adjusted
similarities and recommended to the user.

4 EXPERIMENTAL SETUP

Chatbot4QR is an interactive approach that considers users’
personalized technical background and programming con-
text to retrieve desired questions. We design a series of user
studies to evaluate Chatbot4QR. In this section, we describe
the experimental setup of our user studies. Our experimen-
tal environment is a laptop with Intel Core i5-8300H CPU,
16G RAM, and Windows 10 Operating System.

4.1 Data Collection and Prototype Implementation

We downloaded the official SO data dump released in Sep-
tember, 2018 and built a repository of 1,880,269 SO ques-
tions that are tagged with six popular programming
language tags: {‘javascript’, ‘java’, ‘c#’, ‘python’, ‘c++’, ‘c’}. To
ensure the quality of our repository, every question needs
to have an accepted answer and a positive score (i.e., the
votes of a question shown in Fig. 1). Using the collected
questions, we built a text corpus by removing the long code
snippets in the bodies of questions and processing all words
in the title, tags, and body of each question using the Porter
stemmer in NLTK. We then trained a word2vec model
using Gensim (with the default parameter setting), com-
puted the word IDF vocabulary, and built the Lucene index
for all questions. Moreover, we crawled the descriptions
and synonyms of 55,661 SO tags from the TagWiki, and
built two technical knowledge bases: the categorization and
version-frequency information of tags. The details of these
offline steps are described in Section 3.1.

As described in Section 3.2, Chatbot4QR has three param-
eters: (1) n is the number of the initial top similar SO ques-
tions used for CQ generation; (2) h is the weight coefficient of
users’ technical feedback in Eq. (1) used to adjust the similar-
ities of questions; and (3) k is the number of the top similar
questions recommended to the user. We determined the
proper settings of n and h as 15 and 0.2, respectively, by con-
ducting a user study (see Section 5.1). Considering the fact
that users are likely to be only interested in the top ranked
results [29], we set k = 10 in our prototype implementation,
similar to the previouswork [30], [31], [32].

4.2 Experimental Query Selection

In the existing research work on information retrieval from
SO [5], [6], [8], [20], [32], [33], the experimental queries used
for evaluation are built from the titles of SO questions
selected according to some criteria, of which two commonly
used criteria are: (1) the questions should have accepted
answers; and (2) the scores of questions should be higher
than a threshold (e.g., 5). This is suitable because the title of
a SO question is a simple text that briefly describes a techni-
cal problem that a developer wants help for. We built 50

experimental queries from the titles of SO questions outside
our repository. We chose 50 queries due to two reasons: (1)
it is a relatively common number of experimental queries
used in the previous work [30], [32], [33]; and (2) our user
studies contain six consecutive stages (see Fig. 5) which
require a great amount of manual efforts.

Our experimental queries were selected as follows. We
first collected the popular SO questions which are tagged
with the aforementioned six programming languages but not
in our repository using two criteria: (1) the view count should
be no less than 1,000; and (2) the score should be at least five.
Then, we randomly selected 50 queries from the titles of the
collected questions. For each query, we further ensured that
there is no duplicate question contained in the repository,
similar to the previous work [6]. As listed in Table 4, the 50
queries cover a variety of technical problems, which involve
different techniques, e.g., programming languages, data-
bases, and deep learning libraries. Some of the queries are
simple, e.g., “Reading a line using scanf()” while others are
complex, e.g., “How to sort dictionaries of objects by attribute
value in python?”. Moreover, there are queries expressed with
technical terms, e.g., “Killing thread after some specified time
limit in Java”,while some queries have no specified technique,
e.g., “Recognize numbers in images”. The diversity of the
queries can improve the generality of our experiment results.

We processed the queries by performing stemming and
stop word removal. Based on the Lucene index built for
SO questions, we retrieved the top N=10,000 similar ques-
tions for each query using the Lucene search engine.
We then re-ranked the 10,000 questions by measuring
semantic similarities between the questions and the query
using the word embedding-based approach adopted in the
previous work [5], [6].

4.3 Participant Recruitment

To conduct our user studies shown in Fig. 5 for evaluating
Chatbot4QR, we recruited participants through the mailing
lists of the first and the third co-authors’ colleges. In the e-
mail, we briefly introduced Chatbot4QR and our evaluation
plan, and asked a few questions about the programming

Fig. 5. The flow of our six user studies.
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background. We received 25 responses that agreed to join
our user studies. The number of our participants is close to
the numbers of participants used to conduct user studies in
the previous work [34], [35], which is considered to be suffi-
cient for our user studies. Table 5 presents the profiles of
the 25 participants. Since some of the participants have
working experience in companies like Hengtian,4 the
“#Years of Programming Experience” column shows the years

of both working experience and student experience in pro-
gramming for each participant. We observe that the partici-
pants have diverse familiar programming languages. Some
of them are only familiar with Java or Python, while others
have multiple familiar languages. Moreover, there are nota-
ble differences in the participants’ years of programming
experience (from 2 to 11 years) with an average of 5.92 years.

We asked the participants to review the experimental
queries and no participant reported being unable to under-
stand the queries after we allowed them to search for the
definitions of unfamiliar technical terms (e.g., ‘LINQ’ and
‘NPM’) online. As listed in Table 4, our queries cover multi-
ple programming languages, e.g., Java, Python, and C++.
We did not guarantee that the participants are familiar with
all the programming languages because Chatbot4QR intends
to help both experienced developers and novices. The diversity of
the participants’ technical background can help improve
the generality of our experiment results.

4.4 Research Questions and the Allocation of
Queries to Participants for User Studies

As shown in Fig. 5, we designed six user studies to investi-
gate the following research questions:

RQ1. What are the proper settings of the parameters n
and h in Chatbot4QR?

RQ2.How effective can Chatbot4QR generate CQs?
RQ3. Can Chatbot4QR retrieve more relevant SO ques-

tions than the state-of-the-art question retrieval and query
expansion approaches?

RQ4.How efficient is Chatbot4QR?
RQ5. Can Chatbot4QR help obtain better results than

using Web search engines alone?
It is a cumbersome task for a participant to conduct the

five user studies 2-6 (the user study 1 is a pilot user study)

TABLE 4
Fifty Experimental Queries

No. SO Question
ID

Experimental Query (the Title of the SO Question)

1 17294809 Reading a line using scanf()
2 423006 How do I generate points that match a histogram?
3 15389110 How to convert Json Stringwith dynamic fields toObject?
4 2733356 Killing thread after some specified time limit in Java
5 20458401 How to insertmultiple rows intodatabase using hibernate?
6 15626686 Better way to parse xml
7 2592985 ArrayList shallow copy iterate or clone()
8 6262084 how to slide image with finger touch in android?
9 5108926 how to encrypt data using AES in Java
10 7918593 How can I determine the week number of a certain date?
11 90838 How can I detect the encoding/codepage of a text file
12 12981190 How to make a static variable thread-safe
13 22173762 Check if two Lists are equal
14 2411893 Recognize numbers in images
15 3561202 Check If Instance Of A Type
16 8702165 How to clone (and restore) a DOM subtree
17 11182924 How to check if JavaScript object is JSON
18 30950032 How can I run multiple NPM scripts in parallel?
19 531998 Set path programatically
20 28052395 Find whether a 2d matrix is subset of another 2d matrix
21 14268053 Most efficient way to calculate pairwise similarity of

250k lists
22 5450055 How can I improvemy INSERT statement performance?
23 3548495 Download, extract and read a gzip file in Python
24 44274701 Make predictions using a tensorflow graph from a keras

model
25 4869189 How to transpose data in a csv file?
26 215557 Most elegant way to implement a circular list (FIFO)
27 1558402 Memory usage of current process in C
28 1805518 Replacing all non-alphanumeric characters with empty

strings
29 6390339 How to query XML that has XSL in Java with XPath?
30 2676719 Calculating the angle between two points
31 10975913 How to make a new list with a property of an object

which is in another list
32 8892073 how to compare webpages structure (dom) similarity in

java?
33 9963331 java : How to know how many Threads have been

Created and running?
34 891345 Get a screenshot of a specific application
35 8910840 Using LINQ to extract ints from a list of strings
36 21461102 Converting Html Table to JSON
37 6773550 Get id of div from its class name
38 2617515 Recommendation for a HTTP parsing library in C/C++
39 1323824 how to read numbers from an ascii file (C++)
40 3823921 Convert big endian to little endian when reading from a

binary file
41 13340955 Convert linear Array to 2D Matrix
42 1623849 Fastest way to zero out low values in array?
43 32109319 How to implement the ReLU function in Numpy
44 14472795 How do I sort a list of datetime or date objects?
45 5741518 Reading each column from csv file
46 22722079 Choosing elements frompython list based on probability
47 7891697 Numpy Adding two vectors with different sizes
48 8022530 Python check for valid email address?
49 459981 BeautifulSoup - modifying all links in a piece of HTML?
50 10052912 How to sort dictionaries of objects by attribute value in

python?

TABLE 5
Profiles of 25 Participants

Participant Familiar Programming
Languages

#Years of Programming
Experience

P1 python 3.5
P2 python 4.0
P3 java, python 8.0
P4 java, python 6.0
P5 java 4.5
P6 python 7.5
P7 java, python 4.0
P8 java, python, c 10.0
P9 java, python 5.5
P10 java 3.5
P11 java 3.0
P12 java, c# 2.0
P13 java, python, matlab 8.5
P14 java, python, c# 6.5
P15 java 3.5
P16 java, python 4.0
P17 java, python, c++ 8.0
P18 java, python 8.5
P19 java, javascript 2.5
P20 java 3.5
P21 java, python 8.0
P22 java, javascript 7.0
P23 java, python 11.0
P24 java, python 6.5
P25 python, c, c++ 9.0

4. Hengtian is an outsourcing company in China that has more than
2,000 employees and mainly does outsourcing projects for American
and European corporations.
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for all the 50 experimental queries. Therefore, we allocated
25 queries to each participant as follows.

We randomly divided the 50 queries into two equally
sized groups: QG1 and QG2. The queries in QG1 are
indexed by Q1-Q25 and those in QG2 are indexed by Q26-
Q50, as shown in Table 4. From the 25 participants, we first
randomly selected five participants, denoted as PG0 = P1-
P5, who are responsible for conducting a pilot user study to
determine the proper settings of the two key parameters n
and h in Chatbot4QR. Then, we divided the remaining 20
participants evenly into two groups: PG1 = P6-P15 and PG2
= P16-P25, while ensuring that members of the two groups
have comparative years of programming experience.

Table 6 lists the allocation of queries to participants for our
six user studies and the research questions investigated by
each user study. More specifically, the user study 1 is a pilot
user study to investigate RQ1 by randomly selecting ten
queries and allocating the queries to the participants in PG0.
For the other five user studies, we allocated QG1 and QG2 to
PG1 and PG2, respectively. The user study 3 investigates RQ3
by examining the usefulness of the CQs generated by Chat-
bot4QR for the 50 queries. RQ4 is answered by recording the
amount of time spent on the steps of Chatbot4QR during the
user studies 3 and 5. The user studies 2, 4, 5, and 6 constitute a
competitive experiment to investigate RQ5 by comparing the
quality of the top ten SO questions retrieved by Chatbot4QR
and the two kinds of the top ten results retrieved using Web
search engines (e.g., the SO search engine and Google) before
and after interacting with Chatbot4QR. As the participants
interact more with Chatbot4QR, they may gradually learn to
recognize some technical details missed in their initial
queries. Therefore, we required the participants to perform
the user study 2 (i.e., Web Search before Interacting with Chat-
bot4QR) before the user study 3 (i.e., Interaction with Chat-
bot4QR), in order to minimize the learning effect that the
participants may transfer the knowledge learned from Chat-
bot4QR to enhance the queries forWeb search.

Before performing the user studies, the participants are
expected to find a solution for each allocated query task.
Given a query, when searching results using Web search
engines, interacting with Chatbot4QR for evaluating the CQs,
and judging the relevance of SO questions and Web search
results, the participants should be based on the existing tech-
nical context specified in the query and/or their technical
background. For example, for the queryQ6 “Better way to parse
xml”, it has no specified programming language, the partici-
pants can perform the user studies with their preferred

programming languages. For the query Q46 “Choosing ele-
ments from python list based on probability”, it has a program-
ming language Python. The participants should perform the
user studies based on Python, but they can determine the
other technical context, e.g., a Python library, based on their
technical background.

5 EXPERIMENT RESULTS

In this section, we answer the five research questions by con-
ducting the corresponding user studies shown in Table 6.

5.1 RQ1: What are the Proper Settings of the
Parameters n and h in Chatbot4QR?

Motivation. In Chatbot4QR, n and h are two key parameters
for generating CQs and recommending SO questions for
queries. The settings of n and hwill affect the quality of gen-
erated CQs and recommended questions. It is necessary to
figure out the proper settings of the parameters.

Approach. We randomly selected ten queries from the 50
experimental queries and allocated the queries to the five
participants in PG0. Then, we conducted the pilot user study
1 shown in Fig. 5 as follows.

1. CQ generation using different settings of n. We gener-
ated different CQs for each query by setting n from 5
to 50 with a step size 5.

2. Usefulness evaluation of CQs. We gathered the CQs
generated using different values of n for each query.
The participants used the interactive interface of our
Chatbot4QR prototype to evaluate the CQs. Before
evaluation, we gave a tutorial using a video confer-
ence call with the participants to introduce the proto-
type with an example query outside the experimental
query set. Then, the participants evaluated the CQs of
each query by performing two tasks: (1) rate the use-
fulness of each CQ by five grades ranging from 0 to 4,
where 0, 1, 2, 3, and 4 mean ‘strongly useless’, ‘useless’,
‘neutral’, ‘useful’, and ‘strongly useful’, respectively;
and (2) give feedback to the useful CQs. The usefulness
of a CQ is judged by whether the CQ can help recog-
nize any important information missed in a query for
question retrieval.

3. Sensitivity analysis of n. For each setting of n, we
counted the numbers of CQs with different useful-
ness and measured the ratio of useful CQs that are
rated as 3 or 4 for each query. The usefulness of

TABLE 6
The Allocation of Queries to Participants for the Six User Studies Shown in Fig. 5;

and the Research Questions Investigated by Each User Study

User Study No. Investigated Research Questions Allocation of Queries to Participants

1 RQ1 Ten queries randomly selected from Q1-Q50 are allocated to PG0

2 RQ5

QG1 are allocated to PG1,QG2 are allocated to PG2
3 RQ2, RQ4
4 RQ5
5 RQ3, RQ4, RQ5
6 RQ5

.“RQ1-RQ5” are the five research questions. “PG0-PG2” are three participant groups. “Q1-Q50” are the 50 experimental queries. “QG1” and “QG2” are two
query groups.
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skipped CQs was deemed to 0; and we considered
the usefulness of the CQs that were not prompted to
the participants (due to the early termination of
interaction) as unknown, because such CQs were not
evaluated by the participants. Then, we determined
a proper value of n according to the results.

4. Similarity adjustment using different settings of h. Using
the participants’ feedback to the CQs generated with
the proper n, we adjusted the initial semantic simi-
larities of the 10,000 SO questions retrieved for each
query (see Section 4.2) by setting h from 0 to 1 with a
step size 0.1.

5. Relevance evaluation of SO questions. We gathered the
top ten SO questions obtained using different values
of h for each query. The participants evaluated the
relevance of each question by five grades 0-4, where
0, 1, 2, 3, and 4 mean ‘strongly irrelevant’, ‘irrelevant’,
‘neutral’, ‘relevant’, and ‘strongly relevant’, respec-
tively. In the aforementioned video conference, we
explained to the participants that the relevance of a
SO question to a query should be judged by evaluat-
ing the degree of matching between the SO question
and the query task with the specified technical con-
text (i.e., the technical terms appearing in the original
query or given by the participants to the CQs).

6. Sensitivity analysis of h. For each setting of h, we mea-
sured the average performance of the top ten SO
questions obtained for the ten queries using two met-
rics: Pre@k (Precision at k) [32] and NDCG@k (Nor-
malized Discounted Cumulative Gain at k) [31],
which are widely adopted in the IR community.
Pre@k measures the percentage of relevant questions
that are rated as 3 or 4 in the top-k ranking list.
NDCG@k considers the ranking and rating scores of
relevant questions.

Pre@k ¼ # relevant questions in the top-k

k
(3)

NDCG@k ¼ 1

IDCGk

Xk

i¼1

2reli � 1

log2ð1þ iÞ; (4)

where reli is the relevance score of the question at the
ranking position i; and IDCGk represents the maxi-
mum possible DCG score through position k that can
achieve for a query. Then, we determined a proper
setting of h according to the performance results.

Results. Fig. 6shows the numbers of three kinds of CQs
generated for ten queries using different n 2 [5, 50], with
respect to each of the five participants P1-P5 in PG0. “Useful
CQs” are the CQs rated as 3 or 4. “Useless & Neutral CQs”
are the CQs rated as 0, 1, or 2. “Unknown CQs” are the CQs
with unknown usefulness. From the figure, we have the fol-
lowing findings:

� Under each setting of n, the total numbers of CQs gen-
erated for the five participants are different. For exam-
ple, 15 (= 7 + 8) and 18 (= 2 + 16) CQs were generated
for the participants P1 and P2, respectively, when n =
5. This result is because that during the interaction,
Chatbot4QR can dynamically generate subsequent
CQs based on the participants’ feedback to the initially

generated CQs, as illustrated in Fig. 4. In particular,
the participants have their own personalized technical
background; and their feedback to CQs can be varied.
Therefore, it leads to different numbers of CQs.

� There are notable differences among the five partici-
pants with respect to the numbers of the three kinds of
CQs. For example, when n = 5, only eight of the 15
CQs generated for P1 were evaluated as useful, while
P2 evaluated 16 of the 18 generated CQs as useful.
This result indicates that the participants had person-
alized judgement on the usefulness of CQs. Moreover,
there are unknown CQs in the evaluation results of P2
and P5 when n is a little large (e.g., n = 25 for P2),
meaning that some participants may only pay atten-
tion to a limited number of CQs during the interaction.

� For the five participants, at least 93.1 percent (= 27/29)
of the useful CQs are generated by setting n = 15.
Whenn is larger than 15, only one or twoCQs are eval-
uated as useful by P2 and P5, while the number of use-
less, neutral, and unknown CQs increases. Therefore,
we determine that n = 15 is a good setting for
Chatbot4QR.

In Chatbot4QR, the parameter n, i.e., the number of the initial
top similar SO questions used for CQ generation, is suggested
to be set as 15.

Table 7 presents the detailed evaluation results of each
participant on the CQs generated for each query using n =

Fig. 6. The numbers of three kinds of CQs generated for ten queries
using different settings of the parameter n (i.e., ranging from 5 to 50). n
is the number of the initial top similar SO questions used for CQ genera-
tion. “P1-P5” are five participants.
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15. “#Initial CQs” is the number of CQs that are initially
generated by Chatbot4QR before interacting with the par-
ticipants. “#CQs” is the total number of CQs generated
after interacting with each participant. “Ratio of Useful
CQs” is the ratio of useful CQs to the total CQs. We
observe that the values of “#CQs” and “Ratio of Useful
CQs” vary from the participants. For example, for the
query Q5, the participant P3 got seven CQs (i.e., one CQ
was dynamically generated), while the other participants
got eight CQs (i.e., two CQs were dynamically generated).
The ratios of useful CQs for P2, P4, and P5 are more than
0.75 and much higher than those for P1 and P3. These
results show that our chatbot can generate personalized
CQs based on the individual interaction with a participant;
and the participants have personalized judgement on the
usefulness of CQs.

Table 8 presents the average performance of the top ten
SO questions retrieved using different h 2 [0, 1] by leverag-
ing the participants’ feedback to the CQs generated with n
= 15. From the table, we have the following findings:

� The performance achieved with a positive h is much
better than that achieved with h = 0.0, indicating that
the participants’ feedback to CQs can indeed help
retrieve more relevant SO questions.

� As h increases from0.0 to 1.0, the Pre@k andNDCG@k
values increase first until reach a peak; thereafter they
decreases. This result can be explained by the fact that
a query typically contains only a few keywords, a rela-
tively large h can overweight the user’s technical feed-
back. Consequently, the recommended questions can
match the user’s technical requirements perfectly but
are irrelevant to the programming problem.

� The optimal Pre@1 and NDCG@1 are achieved when
h = 0.3 or 0.4. When k = 5 and 10, the optimal Pre@k
and NDCG@k are achieved with h = 0.2. Based on
these results, there are two proper settings of h

depending on the user’s desired number of recom-
mended questions. If a user focuses on the top one
question, it is suggested to set h = 0.3 or 0.4, otherwise
h = 0.2 is suggested. Moreover, in terms of Pre@1 and
NDCG@1, the performance achieved with h = 0.2 is
close to the optimal performance. Therefore, it is also
a simple and good suggestion to set h = 0.2, regardless
of the value of k.

In Chatbot4QR, for simplicity, the weight coefficient h in
Eq. (1) used for generating the recommended SO questions is
suggested to be set as 0.2.

TABLE 7
Evaluation of the CQs Generated Using the Initial Top 15 Similar SO Questions Retrieved

for Ten Queries (i.e., Setting the Parameter n = 15)

Query No. #Initial CQs P1 P2 P3 P4 P5

#CQs
Ratio of

Useful CQs
#CQs

Ratio of
Useful CQs

#CQs
Ratio of

Useful CQs
#CQs

Ratio of
Useful CQs

#CQs
Ratio of

Useful CQs

5 6 8 0.500 8 0.750 7 0.429 8 0.750 8 0.875
14 4 5 0.400 8 0.875 5 0.600 6 1.000 7 0.857
15 2 3 0.667 3 1.000 3 1.000 3 1.000 3 1.000
21 4 5 0.800 5 1.000 5 0.600 6 0.833 5 0.800
26 6 7 0.429 8 0.875 7 0.429 7 0.571 7 0.429
31 2 3 1.000 3 1.000 3 1.000 3 0.667 3 1.000
35 1 2 1.000 2 1.000 2 1.000 2 1.000 2 0.500
42 3 4 0.750 4 0.750 4 0.500 4 0.750 4 0.500
45 2 3 1.000 3 1.000 3 0.667 2 0.500 3 0.667
48 5 5 0.400 5 0.800 5 0.400 6 0.667 5 0.600

“P1-P5” are five participants. “#Initial CQs” is the number of CQs that are initially by Chatbot4QR before interacting with the participants. “#CQs” is the
number of CQs eventually generated by Chatbot4QR based on the participants’ personalized feedback to CQs.

TABLE 8
The Average Performance of the Top Ten SO Questions Retrieved by Chatbot4QR

for Ten Queries Using Different Settings of the Parameter h (i.e., Ranging From 0.0 to 1.0)

h Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

0.0 0.480 0.456 0.358 0.453 0.506 0.558
0.1 0.720 0.652 0.518 0.653 0.728 0.788
0.2 0.840 0.680 0.550 0.741 0.764 0.821
0.3 0.900 0.648 0.502 0.783 0.743 0.790
0.4 0.900 0.616 0.482 0.783 0.727 0.764
0.5 0.880 0.576 0.462 0.765 0.697 0.736
0.6 0.820 0.556 0.442 0.719 0.679 0.708
0.7 0.800 0.536 0.430 0.710 0.665 0.698
0.8 0.760 0.536 0.428 0.675 0.650 0.681
0.9 0.760 0.516 0.414 0.675 0.625 0.664
1.0 0.760 0.516 0.398 0.675 0.624 0.653

h is the Weight Coefficient of the Participants’ Feedback to CQs in Eq. (1).
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5.2 RQ2: How Effective Can Chatbot4QR
Generate CQs?

Motivation. Our work is the first attempt to automatically
generate CQs to interactively refine queries with the user
involvement, in order to retrieve more relevant technical
questions from Q&A sites. We want to evaluate the effec-
tiveness of Chatbot4QR for CQ generation and verify
whether the CQs can help users recognize missing technical
details in queries.

Approach.We conducted a user study (i.e., the user study 3
shown in Fig. 5) to evaluate the CQs generated by Chat-
bot4QR for the 50 experimental queries, under the setting of
n = 15. To the best of our knowledge, there is a similar work
proposed by Rao et al. [17], named EVPI, which aims to gen-
erate CQs for asking good technical questions in Q&A sites.
Unlike Chatbot4QR that can automatically generate CQs,
EVPI extracts the existing CQs in the comment sections of
the top ten similar questions retrieved using Lucene. Fig. 7
shows two example CQs in the comment section of a SO
question,5 We implemented EVPI using the source code
released at Github,6 and used EVPI to generate CQs for
each experimental query.

The 20 participants in PG1 and PG2were required to eval-
uate the two kinds of CQs (one kind is generated by Chat-
bot4QR and the other kind is generated by EVPI) for their 25
allocated queries in QG1 and QG2, respectively. We modi-
fied the interactive interface of our Chatbot4QR prototype to
run for the CQs generated by EVPI. More specifically, the
prototype automatically prompted each query and the two
kinds of CQs generated for the query in random order. The
participants did not know which kind of CQs were gener-
ated by Chatbot4QR or EVPI. After completing the evalua-
tion of CQs for a query, the participants needed to choose a
preferred kind of CQs (i.e., the first or the second prompted
kind). Before starting the evaluation, we launched a video
conference to introduce the modified prototype to the partic-
ipants with an example query. Then, the participants used
the prototype to evaluate the two kinds of CQs for each allo-
cated query by performing three tasks:

1. Rate the usefulness of each CQ by five grades 0-4,
which are defined in Section 5.1.

2. Give feedback to the useful CQs.
3. Specify the preferred kind of CQs (when both Chat-

bot4QR and EVPI generated a set of CQs).
Note that the three tasks are not mandatory. The partici-

pants had the freedom to choose to perform any of the tasks.
More specifically, the participants can skip a CQ if they
think it is useless or feel difficult to answer. The participants

can terminate the interaction with the chatbot early when
they think that they have answered enough CQs for a query.
If the participants have no preference for any of the two
kinds of CQs, they can skip the Task 3. Since the participants
may not know some technical terms asked in the CQs, they
can search for unfamiliar technical terms (e.g., OpenCV and
Keras) online during the interaction. Moreover, we asked the
participants to manually record the amount of time spent on
the interaction with Chatbot4QR for 25 allocated queries, as
the participants can take a short break during the user study
in case of personal work or fatigue. After the user study, we
interviewed the participants to obtain their comments about
the CQs produced by both approaches.

For each query, we counted the numbers of CQs gener-
ated by EVPI and Chatbot4QR, and measured the average
ratio of useful CQs evaluated by the ten participants who
were responsible for the query. We considered the useful-
ness of skipped CQs as 0 and excluded the CQs that were
not displayed to the participants as the usefulness of such
CQs was unknown. We also analyzed the participants’ pre-
ferred kinds of CQs for the queries that have CQs generated
by both approaches. We first identified two sets of partici-
pants for a query who preferred Chatbot4QR or EVPI,
which are denoted as PChatbot4QR and PEVPI , responsively.
Then, we defined the “preference ratio” of the ten participants
for the query as jPChatbot4QR j : jPEVPI j .

Furthermore, according to the 20 types of SO tags shown
in Table 1 and the three heuristic rules for CQ generation
described in Section 3.2.2, Chatbot4QR can generate CQs
that ask for 40 types of technical details, i.e., 20 types of SO
tags and the versions. To examine whether the CQs that ask
for some specific types of technical details would be more
likely to be perceived as useful by users, we counted the
numbers of CQs that ask for different types of technical
details. We also measured the ratio of useful CQs that ask
for each type.

Results. Table 9 presents the numbers of CQs generated by
Chatbot4QR and EVPI, as well as the average ratio of useful
CQs for each query. For Chatbot4QR, we present the number
of initially generated CQs and the average number of CQs
(i.e., “Avg. #CQs”) obtained by the ten participants in PG1 or
PG2 after interaction, for each query. The bottom row shows
the overall average results of both approaches on the 50
queries. From the table, we have the following findings:

� As for EVPI, it generated 1.3 CQs for a query on aver-
age and generated zero CQs for ten queries. The over-
all ratio of useful CQs for 50 queries is 16.7 percent,
meaning that only a few CQs generated for a query
were useful. Obviously, EVPI failed to generate any
useful CQs for some vague queries. For example, the
query Q6, i.e., “Better way to parse xml”, is vague due
to the missing of a specific programming language.
However, no CQwas generated by EVPI for Q6.

� As for Chatbot4QR, on average for a query, it initially
generated 4.1 CQs and finally generated 5.1 CQs after
interacting with the participants. This result means
that on average one CQ was dynamically generated
for a query based on the participants’ feedback. More
specifically, 0-2.2 new CQs were generated for the 50
queries during the interaction. We observe that the

Fig. 7. Two CQs in the comment section of a SO question.

5. https://stackoverflow.com/questions/22867636
6. https://github.com/raosudha89/ranking_clarification_questions
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number of CQs generated by Chatbot4QR is approxi-
mately four times the number of CQs generated by
EVPI. Compared with EVPI, the effectiveness of
Chatbot4QR depends on the number of increased
useful CQs. If more than 16.7 percent of the increased
CQs were useful, the effectiveness of Chatbot4QR
would be better than that of EVPI. For each approach,
we counted the number of times the generated CQs

are evaluated by the participants and the number of
times the CQs are evaluated as useful, as shown in
Table 10. Among the 1,915 (=2,565-650) additional
evaluations of the CQs generated by Chatbot4QR,
1,348 (i.e., 70.4 percent) are useful. Moreover, as listed
in Table 9, the overall ratio of useful CQs that are gen-
erated by Chatbot4QR is 60.8 percent for the 50
queries. For 37 queries, the average ratios of useful
CQs generated by Chatbot4QR are no less than 50
percent. In contrast, the average ratios of useful CQs
generated by EVPI are no less than 50 percent for
only four queries, i.e., Q33, Q35, Q44, and Q48. As
demonstrated in the results, Chatbot4QR in CQ gen-
eration for a query is more effective than EVPI.

Fig. 8 shows the numbers of queries with different pref-
erence ratios. There are 18 queries with the preference ratio
‘10:0’, meaning that for these queries, all the ten participants
preferred the CQs generated by Chatbot4QR. For the nine
queries with ‘5:3’, ‘8:1’, and ‘9:0’, one or two participants
had no preference on the two kinds of CQs. We observe that
most of the participants preferred the CQs generated by
Chatbot4QR for the 40 queries (that have CQs generated by
both approaches).

Two major comments about EVPI given by the partici-
pants are: (1) most of the generated CQs are too specific to a
particular problem and often not useful for retrieving rele-
vant questions, e.g., the CQ “What exactly is a week number in
this context, and what does ‘date.weekday’ have to do with it?”
generated for the query Q10; and (2) even some CQs might
be useful but they are difficult to answer with a few words,
e.g., the CQ “What output did you get?” generated for Q7.
These issues can be explained by the objective of EVPI that
it aims at generating CQs to help users refine technical ques-
tions, so that the questions can be easier to answer. There-
fore, most of the CQs generated by EVPI may not be useful
for question retrieval.

TABLE 9
Evaluation of the CQs Generated by Chatbot4QR and EVPI

Query
No.

CQs Generated by Chatbot4QR CQs Generated by EVPI

#Initial
CQs

Avg.
#CQs

Avg. Ratio of
Useful CQs

#CQs
Avg. Ratio of
Useful CQs

1 2 3 0.833 1 0.400
2 3 4 0.750 2 0.250
3 3 4.4 0.565 2 0.000
4 4 4.6 0.590 0 –
5 7 9 0.522 1 0.000
6 5 6 0.500 0 –
7 3 4 0.425 1 0.000
8 9 9.9 0.314 1 0.400
9 2 2.4 0.750 1 0.000
10 4 5.9 0.607 1 0.400
11 3 4.9 0.590 2 0.200
12 5 6.3 0.412 0 –
13 2 3 0.733 1 0.000
14 5 7.1 0.541 0 –
15 3 4 0.775 2 0.200
16 7 9 0.496 1 0.000
17 2 2.8 0.783 4 0.000
18 6 7.7 0.488 1 0.000
19 6 8.2 0.449 0 –
20 3 4 0.900 1 0.000
21 5 6.1 0.624 0 –
22 4 5 0.620 2 0.150
23 3 3 0.500 3 0.000
24 2 2.8 0.750 4 0.325
25 6 7.1 0.577 2 0.250
26 6 7 0.471 0 –
27 4 4.5 0.512 0 –
28 3 4 0.775 2 0.250
29 4 4 0.700 0 –
30 3 4.5 0.710 2 0.250
31 2 3 0.800 2 0.200
32 5 6 0.642 2 0.300
33 3 3.2 0.767 1 0.600
34 7 8.9 0.479 1 0.200
35 2 3.6 0.725 1 0.700
36 5 6.4 0.626 2 0.200
37 5 7.3 0.664 1 0.300
38 8 8.4 0.419 1 0.000
39 5 5 0.553 1 0.100
40 4 5 0.460 2 0.300
41 3 4 0.775 2 0.300
42 4 4.9 0.565 2 0.100
43 4 4.8 0.595 3 0.267
44 4 5 0.480 1 0.600
45 2 3 0.933 1 0.100
46 4 4 0.600 2 0.300
47 2 2.7 0.483 0 –
48 7 7.1 0.377 1 0.600
49 4 4.8 0.570 1 0.100
50 2 2 0.600 1 0.000

Avg. 4.1 5.1 0.608 1.3 0.167

For a query, “#Initial CQs” is the number of CQs that are initially generated
by Chatbot4QR; “Avg. #CQs” is the average number of CQs generated by
Chatbot4QR after the interaction with ten participants; and “#CQs” is the
number of CQs generated by EVPI.

TABLE 10
Statistics on the Evaluation of the CQs Generated

by Chatbot4QR and EVPI

Approach #CQs Evaluated
by the Participants

#Useful CQs Evaluated
by the Participants

EVPI 650 131
Chatbot4QR 2,565 1,479

Fig. 8. Preference ratios of the CQs that are generated by Chatbot4QR
and EVPI for 40 queries.
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Table 11 presents the CQs generated by Chatbot4QR for
the two queries Q18 and Q42. For the CQs related to each
query, we present (1) the scores for ranking the CQs (see Sec-
tion 3.2.2), (2) the orders of prompting the CQs to a partici-
pant (i.e., P16 for Q18 and P7 for Q42), and (3) the usefulness
and feedback given by the participant. The two CQs without
scores are dynamically generated based on the participants’
feedback, e.g., P16’s feedback ‘windows’ to the third CQ of
Q18. We observe that the ratios of useful CQs for Q18 and
Q42 are 57.1 and 60.0 percent, respectively. We can use the
final two kinds of feedback collected from all CQs of a query
q (i.e., the positive feedback pfbðqÞ and negative feedback
nfbðqÞ) to refine q. More specifically, pfbðqÞ and nfbðqÞ are
used to adjust the initial semantic similarities of SO questions
retrieved for q, as demonstrated in Eq. (1).

Table 12 presents the numbers of CQs and useful CQs
generated by Chatbot4QR that ask for 30 types of techni-
cal details (including 18 technique types of SO tags and
the versions of 12 technique types). The types with ‘(v)’
are the versions of the corresponding technique types. For
example, ‘programming language (v)’ means the version of a

programming language. The first row shows that there are
370 CQs that ask for programming languages; and 350 (i.e.,
94.6 percent) of the CQs are evaluated as useful by the partic-
ipants. We observe that the top five types of technical details
asked by the maximum numbers of CQs are ‘programming
language (v)’, ‘programming language’, ‘library’, ‘framework’,
and ‘operating system’. The top five types with the highest
ratios of useful CQs are ‘non-OS system (v)’, ‘model/algorithm
(v)’, ‘programming language’, ‘programming language (v)’, and
‘database’. Moreover, excluding the version types, the top
five technique types with the highest ratios of useful CQs are
‘programming language’, ‘database’, ‘operating system’, ‘library’,
and ‘technique’.

On average, Chatbot4QR generates approximately five CQs
for a query and 60.8 percent of the CQs are helpful for users to
recognize missing technical details in the query. The CQs gen-
erated by Chatbot4QR are much better than the ones generated
by the EVPI approach (as only 16.7 percent of the CQs gener-
ated by EVPI are helpful). Moreover, the CQs generated by
Chatbot4QR that ask for some specific types of technical details
are more likely to be perceived as useful by users. For the 20
types of SO tags shown in Table 1, the top five types with the
highest ratios of useful CQs are ‘programming language’,
‘database’, ‘operating system’, ‘library’, and ‘technique’.

5.3 RQ3: CanChatbot4QRRetrieveMoreRelevant
SOQuestions Than the State-of-the-Art Question
Retrieval andQuery Expansion Approaches?

Motivation. The ultimate goal of Chatbot4QR is to retrieve
accurate SO questions for users based on their feedback to
the CQs. Although it has been validated in RQ2 that most of
the CQs generated by Chatbot4QR for a query are useful, it
is necessary to check whether the refined queries (i.e., the
participants’ feedback to CQs) can improve the relevance of
recommended questions.

Approach. We retrieved the top ten SO questions for the
50 experimental queries based on the participants’ feed-
back to the CQs of each query, under the setting of h = 0.2.
Then, we conducted a user study (i.e., the user study 5
shown in Fig. 5) to evaluate the SO questions. We com-
pared Chatbot4QR with several existing question retrieval
and query expansion approaches. More specifically, we
summarized two state-of-the-art approaches used for
question retrieval:

TABLE 11
The CQs Generated by Chatbot4QR for the Two Queries Q18 and Q42 in Table 4

For the CQs related to each query, we present the scores for ranking the CQs, the orders of the CQs prompted to a participant (i.e., P16 for Q18 and P7 for Q42),
as well as the usefulness and feedback given by the participant. pfbðqÞ and nfbðqÞ are the positive feedback and negative feedback to all the CQs of a query q,
respectively.

TABLE 12
The Numbers of CQs and Useful CQs Generated for the
50 Queries by Chatbot4QR That Ask for Different Types
of Technical Details, as Well as the Ratios of Useful CQs

Each type with “(v)” means the version of the corresponding technique type.
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� Lucene: This is the Lucene search engine which
retrieves SO questions similar to a query based on the
Lucene index built for a question repository [8]. We
implemented Lucene using its source code7 released
at Github.

� Word Embedding (WE): This is the word embedding-
based question retrieval approach widely used in
recent work [5], [6]. We implemented WE using the
source code8 released by Huang et al. [5].

A rich body of research work improves the performance
of IR systems by reformulating queries using relevant terms
extracted from thesauruses or similar resources. We sum-
marized three major query expansion approaches:

� WordNet (WN): This approach expands a query
with the synonyms of keywords in WordNet. We
implemented the WordNet-based query expansion
approach proposed by Lu et al. [12].

� QECK: This approach expands a query using the
important keywords contained in the top similar SO
question-and-answer pairs [8]. The importance of a
keyword is measured by considering both the TF-IDF
score and the scores of SO questions and answers.We
implemented QECK according to the details pre-
sented in the paper.

� Tag Recommendation (TR): There are a number of
papers on recommending SO tags for a technical
question [36], [37], [38]. These papers are similar to
Chatbot4QR to a certain extent as all of them focus
on finding relevant SO tags for a target (a question
or a query). We viewed the TR approaches as a spe-
cific kind of query expansion approaches, to check
whether they can be used to recommend SO tags for
queries. We implemented the neutral network-based
TR approach proposed by Liu et al. [38] using the
open-source code9 and expanded a query with the
top ten recommended SO tags.

We built nine baselines by combining the two retrieval
approaches: Lucene and WE, and four query expansion
approaches: WN, QECK, TR, and IQR (which refers to our
interactive query refinement approach used in Chatbot4QR).
The baselines are described as follows.

1. Lucene: This is the Lucene approach described above.
2. WE: This is theWE approach described above.
3. Lucene+WN: This approach uses Lucene to retrieve

questions after expanding a query usingWN.
4. Lucene+QECK: This approach uses Lucene to retrieve

questions after expanding a query using QECK.
5. Lucene+TR: This approach uses Lucene to retrieve

questions after expanding a query using TR.
6. Lucene+IQR: This approach uses Lucene to retrieve

questions based on the query refined using IQR, i.e.,
the user’s positive and negative feedback to CQs.
More specifically, We first retrieved similar ques-
tions by applying the query and positive feedback to
Lucene. Then, we removed the similar questions that
contain any negative feedback.

7. WE+WN: This approach uses WE to retrieve ques-
tions after expanding a query usingWN.

8. WE+QECK: This approach uses WE to retrieve ques-
tions after expanding a query using QECK.

9. WE+TR: This approach usesWE to retrieve questions
after expanding a query using TR.

Note that Chatbot4QR can be simply viewed as a combi-
nation of WE+IQR. We applied the eight baselines except
Lucene+IQR to the 50 queries and obtained eight lists of the
top ten SO questions for each query. Since IQR is a personal-
ized query refinement approach, we applied Lucene+IQR to
retrieve the top ten questions based on each participant’s
feedback to the CQs of each query. Then, for each partici-
pant, we collected the different top ten questions retrieved
for each query using Chatbot4QR and nine baselines. The
participants evaluated the relevance of the questions by five
grades 0-4, as defined in Section 5.1.

As the participants may probably have different preferen-
ces of techniques (e.g., the familiar programming languages
shown in Table 5), they may get different SO questions
retrieved by Chatbot4QR and Lucene+IQR for a query. More-
over, the participants may have their own judgement on the
relevance of the questions. Therefore, wemeasured the over-
all Pre@k or NDCG@k performance of an approach A as its
average performance evaluated by the 20 participants. More
specifically, given a specific Pre@k or NDCG@k metric m,
for each participant P , we computedm of each query accord-
ing to P ’s evaluation results of the SO questions retrieved by
A. Then, we computed the average m of the 25 queries allo-
cated to P . Finally, we computed the overallm ofA, denoted
as mA, with respect to the average of the m values of 20 par-
ticipants. Based on the overall performance results, we mea-
sured the “improvement degree” of Chatbot4QR over each
baselineB in terms of a specificmetricm as

mChatbot4QR�mB

mB
.

Furthermore, we examined whether the improvement of
Chatbot4QR (denoted as C) over a baseline B is statistically
significant. Considering that the participants may obtain dif-
ferent SO questions and have personalized benchmarks of
relevant questions for a query, we defined a metric
“significant ratio” to measure the statistical significance of the
performance improvement of C over B as follows. For each
participant, given a specific Pre@k or NDCG@kmetricm, we
built two samples for C andB, respectively, by gathering the
m values of C andB on the 25 assigned queries. We used the
Wilcoxon signed-rank test [39] to test the significance of C
over B based on the two samples with three p-values {0.05,
0.01, 0.001}. For each p-value p, we identified the set of partic-
ipants whose samples of C are significantly better than those
of B, which are denoted as SigPm;pðC;BÞ. Then, the signifi-
cant ratio ofC overB, givenm and p, is measured as

SigRm;pðC;BÞ ¼ jSigPm;pðC;BÞ j
# participants

: (5)

Finally, we chose the maximum significant ratio and the
corresponding p-value.

As described in Section 5.2, the CQs generated by Chat-
bot4QR can ask for different types of technical details. In
RQ2, we measured the ratios of useful CQs that ask for 30
types of technical details (see Table 12). We further mea-
sured the contributions of the participants’ feedback to the

7. https://github.com/apache/lucene-solr
8. https://github.com/tkdsheep/BIKER-ASE2018
9. https://pan.baidu.com/s/1slujtU1
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CQs that ask for different types of technical details, in order
to retrieve relevant questions. More specifically, for every
feedback to a CQ of a query, we produced a list of the top
ten SO questions by adjusting the initial semantic similari-
ties of the 10,000 questions (see Section 4.2) using the single
feedback. The participants evaluated the relevance of the
questions that were not evaluated before for each allocated
query. Then, for a query q, we computed the performance
of a specific Pre@k and NDCG@k metric m improved by
each feedback fb, denoted as Impmðq; fbÞ, as follows.

� If fb is a technique (e.g., a programming language)
or a version given to an initially generated CQ,
then Impmðq; fbÞ is measured as mChatbot4QRðq; fbÞ �
mInitialðqÞ. mChatbot4QRðq; fbÞ is the m value of the top-
k questions retrieved for q using Chatbot4QR by
leveraging fb; andmInitialðqÞ is the m value of the ini-
tial top-k questions retrieved for q using our two-
phase method.

� If fb is a version of a technique feedback fb0, then
Impmðq; fbÞ is measured as mChatbot4QRðq; fbÞ �
mChatbot4QRðq; fb0Þ.

Finally, we measured the average performance improve-
ment achieved using the participants’ feedback that belongs
to a specific type of technical details. For each type, we also
measured the average performance improvement achieved
using the participants’ feedback to all CQs of the queries
that contain any feedback of the type.

Results.Table 13 presents the performance of the top ten SO
questions retrieved using ten approaches. Table 14 presents

the improvement degrees and themaximum significant ratios
of Chatbot4QR over the nine baselines. “ImpD(%)” is the
improvement degree expressed as a percentage; and “(p, SigR
(%))” are the maximum significant ratio expressed as a per-
centage and the correspondingp-value p. From the two tables,
we have the following findings:

� Chatbot4QR achieves the best performance in terms
of both Pre@k and NDCG@k. The result demon-
strates that the queries refined by IQR (i.e., our inter-
active query refinement approach) can improve the
quality of SO questions retrieved byWE.

� Chatbot4QR improves the two popular baselinesWE
and Lucene by at least 54.6 percent and 97.8 percent,
respectively. Chatbot4QR significantly outperforms
Lucene for all the participants in terms of Pre@1,
Pre@5, and NDCG@5. Although Chatbot4QR does
not significantly outperform WE for all the partici-
pants, the significant ratios are all higher than 70 per-
cent. This result indicates that the improvement of
Chatbot4QR over WE is significant for at least 14 of
the 20 participants.

� Lucene+IQR improves Lucene by at least 22.91 per-
cent, which further demonstrates the effectiveness of
our IQR approach in helping users refine queries
and retrieve more relevant questions using Lucene.

� WE outperforms Lucene by at least 24.48 percent.
This is because that WE can retrieve semantically
similar questions for queries, while Lucene cannot
due to the lexical gaps issue.

TABLE 13
Evaluation of the SO Questions Retrieved by Ten Approaches

Approach Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

Lucene 0.414 0.332 0.279 0.369 0.369 0.396
Lucene+WN 0.308 0.237 0.216 0.300 0.283 0.315
Lucene+QECK 0.278 0.190 0.156 0.251 0.245 0.260
Lucene+TR 0.250 0.203 0.169 0.243 0.246 0.265
Lucene+IQR 0.540 0.434 0.343 0.480 0.478 0.496
WE 0.530 0.416 0.348 0.484 0.473 0.500
WE+WN 0.300 0.236 0.188 0.285 0.281 0.299
WE+QECK 0.310 0.232 0.201 0.269 0.269 0.293
WE+TR 0.352 0.232 0.209 0.319 0.289 0.318
Chatbot4QR 0.838 0.670 0.548 0.765 0.731 0.760

TABLE 14
Improvement Degrees and the Maximum Significant Ratios of Chatbot4QR Over Nine Baselines

Baseline Pre@1 Pre@5 NDCG@1 NDCG@5

ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%)) ImpD(%) (p, SigR(%))

Lucene 102.4 (0.05, 100.0) 102.1 (0.05, 100.0) 107.0 (0.01, 95.0) 97.8 (0.01, 100.0)
Lucene+WN 172.1 (0.05, 100.0) 182.9 (0.01, 100.0) 154.5 (0.05, 100.0) 158.5 (0.01, 100.0)
Lucene+QECK 201.4 (0.01, 100.0) 251.9 (0.01, 100.0) 205.2 (0.05, 100.0) 197.6 (0.001, 100.0)
Lucene+TR 235.2 (0.01, 100.0) 229.7 (0.001, 100.0) 214.0 (0.01, 100.0) 197.3 (0.001, 100.0)
Lucene+IQR 55.2 (0.05, 85.0) 54.2 (0.05, 95.0) 59.4 (0.05, 90.0) 52.7 (0.05, 100.0)
WE 58.1 (0.05, 70.0) 60.9 (0.05, 95.0) 57.8 (0.05, 80.0) 54.6 (0.01, 95.0)
WE+WN 179.3 (0.05, 100.0) 183.9 (0.01, 100.0) 168.4 (0.01, 100.0) 160.0 (0.001, 100.0)
WE+QECK 170.3 (0.05, 100.0) 189.3 (0.01, 100.0) 184.5 (0.01, 100.0) 171.9 (0.001, 100.0)
WE+TR 138.1 (0.05, 100.0) 189.3 (0.001, 100.0) 139.3 (0.05, 100.0) 152.8 (0.001, 100.0)

“ImpD” is the improvement degree. “(p, SigR)” are the maximum significant ratio and the corresponding p-value.

ZHANG ETAL.: CHATBOT4QR: INTERACTIVE QUERY REFINEMENT FOR TECHNICAL QUESTION RETRIEVAL 1201



� WE outperforms WE+WN, WE+QECK, and WE+TR
by at least 50.57 percent. Lucene outperforms Lucene
+WN, Lucene+QECK, and Lucene+TR by at least 22.93
percent. These results may indicate that the three
automatic query expansion approaches (i.e., WN,
QECK, and TR) are not suitable for reformulating
queries to improve the performance of question
retrieval.

Table 15 presents the average performance improvement
of question retrieval achieved using the participants’ feed-
back to the CQs that ask for 29 types of technical details. For
each type, “# Cases” is the number of times a participant’s
feedback of the type is used for question retrieval; “Avg.
Imp” is the average Pre@k or NDCG@k improvement
achieved using the participants’ feedback of the type; and
“Avg. Imp by All” is the average Pre@k orNDCG@k improve-
ment achieved using the participants’ feedback to all CQs of
the queries that contain any feedback of the type. The type
‘tool (v)’ in Table 12 has no improvement result in Table 15,
since none of the three CQs that ask for the type of technical
details are evaluated as useful and thus there is no feedback
of the type used for question retrieval. We find that the feed-
back of some types has positive improvementwhile the feed-
back of other types has no or negative improvement. For
example, in terms of Pre@1, the improvement of the three
types ‘programming language’, ‘database (v)’, and ‘operating sys-
tem’ are 0.318, 0.000, and -0.207, respectively. We also find
that the improvement achieved using the feedback of a type
can be different in terms of different metrics. For example,

the feedback of ‘operation system’ has a negative impact on
the Pre@1 and NDCG@1 performance, however, it has posi-
tive improvement in terms of Pre@5 and NDCG@5. The ver-
sion types have very low improvement. One of the possible
reasons could be that many SO questions do not explicitly
specify the versions of the involved techniques, especially in
the question title and tags. To effectively leverage the feed-
back of versions, there needs a method for inferring the ver-
sions of techniques from the content (e.g., code snippets) of
questions. Moreover, the values of “Avg. Imp by All” are gen-
erally higher than those of “Avg. Imp”, indicating that better
performance is achieved by integrating the feedback to all
CQs of a query. The top three types with the maximum per-
formance improvement are the same, i.e., ‘programming
language’, ‘database’, and ‘library’, in terms of all metrics.

Compared with the nine baselines that involve two question
retrieval approaches and four query expansion approaches, Chat-
bot4QR retrieves more relevant SO questions for queries. The
improvement degree of Chatbot4QR over the word embedding-
based question retrieval approach (WE) is at least 54.6 percent.
Furthermore, the improvement of Chatbot4QR over WE is sta-
tistically significant for more than 70 percent of the participants.
Moreover, the participants’ feedback to the CQs that ask for dif-
ferent types of technical details has different contributions to
question retrieval. The top three types with the maximum contri-
butions are ‘programming language’, ‘database’, and ‘library’.

TABLE 15
The Average Performance Improvement of SO Question Retrieval Achieved Using the Participants’ Feedback

to the CQs Generated by Chatbot4QR That Ask for Different Types of Technical Details

Type #Cases Pre@1 Pre@5 NDCG@1 NDCG@5

Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp by All Avg. Imp Avg. Imp

programming language 355 0.318 0.363 0.243 0.299 0.263 0.333 0.248 0.307
programming language (v) 454 0.075 0.326 0.040 0.264 0.065 0.285 0.039 0.265
database 15 0.333 0.333 0.173 0.240 0.236 0.271 0.179 0.268
database (v) 8 0.000 0.375 0.000 0.325 0.000 0.317 0.000 0.334
operating system 92 -0.207 0.217 0.039 0.241 -0.120 0.266 0.003 0.264
operating system (v) 45 0.000 0.200 0.018 0.276 0.000 0.276 0.016 0.290
library 183 0.279 0.421 0.118 0.280 0.224 0.381 0.133 0.293
library (v) 37 -0.081 0.324 -0.022 0.254 -0.011 0.275 -0.008 0.242
technique 56 0.054 0.464 -0.004 0.289 0.076 0.397 0.019 0.297
class 35 -0.057 0.343 -0.063 0.217 -0.094 0.306 -0.071 0.240
class (v) 13 0.000 0.077 0.000 0.431 0.000 0.021 -0.014 0.262
non-PL language 33 -0.364 0.273 0.012 0.406 -0.322 0.227 -0.063 0.307
non-PL language (v) 20 0.000 0.450 0.010 0.350 0.000 0.378 -0.028 0.259
format 40 -0.175 0.175 -0.035 0.200 -0.108 0.140 -0.036 0.202
format (v) 61 0.000 0.197 0.013 0.216 0.000 0.165 0.004 0.186
model/algorithm 5 -0.400 0.200 -0.120 -0.000 -0.107 0.333 -0.109 0.057
model/algorithm (v) 21 0.000 -0.143 0.010 0.124 0.000 -0.113 0.008 0.099
tool 15 0.000 0.200 0.040 0.213 0.036 0.196 0.047 0.233
framework 63 0.127 0.286 0.029 0.235 0.116 0.312 0.052 0.245
framework (v) 17 -0.176 0.235 -0.047 0.141 -0.024 0.267 -0.017 0.212
design pattern 3 0.000 0.333 0.067 0.467 0.000 0.311 0.066 0.521
environment 14 -0.143 0.143 -0.014 0.171 -0.062 0.248 -0.024 0.199
environment (v) 1 0.000 0.000 0.000 0.200 0.000 0.533 0.000 0.276
non-OS system 14 0.000 0.500 0.086 0.400 -0.038 0.479 0.046 0.403
non-OS system (v) 1 0.000 1.000 0.000 0.400 0.000 0.933 0.000 0.401
platform 3 0.000 1.000 0.000 0.200 0.000 1.000 0.000 0.333
engine 1 0.000 0.000 0.000 0.200 0.000 0.000 -0.054 0.025
server 1 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.203
browser 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083

Each type with “(v)” means the version of the corresponding technique type. For each type, “#Cases” is the number of times a participant’s feedback of the type is
used to adjust the initial semantic similarities of SO questions of a query; “Avg. Imp” is the average Pre@k or NDCG@k improvement achieved using the partic-
ipants’ feedback of the type; “Avg. Imp by All” is the average Pre@k or NDCG@k improvement achieved using the participants’ feedback to all CQs of the
queries that contain any feedback of the type
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5.4 RQ4: How Efficient is Chatbot4QR?

Motivation. In Chatbot4QR, several resources need to be
built offline, including the Lucene index of SO questions,
two language models, and the categorization and version-
frequency information of SO tags. Although the offline
processing takes a substantial amount of time, the built
resources are reusable. We are interested in finding out the
response time that Chatbot4QR can respond to a user once
the user submits a query. If the response time is too long,
our approach may not be acceptable even if it is effective in
generating useful CQs and retrieving relevant SO questions.
Therefore, it is essential to examine whether Chatbot4QR is
efficient for practical uses.

Approach. We recorded the amount of time that Chat-
bot4QR, WE, and Lucene spent on the offline processing of
SO data and online question retrieval during our experi-
ments. After the user study 3, we asked the participants to
report their time spent on interacting with our chatbot. We
did not consider the time costs of the other seven baselines
because Lucene+IQR is based on our IQR and the perfor-
mance of other baselines is too low (see Table 13).

Results. Table 16 presents the time costs of the three
approaches. From the table, we have the following findings:

� As for the offline processing, the processing time of
Chatbot4QR is 91.15 hours, which is much higher
than those of Lucene and WE. This is because that the
offline processing of Chatbot4QR contains three
main parts: (1) the semi-automatic categorization of
SO tags (74 hours); (2) the building of the Lucene
index of SO questions and two language models
(8.52+7.38 = 15.9 hours); and (3) the tag identification
from SO questions (1.25 hours). Since the resources
are reusable and can be incrementally updated (as
explained in Section 3.1.5), the relatively high time
cost of the offline processing of Chatbot4QR may not
be a problem for practical uses.

� As for the online question retrieval for a query, the
processing time of Chatbot4QR contains three parts
(as shown in Table 16): (1) Response is the amount of
time required to respond to a participant (1.30 sec-
onds), including the two-phase question retrieval
and CQ generation; (2) Interaction is the amount of
time that a participant spent on the interaction with
our chatbot (about 42 seconds); and (3) Recommenda-
tion is the amount of time required to adjust the simi-
larities of 10,000 SO questions and produce the top
ten recommended questions (0.02 seconds). The
response time is 1.30 seconds, meaning that Chat-
bot4QR can responsively start interacting with the
user after receiving a query. After the interaction, the
question recommendation list can be produced
within 0.02 seconds. These results demonstrate the
efficiency of Chatbot4QR.

� The time spent by WE on question retrieval is 49.96
seconds per query, which is high because WE meas-
ures the semantic similarities between a query and
the 1,880,269 SO questions in our repository. In con-
trast, the two-phase question retrieval approach
used in Chatbot4QR is scalable. The reason is that
the first phase uses Lucene, which is efficient to

handle a large-scale repository, as shown in Table 16;
and by fixing the parameter N to a relatively large
value (e.g., 10,000 in this work), the time cost of the
second phase is stable.

It is worth to mention that the average time spent on the
interaction with our chatbot for a query is 42 seconds. For a
few queries, some participants took 2-3 minutes because
they needed to search for unfamiliar technical terms asked in
the CQs online. As confirmed by the participants, the amount of
time spent on the interaction is practically acceptable since the feed-
back to CQs can contribute to more relevant SO questions and
reduce the time required for the manual examination of undesirable
questions. Although the quality of retrieved questions relies
on the user’s feedback to CQs, Chatbot4QR does not require
the user to answer every CQ. The amount of the interaction
time depends on (1) the user’s programming experience and
(2) whether the user wants to search for unfamiliar technical
terms online, in order to provide more precise feedback to
CQs and obtainmore relevant questions.

Chatbot4QR takes approximately 1.30 seconds to respond to a
user after the user submits a query and 0.02 seconds to produce
the SO question recommendation list after interacting with the
user, indicating that Chatbot4QR is efficient for practical uses.

5.5 RQ5: Can Chatbot4QRHelp Obtain Better
Results Than UsingWeb Search Engines Alone?

Motivation. In practice, developers often use the SO search
engine and general-purpose search engines (e.g., Google) to
look for desired information [13], [40]. To further validate
the effectiveness of Chatbot4QR, we investigate whether
Chatbot4QR can help users obtain better results than using
Web search engines (including the SO search engine, Goo-
gle, etc.) alone. Here, a result refers to a SO question or any
other resources returned by Web search engines, e.g., a blog
or a tutorial.

Approach. We conducted four user studies (i.e., the user
studies 2, 4, 5, and 6 shown in Fig. 5) for answering RQ5.
Before the interaction with Chatbot4QR, we asked the 20
participants in PG1 and PG2 to obtain the top ten results
using Web search engines of their choices for each allocated
query. The participants can modify a query according to the
returned results until they are satisfied with the results
(excluding the SO question whose title is the same as the
original query) listed in a webpage. For each query, we
asked the participants to record the final query and the top
ten results in the returned webpage. After interacting with
Chatbot4QR, the participants can obtain new results for a
query using Web search engines by reformulating the query

TABLE 16
Time Costs of Three Approaches

Approach Offline Processing Online Question Retrieval

Lucene 8.52h 0.02s

WE 7.38h 49.96s

Chatbot4QR 91.15h
Response: 1.30s

Interaction: � 42s
Recommendation: 0.02s
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with interesting technical terms in their feedback to the
CQs. Take the query Q18 shown in Table 11 as an example,
the participant P16 can reformulate Q18 by adding some
technical terms, e.g., ‘node.js’, in his/her positive feedback.
Then, the participants evaluated the relevance of the two
kinds of Web search results. Finally, the participants chose
the preferred/best results for each allocated query from the
three kinds of results: the top ten SO questions retrieved by
Chatbot4QR and the two top ten Web search results. After
the user studies, we interviewed the participants to get their
opinions on the value of Chatbot4QR.

For each participant, we measured the performance of
the following three top ten results for each allocated query:

� WS: the top ten results obtained using Web search
engines before the interaction with Chatbot4QR.

� WS+IQR: the top ten results obtained using Web
search engines after the interactionwith Chatbot4QR.

� Best: the best results chosen by the participant.
We viewed WS, WS+IQR, and Best as three retrieval

approaches. For a specific Pre@k or NDCG@k metric, we
measured the overall performance of each approach as
the average performance evaluated by the 20 partici-
pants. Moreover, we measured the improvement degrees
and the maximum significant ratios of Best over WS and
WS+IQR. The detailed measurement process can refer to
Section 5.3.

Results. Table 17 presents the overall performance of WS,
WS+IQR, and Best, as well as the improvement degrees and

the maximum significant ratios of Best over WS and WS
+IQR. From the table, we have the following findings:

� Best outperforms WS and WS+IQR in terms of both
Pre@k and NDCG@k with an improvement of at
least 22.4 and 16.9 percent, respectively. The signifi-
cant ratios of Best over WS are all higher than 80 per-
cent, indicating that the improvement of Best over
WS is statistically significant for at least 16 of the 20
participants. This result shows that more desired
results are obtained by the participants after interact-
ing with Chatbot4QR than directly using Web search
engines.

� WS+IQR is slightly better than WS. This means that
for some queries, the participants obtained better
results using Web search engines again by reformu-
lating the queries using information that they
learned from the interaction with our chatbot.

We counted the numbers of queries that achieve the best
results by WS, WS+IQR, and Chatbot4QR for each partici-
pant, as shown in Fig. 9. From the figure, we have the fol-
lowing findings:

� For 12-22 of the 25 (i.e., 48-88 percent) assigned
queries, the participants preferred the results obtained
by Chatbot4QR or WS+IQR. For 16 participants
(except P6, P8, P13, and P21), Chatbot4QR achieves
the best results for the largest number of queries.
Moreover, there are 1-7 queries whose best results are

TABLE 17
Evaluation of the Results Obtained Using Web Search Engines Before/After Interacting With Chatbot4QR

Pre@1 Pre@5 Pre@10 NDCG@1 NDCG@5 NDCG@10

WS 0.634 0.483 0.401 0.532 0.500 0.502
WS+IQR 0.664 0.524 0.433 0.555 0.528 0.531
Best 0.900 0.725 0.585 0.798 0.746 0.749
ImpD(%) of Best over WS 22.4 29.4 26.9 27.5 26.9 29.8
(p, SigR (%)) of Best over WS (0.05, 80.0) (0.05, 100.0) (0.05, 90.0) (0.05, 90.0) (0.01, 100.0) (0.01, 100.0)
ImpD(%) of Best over WS+IQR 16.9 19.3 17.3 22.3 20.0 22.5
(p, SigR (%)) of Best over WS+IQR (0.05, 70.0) (0.05, 95.0) (0.05, 85.0) (0.05, 85.0) (0.01, 100.0) (0.05, 100.0)

“ImpD” is the improvement degree. “(p, SigR)” are the maximum significant ratio and the corresponding p-value.

Fig. 9. The numbers of queries that achieve the best results usingWS,WS+IQR, and Chatbot4QR by 20 participants.
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obtained by WS+IQR for 17 participants (except P7,
P22, and P24). For example, for the query Q22, the par-
ticipant P3 reformulated it by adding the feedback
‘mysql’ given to the CQ “I want to know whether you are
using a database, e.g., mysql or mongodb. Can you provide
it?”, which contributes to the best results retrieved by
Google. All these results are consistent with the overall
performance shown in Table 17, which further demon-
strate that for a considerable number of queries, Chat-
bot4QR helps the participants obtain better results
than usingWeb search engines alone.

� For each of the two participant groups PG1 (=P6-P15)
and PG2 (=P16-P25), there are notable differences
among the participants with respect to the numbers
of queries whose best results are obtained byWS,WS
+IQR, and Chatbot4QR. By interviewing the partici-
pants, we found that the differences are mainly
caused by the participants’ different preferences of
techniques and programming experience. For exam-
ple, for the query Q36, the participants P23 and P24
preferred Java while P25 preferred Python. Before
using Chatbot4QR, P24 reformulated the query by
adding ‘jsoup’ [41] (a Java HTML parser) while P23
simply added ’java’. Consequently, they obtained dif-
ferent results for Q36.

� For all the 20 participants, WS achieves the best
results for 3-13 queries. We found that most of those
queries are relatively simple and have specified tech-
nical terms, e.g., Q1 and Q7. The result shows the
good performance of Web search engines when the
query is clearly specified. Although Chatbot4QR can-
not achieve the best results for some queries, all the partici-
pants expressed their willingness to use our chatbot as a
complement to Web search engines.

Moreover, we examined the query reformulation records
of the participants by leveraging the final queries that they
used for obtaining the results of WS and WS+IQR. Table 18
presents the queries according to the number of participants
who had reformulated them. We observe that 24 (= 3+ 4 + 8
+ 9) queries were reformulated by 5-8 participants, while 11
(= 3 + 2 + 6) queries were reformulated by 0-2 participants.
We further analyzed the participants’ feedback to CQs used
in their reformulated queries. Table 19 lists the statistics of
the technical terms added to five frequently reformulated
queries and five less frequently reformulated queries. The
number in a parenthesis indicates the frequency of the cor-
responding technical term used to reformulate a query. As

shown in Table 19, the queries reformulated by more partic-
ipants often involve multiple techniques. For example, the
technical terms used to reformulate the query Q26 include
three programming languages {‘java’, ‘c’, ‘python 3’}, one
operating system {‘linux’}, and one library {‘collections’}.

For 12-22 of the 25 (i.e., 48 percent-88 percent) assigned
queries, the participants preferred the results obtained by Chat-
bot4QR or using Web search engines with the queries reformu-
lated after interacting with Chatbot4QR. This demonstrates
that Chatbot4QR can help obtain better results than using
Web search engines alone. During the interview with the par-
ticipants, all the participants expressed their willingness to
use Chatbot4QR as a complement to Web search engines.

6 DISCUSSION

6.1 Why Chatbot4QR Can Help Users Retrieve
Better SO Questions and Web Search Results?

Tables 13 and 14 show that Chatbot4QR significantly out-
perfoms the two popular retrieval approaches: WE and
Lucene, as well as their variants combined with three query
expansion approaches: WN, QECK, and TR. Moreover, WE
is better than Lucene because WE can bridge the lexical gaps
between SO questions and queries while Lucene cannot. The
variants perform worse than WE and Lucene due to the fact
that WN, QECK, and TR may introduce noise terms and
decrease the quality of retrieved SO questions. As an exam-
ple, for the query Q9, i.e., “how to encrypt data using AES in
Java”, the terms expanded by QECK are: {ruby, iv, php,
openssl, algorithm, i.e.fast, disk, byte, decrypt}. Since Q9 has a
programming language ‘java’, the two terms ‘php’ and ‘ruby’
may probably be unexpected by users.

Based on the above analysis, Chatbot4QR uses WE as the
question retrieval model. However, the performance of WE
is limited by the quality of queries. When a query is vague,
e.g., missing important technical details, WE cannot retrieve
accurate questions. As users may have varied technical
background, Chatbot4QR uses an interactive approach to
assisting users in refining queries by asking CQs that are
generated according to the missing technical details in a
query. The user’s feedback to CQs can accurately represent
their technical requirements on the queries and contribute
to retrieving relevant SO questions.

TABLE 18
The Numbers of Participants Who Reformulated the 50 Queries

Query Nos. #Participants Who
Reformulated the Queries

2, 26, 45 8
13, 20, 41, 48 7
1, 21, 22, 25, 32, 37, 39, 46 6
3, 8, 12, 18, 19, 27, 28, 31, 36 5
5, 10, 15, 17, 29, 33, 42, 50 4
6, 14, 34, 35, 38, 40, 49 3
7, 11, 16, 24, 30, 44 2
23, 43 1
4, 9, 47 0

TABLE 19
Technical Terms Used to Reformulate Ten Queries

Query No. Technical Terms Used to Reformulate the Query

2 numpy(3), python(2), matplotlib(2), python 3.x(1)
26 java(3), collections(1), c(1), python 3(1), linux(1)
45 pandas(7), python(1)
13 python(2), numpy(2), java(1), c#(1), python 3.x(1)
48 regex(4), python 3.x(1), jquery(1), django(1)
7 java(2)
11 java(2)
16 xml(1), html(1)
23 python 3(1)
43 neural-network(1)

Each number in a parenthesis is the frequency of the technical term used to
reformulate the corresponding query.
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Table 17 and Fig. 9 show that Chatbot4QR helps the par-
ticipants obtain much better results than using Web search
engines alone for at least 48 percent of their allocated
queries. The SO questions retrieved by Chatbot4QR were
chosen as the best results by 16 of the 20 participants for the
largest proportion of queries. For some queries, the partici-
pants obtained the best results using Web search engines by
reformulating the queries with their feedback to CQs. These
results demonstrate that Chatbot4QR can (1) retrieve
desired SO questions for users after helping them refine the
queries and (2) help users better understand their queries
and obtain better results using Web search engines.

6.2 Why Not Use A Constant Chatbot?

Chatbot4QR is designed to generate different CQs for
queries based on the existing technical details mentioned in
a query and an initial set of similar SO questions retrieved
for the query. Is this design necessary? Can we use a constant
chatbot that always asks several fixed CQs for queries? To
answer these questions, we implemented a constant chat-
bot, denoted as ConstantBot, which focuses on asking for
four types of technical details given a query, namely the
programming language, framework, and the versions of the
two technique types. More specifically, ConstantBot first
asks a CQ “What programming language does your problem
refer to?”. If a user provides a programming language, e.g.,
Java, then ConstantBot further asks for the version of Java
using a CQ “Can you specify the version of java?”. Then, Con-
stantBot asks for a framework using “If you are using a frame-
work, please specify:”, as well as the version of a possible
framework given by the user.

We asked the 20 participants in PG1 and PG2 to evaluate
the CQs asked by ConstantBot for each allocated query. Sim-
ilar to the user study 3 conducted in Section 5.2, the partici-
pants rated each CQ by five grades 0-4 (as defined in
Section 5.1) and gave feedback to the useful CQs. After the
evaluation, we asked the participants to provide some com-
ments about ConstantBot. Then, we retrieved the top ten
similar SO questions using Eq. (1) by leveraging each partic-
ipant’s feedback to a query. The participants evaluated the
relevance of the questions that were not evaluated before by
five grades 0-4, as defined in Section 5.1.

Table 20 presents the average number of CQs and the
average ratio of useful CQs that are asked by ConstantBot for
the 50 queries. Table 21 presents the Pre@k and NDCG@k
performance of the retrieved SO questions, as well as the
improvement degrees and the maximum significant ratios of
Chatbot4QR over ConstantBot. From Table 20, we find that
on average ConstantBot asked 2.7 CQs for a query; and the
ratio of useful CQs is 44.6 percent, which is much lower than
that of Chatbot4QR (i.e., 60.8 percent). By analyzing the eval-
uation results of the 50 queries, there are 11 queries (i.e., Q4,

Q9, Q17, Q23, Q27, Q29, Q32, Q33, Q39, Q46, and Q50) that
have no useful CQ as evaluated by the participants. The 11
queries contain a specific programming language, e.g., Java
in Q4; and the participants are not interested in looking for a
framework. Two major comments about ConstantBot given
by the participants are: (1) ConstantBot still asks for a pro-
gramming language when a query already has a program-
ming language; and (2) unlike Chatbot4QR, ConstantBot
cannot help recognize some technical details that are useful
but missed in a query, e.g., databases and libraries. From
Table 21, we find that in terms of Pre@k and NDCG@k (k = 1
and 5) metrics, Chatbot4QR improves ConstantBot by 9.4-
12.3 percent; and the improvement is statistically significant
for 20-55 percent participants. Based on the analysis results,
we can conclude that it is not appropriate to use a constant
chatbot for the interactive query refinement and question
retrieval.

6.3 Learning Effect From Interacting With
Chatbot4QR

In Section 5.5, considering that the participants can learn to
recognize some missing technical details in queries from the
interaction with Chatbot4QR, we first asked the participants
to search results for queries before interacting with Chat-
bot4QR. This can avoid the impact of the participants’ learn-
ing effect on their Web search results using the original
queries.

It is worth mentioning that the learning effect is good for
users in practice. After interacting with Chatbot4QR for sev-
eral times, users, especially the novices, can learn to formu-
late high-quality queries with necessary technical details for
retrieving questions from SO or other resources from gen-
eral-purpose Web search engines (e.g., Google). Because of
the learning effect, users can ask better questions in Q&A
sites by describing their problems with a clear technical con-
text, which can lead to better answers. Moreover, there are
too many techniques (e.g., libraries) available on the Web;
and it is difficult for users, even for experienced developers,
to know every possible technique. Chatbot4QR may help
users, including both novices and experienced developers,
discover unknown or better techniques for some program-
ming tasks.

6.4 Application Scenarios of Chatbot4QR

Chatbot4QR can be applied in the following two scenarios:

� Chatbot4QR can be implemented as a browser plugin.
When a user inputs a query toWeb search engines, the
plugin detects the missing technical details in the

TABLE 20
The Average Numbers of CQs and the Average Ratios of
Useful CQs That are Generated by Chatbot4QR and

ConstantBot for the 50 Queries

Approach Avg. #CQs Avg. Ratio of Useful CQs

ConstantBot 2.7 0.446
Chatbot4QR 5.1 0.608

TABLE 21
Evaluation of the SO Questions Retrieved by Chatbot4QR and
ConstantBot; and the Improvement Degrees and the Maximum

Significant Ratios of Chatbot4QR Over ConstantBot

Pre@1 Pre@5 NDCG@1 NDCG@5

ConstantBot 0.766 0.596 0.687 0.661
Chatbot4QR 0.838 0.670 0.765 0.731
ImpD(%) 9.4% 12.3% 11.3% 10.5%
(p, SigR(%)) (0.05,

20.0%)
(0.05,
55.0%)

(0.05,
30.0%)

(0.05,
35.0%)
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query. If there are missing technical details, the plugin
informs the user that the query has a quality issue.
Then, the user can choose to interact with our chatbot.
After the interaction, our chatbot recommends the top
ten similar SO questions. Moreover, the user can use
their feedback to CQs to reformulate the query for
Web search.

� In the literature, many technical tasks, such as answer
summarization [6] and API recommendation [5] rely
on the quality of the top similar SO questions
retrieved for queries. Chatbot4QR could be used to
improve the performance of question retrieval, which
will contribute to better results of the tasks.

6.5 Participants’ Comments About Chatbot4QR

In the experiments, we encouraged the participants to pro-
vide comments about Chatbot4QR. We summarize several
major positive and negative aspects of the comments.

� Positive Comments

PC1. The chatbot is good! It can really help me figure out
some important technical details missed in the queries.
And, the final retrieved results are more satisfactory.

PC2. Using the generated CQs to refine queries is more
straightforward and systematic than manually picking
up relevant information scents in the search results.

PC3. The chatbot is flexible and fast, and most of the asked
CQs are really closely related to a query.

PC4. Although it may ask some unfamiliar techniques for
me, it still helps me get a better understanding of the
query as well as some other possibly useful libraries.
I’d like to try it later.

� Negative Comments

NC1. Some CQs are unnecessary because the asked informa-
tion can be inferred from some keywords in the query.
For example, the CQ “What programming language,
e.g., java or c#, does your problem refer to?” asked for
the query Q35 “Using LINQ to extract ints from a list
of strings” is useless because ‘LINQ’ is based on C#.

NC2. There are a bit too many CQs for some queries.
Although the chatbot allows me to skip and terminate,
I suggest that you can limit the number of CQs for a
query, e.g., five.

According to the comments, Chatbot4QR can assist the
participants in refining queries and retrieving more desired
results (PC1 and PC2). Additionally, Chatbot4QR can help
the participants better understand the queries and discover
some possibly useful techniques (PC4). The efficiency of
Chatbot4QR is also acceptable (PC3). However, there still
remain some issues. For example, Chatbot4QR cannot filter
unnecessary CQs based on the existing information in
queries (NC1). To solve this issue, we need to mine the rela-
tionships among techniques, e.g., what frameworks and
libraries are related to a specific programming language.
Moreover, the participants suggest us to limit the number of
CQs asked for a query (NC2).

To validate the suggestion in NC2, we generated a list of
the CQs evaluated by a participant for a query. The CQ list
was ranked by the orders of the CQs prompted to the

participant during the interaction with Chatbot4QR. We
counted the number of useful CQs in the top-k CQs of the
list, and measured the ratio of useful CQs in the top-k to all
useful CQs that are evaluated by the participant for the
query. We set k from 1 to 10 (the maximum number of CQs
in all CQ lists). For each k, we measured the average ratio of
useful CQs in all CQ lists, as shown in Fig. 10. On average,
96.8 percent of the useful CQs of a query are contained in the
top five CQs prompted to a participant, indicating that it is
suitable to limit the number of CQs asked for a query as 5.

6.6 Error Analysis of Chatbot4QR

Although it has been validated that Chatbot4QR can effec-
tively generate useful CQs and recommend relevant SO
questions for queries, we find two error scenarios of Chat-
bot4QR from the participants’ evaluation results as follows.

1. As reported in the comment NC1, Chatbot4QR may
generate wrong CQs for a query. Despite the wrong
CQasked for the queryQ35 inNC1, theCQ“What pro-
gramming language, e.g., javascript or python, does your
problem refer to?” generated for the query Q18 (see
Table 11) is also useless since the technical term ‘NPM’
inQ18 is highly related to JavaScript. During the inter-
action with a participant, Chatbot4QR cannot dynam-
ically filter unsuitable CQs or technical terms
appearing in CQs based on the participant’s feedback.
For example, for the query Q42 shown in Table 11,
after the participant P7 answered the CQ “What pro-
gramming language, e.g., java or c#, does your problem
refer to?” with Python, the subsequent CQ “Are you
using .net? (y/n), or some other frameworks.” became
unsuitable as ‘.net’ is a C# framework. The CQ should
be revised by replacing ‘.net’ with a Python frame-
work appearing in the initial top-n similar questions
retrieved for Q42. If there is no such a Python frame-
work, the CQ can be removed. Through our analysis,
the errors are caused by the fact that Chatbot4QR cur-
rently has no knowledge about the relationships
between techniques, e.g., NPM is related to JavaScript
and .net is related to C#. In the future, we plan tomine
knowledge about the relationships among SO tags
and integrate the knowledge to Chatbot4QR.

2. Chatbot4QR may produce worse question recom-
mendation lists than the two-phase method for some

Fig. 10. The average ratios of useful CQs that are contained in the top-k
CQs prompted to the participants to all useful CQs for the 50 queries.
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queries. For example, for the query Q5 “How to insert
multiple rows into database using hibernate?”, the par-
ticipant P17 provided three kinds of positive feed-
back, i.e., {‘java 8’, ‘mysql’, ‘sql’}, to the CQs.
However, the final top ten SO questions refined by
incorporating the feedback are worse than the initial
top ten questions. Table 22 presents the initial and
the final top five questions retrieved for Q5, as well
as the relevance of the questions evaluated by P17.
By analyzing the results, the performance of the final
top five questions is decreased as some questions
(e.g., the question ‘23200729’) are irrelevant to the
query task, but they match all the feedback, and
therefore the rankings of such questions are over-
promoted. To correct such errors, our future work
will aim to optimize the weights of different types of
technical feedback in Eq. (1) according to their con-
tributions to the question retrieval (see Table 15).

6.7 Threats to Validity

Threats to internal validity relate to two aspects in this work:
(1) the errors in the implementation of Chatbot4QR and the
baseline approaches and (2) the participants’ bias during
the experiments.

As for the aspect (1), we carefully checked the implemen-
tation code of our Chatbot4QR prototype. Considering that
there could be noises in the tag assignments of SO ques-
tions, which may affect the CQ generation of Chatbot4QR,
we built the question repository by requiring that each
question has an accepted answer and a positive score. More-
over, we ensured that the experimental queries and their
duplicates were not included in the repository. Although
our experimental queries were built from the titles of SO
questions, it may not be a serious problem as it is a common
experimental setup used in previous work [5], [6], [8], [20],
[32], [33]. For the four baselines EVPI, Lucene, WE, and TR,
we directly used the open-source code. For the other two
baselines WN and QECK, we carefully re-implemented
them according to the details presented in the papers [8],
[12]. Therefore, there is little threat to the implementation of
the approaches.

As for the aspect (2), we recruited the participants who
are interested in our work and have 2-11 years of program-
ming experience. We adopted several strategies to mitigate
the participants’ bias in the steps that require manual
efforts. For the categorization of SO tags, we used two itera-
tions of a card sorting approach. Each iteration step was
independently conducted by the first two co-authors of the
paper; then they worked together with an invited postdoc
to discuss the disagreements to obtain the final results. We
asked the participants to search results for the queries using
Web search engines before interacting with Chatbot4QR, in
order to avoid the participants transferring the knowledge
learned from our chatbot to enhance the original queries
when they use Web search engines. Before evaluating CQs
in the user studies 1 and 3, we launched a video conference
with the participants to introduce our Chatbot4QR proto-
type, to ensure that they understood how to use the proto-
type for evaluation. In the video conference of the user
study 1, we also explained the relevance judgement of SO
questions to a query with a technical context. Moreover, at
the beginning of our user studies, we explained to the par-
ticipants about how to perform the user studies based on
the existing technical details in queries and/or their techni-
cal background. It is possible that the participants may have
difficulties in building the technical context for some
queries as they may not be interested in the problems. In
the future, we plan to develop Chatbot4QR as a plugin and
deploy the plugin in companies, such as Hengtian, to vali-
date whether Chatbot4QR can help developers retrieve bet-
ter SO questions or other resources for technical problems.

Threats to external validity relate to the generalizability of
experiment results. To alleviate this threat, we built a large-
scale repository of 1.88 million SO questions. To conduct
our user studies, we recruited 25 participants. Considering
that the user studies require significant manual efforts, we
built 50 experimental queries. The number of participants
and the number of experimental queries are close to the
existing user studies in the previous work [30], [32], [33],
[34], [35]. The 25 participants have different years of pro-
gramming experience and diverse familiar programming
languages, as shown in Table 5. The 50 experimental queries

TABLE 22
TwoKinds of the Top Five SOQuestions Retrieved for theQuery Q5; and the Relevance of Questions Evaluated by the Participant P17

Result Type
The Top Five SO Questions

Relevance
Question ID Question Title Question Tags

Initial

20045940 Inserting multiple rows in database java, database 4
47244614 Inserting Data in Multiple Tables in Hibernate java, hibernate, jpa 3
22553920 Insert into two tables in two different database java, spring, hibernate, jpa 2
39383049 How to insert data to multiple table at once in

hibernate using java
java, mysql, hibernate 3

22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

Final

25485086 how to insert new row in hibernate framework? java, mysql, sql, hibernate 3
23200729 Records in DB are not one by one. Hibernate java, mysql, sql, hibernate 1
39383049 How to insert data to multiple table at once in

hibernate using java
java, mysql, hibernate 3

31583737 hibernate: how to select all rows in a table java, mysql, sql, hibernate, postgresql 2
22472292 How to insert new items with Hibernate? java, mysql, hibernate 2

“Initial” represents the top five questions retrieved using our two-phase method. “Final” represents the top five questions retrieved using Chatbot4QR by
leveraging P17’s feedback to the CQs of Q5.
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have diversity in the involved techniques, the complexity of
problems, and the quality of expression (i.e., whether there
are specified techniques or not), as explained in Section 4.2.
The diversity of participants and queries can help improve
the generalizability of our experiment results. In the future,
we plan to further reduce this threat by extending the user
studies with more participants and queries.

Threats to construct validity relate to the suitability of eval-
uation metrics. To reduce this threat, we used two popular
metrics: Pre@k and NDCG@k, which are widely used to
evaluate the ranking results in the fields of IR and software
engineering [5], [6], [31], [32], [33], [42].

7 RELATED WORK

Question Retrieval in SO. Question retrieval is a key step for
many knowledge search tasks in SO. A number of work
retrieves similar SO questions for queries by leveraging the
Lucene search engine [8] or word embedding techniques [3],
[5], [6], [11]. For example, Nie et al. [8] proposed a code
search approach by expanding queries with important key-
words extracted from relevant SO question-and-answer
pairs. Lucene is used for indexing and retrieving SO ques-
tion-and-answer pairs. Xu et al. [6] proposed an approach
named Answerbot to generating a summarized answer for a
query by extracting important sentences from the answers
of similar SO questions. It retrieves similar SO questions
using a word embedding-based approach. Huang et al. [5]
proposed an API recommendation approach named BIKER.
A word embedding-based approach is also used for retriev-
ing SO questions similar to a query. The recommended
APIs are extracted from the answers of the top ten similar
SO questions. The Lucene search engine is efficient but can-
not handle the lexical gaps between SO questions and
queries. Recently, the word embedding-based approach is
widely used to bridge the lexical gaps and can achieve bet-
ter performance. However, the existing work on question
retrieval rarely considers an important issue in practice that
the query can be inaccurately specified, which will lead to
undesireable questions.

We propose a novel question retrieval approach which
improves the word embedding-based approach in two
main aspects: (1) a two-phase question retrieval approach is
used to improve the efficiency by reducing the search space
using Lucene before applying the word embedding-based
approach; and (2) a chatbot is designed to interactively help
users refine queries by asking several CQs related to the
missing technical details in a query. The refined queries can
contribute to retrieving more relevant SO questions.

Tag Recommendation in SO. SO encourages users to attach
several (nomore than five) tags to a question, which can help
organize the tremendous amount of questions and facilitate
the question retrieval [43]. However, the large set of more
than 50 thousand SO tags imposes a huge burden for users to
select a few appropriate tags for a question. Much attention
has been paid to recommending relevant tags for SO ques-
tions [36], [37], [38], [43]. For example, Xia et al. [36] proposed
an approach called TagCombine to finding relevant tags by
composing three ranking components. Wang et al. [37] pro-
posed a tag recommendation system by using the labeled
Latent Dirichlet Allocation (LDA) modeling technique [44].

They analyzed the historical tag assignments and users of SO
questions and the original tags provided by users. Zhou et al.
[38] proposed a neural network approach to recommending
tags, which leverages both textual descriptions and tags of
SO questions.

Different from the tag recommendation (TR) work, our
work focuses on determining missing technical details in a
query based on the tags of similar SO questions. As evaluated
in Section 5.3, the existing TR approaches may not be suitable
for determining relevant tags for queries because of twomain
reasons. First, unlike a SO question that has a rich description
(including the title, original tags, and body), a query typically
consists of a few keywords, which makes it difficult to find
relevant tags precisely. Second, even for the same query, dif-
ferent users may have personalized preferences of tags con-
sidering their different technical background (e.g., the
preferred programming languages) or programming context
(e.g., the platform the software is developed for). To address
these challenging issues, given a query, we use a chatbot to
interact with the user by asking several CQs with a candidate
set of relevant tags extracted from the top-n similar SO ques-
tions, allowing the user to tell what tags theywant.

Query Reformulation. The quality of queries has an great
impact on the performance of IR systems. However, it is not
an easy task to formulate a good query, which largely
depends on the user’s experience and their knowledge about
the IR system [45]. A lot of work has been proposed to auto-
matically reformulate queries by expanding them with rele-
vant terms extracted from lexical databases (e.g.,WordNet) or
similar resources [8], [12], [15], [46], [47]. For example, Lu et al.
[12] proposed to expand a querywith the synonyms inWord-
Net for code search. Nie et al. [8] also proposed a code search
approach by expanding queries with important keywords
extracted from relevant SO question-and-answer pairs. A
major limitation of automatic query expansion approaches is
that there can be unexpected terms added to the query with-
out user involvement, whichwill affect the quality of results.

To overcome the limitation, several work has recently
been proposed to interactively help users refine queries [31],
[48], [49]. For example, Zou et al. [48] proposed a personal-
ized Web service recommendation approach, which can
assist users in refining their requirements. The approach is
based on a process knowledge base built from the available
online resources. Guo et al. [49] proposed an interactive
image search approach which uses a reinforcement learning
model to capture the user’s feedback on their desired image.
The approach relies on the predefined feature set of images.
It has been demonstrated that these interactive query refine-
ment approaches can help find desired results for users. In
contrast to these work, we propose an interactive query
refinement approach to assisting users in clarifying the
missing technical details in queries, in order to improve the
performance of question retrieval from technical Q&A sites.
For this purpose, we build two technical knowledge bases,
i.e., the categorization and multiple version-frequency infor-
mation of SO tags.

8 CONCLUSION AND FUTURE WORK

Question retrieval plays an important role in acquiring
knowledge from technical Q&A sites, e.g., SO. The existing
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search engines provided in the Q&A sites and the state-of-
the-art question retrieval approaches are insufficient to
retrieve desired questions for users when the query is inac-
curately specified. In this paper, we propose a chatbot,
named Chatbot4QR, to interactively help users refine their
queries for question retrieval. Chatbot4QR can accurately
detect missing technical details in a query and interacts
with the user by asking several CQs. The user’s feedback to
CQs is used to retrieve more relevant SO questions. The
evaluation results of six user studies demonstrate the effec-
tiveness and efficiency of Chatbot4QR.

To the best of our knowledge, it is the first work on the
interactive query refinement for technical question retrieval.
However, the current Chatbot4QR is still in infancy with
some limited capability. In the current stage, Chatbot4QR
focuses on helping users clarify 20 major types of techniques
(see Table 1) and the versions of the techniques missed in a
query. In the future, we will improve Chatbot4QR in two
main directions: (1) we plan to use the possible solutions
discussed in Section 6.6; and (2) we will mine knowledge on
the differences (e.g., the frequency of use and performance)
between the similar techniques (e.g., HashMap is more effi-
cient than Hashtable [6]), so that Chatbot4QR could suggest
better techniques when users intend to search for a less fre-
quently used technique or an obsolete technique (e.g.,
Hashtable). Moreover, we plan to implement Chatbot4QR
as a browser plugin to assist users in searching results for
technical problems. When a user inputs a query to a Web
search engine (e.g., the SO search engine or Google), the
plugin can notify the user if there are missing technical
details in the query. The user can interact with our chatbot
to obtain the top ten similar SO questions and get insights
for reformulating the query to search on the Web.
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Abstract—Standards for certifying safety-critical systems have evolved to permit the inclusion of evidence generated by program

analysis and verification techniques. The past decade has witnessed the development of several program analyses that are capable of

computing guarantees on bounds for the probability of failure. This paper develops a novel program analysis framework, CQA, that

combines evidence from different underlying analyses to compute bounds on failure probability. It reports on an evaluation of different

CQA-enabled analyses and implementations of state-of-the-art quantitative analyses to evaluate their relative strengths and

weaknesses. To conduct this evaluation, we filter an existing verification benchmark to reflect certification evidence generation

challenges. Our evaluation across the resulting set of 136 C programs, totaling more than 385k SLOC, each with a probability of failure

below 10�4, demonstrates how CQA extends the state-of-the-art. The CQA infrastructure, including tools, subjects, and generated data

is publicly available at bitbucket.org/mgerrard/cqa.
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1 INTRODUCTION

MODERN safety-critical systems are software-intensive.
While such systems undergo traditional verification and

validation processes to detect and remove faults, they also go
through a certification process that aims to demonstrate their
absence. International standards for such systems establish
requirements for certifying the software’s contribution to
overall system safety across a range of domains including: avi-
onics [1], industrial robotics [2], personal care robotics [3], rail-
way [4], automotive [5], and medical software [6]. Meeting
these standards is essential, but theypresent substantial verifi-
cation and validation challenges above and beyond those of
traditional software [7].

Safety certification standards vary, but all represent a
complex undertaking that includes, for example, demon-
stration of bi-directional traceability between requirements
and implementation elements and achieving rigorous forms
of implementation coverage. It comes as no surprise that the
primary means of demonstrating that an implementation
meets a safety requirement is achieved through testing. In
fact, testing is used in myriad ways across the breadth of
application domains and associated standards—Nair et al.
[8] identify 13 different forms of testing evidence that can be
incorporated into safety arguments. For example, structural
coverage evidence, such as MC/DC that is required for avi-
onics software [1], robustness evidence, such as that which
is achieved using fault-injection to meet automotive stand-
ards [5], and reliability evidence, such as that which is

required to certify functions to IEC 61508 safety integrity
levels (SIL) [9].

The increasing cost-effectiveness of automated formal
methods and static analyses has led certification standards,
e.g., DO-333 [10], and researchers to explore the types of evi-
dence they can contribute to safety arguments to comple-
ment evidence from testing, e.g., [11]. In the context of a
safety argument, such methods tend to provide all or nothing
evidence—they can prove a property, e.g., through sound
overapproximating model checking [12], or they cannot.

In this paper, we investigate combinations of static analysis
methods that can provide a more gradual, quantitative form
of evidence that can contribute to safety arguments. Ourwork
is motivated by Ladkin and Littlewood’s call for the increas-
ing use of statistical evaluation in the certification of critical
software [13], [14]. Their perspective is motivated by the fact
that IEC 61508 defines SIL levels in statistical terms, e.g., a SIL
level 4 function has an average probability of failure of less
than 10�4 per invocation,1 yet few cost-effective test methods
exist to directly provide such evidence.

The challenges of testing ultra-reliable systems have long
been known. Butler and Finelli [15] observed that achieving
confidence in a very low probability of failure requires an
exorbitant amount of testing. This challenge has been miti-
gated to an extent by advances in underlying technologies,
e.g., high-fidelity simulation systems that can run in faster
than real time and that can be executed in parallel [16], yet
testing for high, much less ultra, reliability remains a signifi-
cant obstacle.

Our insight is that two complementary forms of static
analysis, when combined synergistically, yield a cost-effec-
tive method for demonstrating that functions achieve
extremely low probability of failure. For completing sub-
jects across the study, one instantiation of this technique
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1. This is for functions that are invoked relatively infrequently
which is referred to as low demand in the standard; functions invoked
frequently or continuously frame requirements in terms of the number
of failure-free hours of operation.
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computes a mean and median probability of failure below
10�10 and 10�38, respectively. This would be sufficient to
easily discharge the evidentiary requirements for a low
demand SIL 4 function.

The first analysis targets the fact that a key component of the
cost of reliability testing comes from the need to resample equiv-
alent program behavior. It is not obvious that two inputs will
lead to equivalent behavior from a black box perspective, but
when testing is permitted to observe the internal behavior of
software, equivalence can be detected. This is precisely what
symbolic execution techniques do [17] and reliability-focused
extensions to symbolic execution can quantify the probability
mass of a set of equivalent inputs [18], [19], [20]. This allows a
single non-failing test input to accumulate all of the probability
mass associated with its equivalent behaviors, which can
greatly accelerate the process of reaching a reliability threshold.

The second analysis targets the fact that when systems
enter the certification process they have already been thor-
oughly validated [7]. Our insight is that in this setting one
can formulate a sound static analysis to partition the pro-
gram input space into two subspaces—one that may lead to
failure and one that definitely does not lead to failure [21], [22].
The latter of these can be skipped entirely when performing
the above reliability analysis and the former can be used to
condition the application of the reliability analysis, allowing
it to focus on a smaller region of program behavior to maxi-
mize its cost-effectiveness.

In this paper, we study how these two analyses can be
blended to create a new form of quantitative static analyses
that can produce guaranteed bounds on the probability of violat-
ing a safety property. Unlike statistical methods [23], [24],
which can only produce a probabilistic confidence on the
soundness of the results based on statistics on the outcome
of many test runs of the program,2 the static analyses we
focus on in this paper provide mathematically sound guar-
antees on the bounds for the probability of violations, and
thus meet the strict evidentiary requirements for the above
standards, e.g., [10].

Quantitative static program analysis has been studied for
more than two decades, e.g., [27], [28], but only recently
have fully automated techniques been developed that can
scale to non-trivial code bases. Researchers have built on
developments in increasingly scalable path-sensitive analy-
ses, e.g., [29], [30], [31], [32], and increasingly scalable tech-
niques for model counting of logical formulae, e.g., [33],
[34], [35], [36], [37], [38], [39], to produce several families of
techniques which we term probabilistic symbolic execution
(PSE) [18], [19] and statistical symbolic execution (SSE) [20].

These techniques hint at the potential of combining non-
quantitative program analyses, like symbolic execution,
with quantitative analysis techniques, like model counting.
We take this a step further in presenting a novel algorithmic
framework for conditional quantitative program analysis
(CQA) that blends evidence from multiple static analyses to
extend the scalability, accuracy, and applicability of quanti-
tative program analysis.

The history of combining non-quantitative static analyses
to improve cost-effectiveness dates back at least three deca-
des, e.g., [40]. In recent work, the open-source ALPACA frame-
work [22], [41] implements an alternating conditional analysis
(ACA) that combines 9 different C static analyzers to precisely
characterize the regions of a program’s execution space that
always satisfy (or always violate) a given property. Whereas
individual analyzers may be limited in their ability to cope
with aspects of a program or state-space structure, ACA har-
vests and blends their partial results to produce a comprehen-
sive description of program behavior. The key to CQA is the
insight that ACA-computed descriptions—rendered as logi-
cal constraints formulated over program input variables—can
be leveraged to focus the application of different forms of
quantitative analyses, which has the potential to make them
more efficient andmore accurate.

Understanding the potential improvements that the algo-
rithmic variants of the CQA framework offer relative to
existing state-of-the-art quantitative static analyses, such
as [18], [19], [20], requires empirical evaluation. Unfortu-
nately, no benchmarks exist that focus on the specific chal-
lenges in evidence generation for certification of safety-
critical software systems.

Developing a broad and representative benchmark for this
class of problems is a worthwhile pursuit, but in this work we
only take amodest first step by customizing an existing verifi-
cation benchmark—SV-COMP [42]. The benchmark is
designed to stress automated static analysis and verification
tools, but to reflect certification challenges, benchmark pro-
grams should exhibit low-probability property violations—
like those thatmight slip throughdevelopment into a certifica-
tion process. In Section 4 we describe the systematic selection
of 136 C programs, comprising more than 385,000 SLOC, for
which the probability of a property violation is less than 10�4.
This threshold was chosen because it corresponds to the fail-
ure probability threshold required to meet IEC 61508’s SIL 4
standard. As our evaluation reveals, CQA is capable of estab-
lishing a much lower probability of failure than the SIL 4
requirement and can produce probability guarantees that
were previously thought to be completely infeasible to
achieve [15], e.g., less than 10�35 in under 15 minutes on
Problem10_label48.

The next section presents background and the prior work
on quantitative and conditional program analysis on which
we build. Section 3 presents the foundations of the CQA
framework. Section 4 presents an evaluation that explores
the algorithmic tradeoffs between CQA and existing
approaches and demonstrates that CQA extends the state-
of-the-art. We discuss related work in Section 5 and future
work in Section 6.

2 BACKGROUND

2.1 Reachability Guarantees

A program’s semantics can be formalized as a transition
system hQ; q0;!i, where Q is a set of states (mappings from
variables to values), q0 2 Q is the initial state, and !�
Q�Q is a transition relation between states and their possi-
ble successors. The state space is the set of all possible config-
urations in this transition system. The reachability problem
is that of determining whether there exists a path in a

2. For a property c, a probabilistic guarantee is of the form Prðp:c 2
½a; b�Þ � d, where p:c estimates the probability of violating c and d < 1
is a confidence value bounding the probability of the produced interval
being incorrect (e.g., [24], [25], [26]).
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program’s transition system from the initial state to a target
state that satisfies property c; we will call these target states
c-states. Most program analysis questions can be framed as
reachability problems [43].

In this paper we will refer to two kinds of reachability
guarantees using different terms that refer to these distinct
kinds; we will group and italicize the related terms in this
paragraph. The first kind of guarantee is based on an overap-
proximation of the program state space, and gives a proof
that a c-state is unreachable. We refer to this as a safety
proof, produced by a may analysis that reasons about the
necessary conditions on reaching a c-state. The second kind
of guarantee is based on an underapproximation of the state
space, and gives a proof that a c-state is in fact reachable.
This is a soundness proof, produced by a must analysis that
reasons about the sufficient conditions on reaching a c-state.
More formally, given a program p, the first kind of guaran-
tee is equivalent to the statement p � :c, while the second
to p 6� :c.3

While the classical reachability problem is given as an
existential query (does a path exist or not?), this work con-
siders its generalization: find all paths from q0—the start
state—that could reach a c-state. Because there may be
many program paths that lead to a c-state, we will charac-
terize these sets of paths in terms of intervals, defined in the
following subsection.

2.2 Logical Intervals

Any given program can contain large state spaces, such that
portions of it cannot be exactly characterized in an efficient
manner. Overapproximating the state space can simplify
the model of complex state spaces in ways that make this
more amenable to efficient reasoning [45], [46]. In general,
program analyzers can approximate a program’s c-state
reachability within over- and underapproximate bounds,
which we define as a logical interval.4

Informally, a logical interval I is a characterization of the
input subdomain that exhibits behaviors reaching c-states.
This characterization consists of a lower bound (I) guaran-
teed to be subsumed by a program’s true c-state reachabil-
ity, Rc, and an upper bound (I) guaranteed to subsume Rc.
A sufficient condition on p’s inputs reaching a c-state is
given by I , while I comprises a necessary condition for the
same. In the remainder of the text, we will use the term
interval and logical interval interchangeably.

Definition 1 (Logical Interval). A logical interval, Ic ¼
½Ic; Ic�, is a pair of logical predicates on the inputs that seman-
tically bound a program’s c-state reachability, Rc, such that
Ic ) Rc ) Ic.

This interval lies between two extremes: Ic ¼ Ic ¼ Rc

(most informative, exact characterization) and ½ false; true�
(non-informative).

A partition on Ic induces a set of disjoint intervals. For the
remainder of the text, the c subscript will denote the logical
interval over the entire program space, and those without
the c subscript will denote disjoint intervals.

Definition 2 (Disjointness). Two intervals are considered dis-
joint when their upper bounds are disjoint, i.e., Ii ^ Ij 	 ;;
because upper bounds subsume their lower bounds, all lower
bounds will also be disjoint.

Note that the upper bound of each individual disjoint
interval is not a necessary condition on reaching a c-state
over the entire program space: there may exist other inter-
vals, so the negation of one upper bound would by defini-
tion include the other intervals. However, it is a necessary
condition on reaching a c-state within its respective parti-
tion of the input domain. The lower bound of a disjoint
interval, in contrast, is a sufficient condition in reaching a
c-state both in the entire program space as well as within
its respective partition of the input domain.

2.3 Conditional Program Analysis

The idea of conditional quantitative analysis builds on the
principle of conditional verification [47]. Conditional verifica-
tion combines the strengths of multiple verification proce-
dures by excluding the portion of state space that one
procedure has verified as safe from the search space of the
others. This allows each application of a verification proce-
dure to focus only on parts of the state space which have not
yet been covered by any of the others. Because most verifica-
tion procedures are specialized (or optimized) on specific pro-
gram features (e.g., via specific abstractions or memory
models), composing their partial results may enable each to
leverage their respective strengths on portions of a program
exhibiting specific features, leaving simpler residual problems
after each application.

2.4 Basic Probability Definitions

The possible outcomes of an experiment are called elementary
events. For example, flipping a coin can produce one of two
elementary events: heads or tails. Elementary events are
mutually exclusive, and the set of all elementary events is
called the sample space. An event is a set of elementary events.

Definition 3 (Probability distribution). LetV be the sample
space of an experiment. A probability distribution on V is a
function associating to each subset of V a real value between 0
and 1: Pr : 2V ! ½0; 1�

that satisfies the Kolmogorov’s probability axioms [48]:

� PrðeÞ � 0 for every elementary event e
� PrðVÞ ¼ 1
� PrðA [BÞ ¼ PrðAÞ þ PrðBÞ for all events A;B

where A \B ¼ ; ðV; PrÞ is called the probability
space.

Definition 4 (Conditional probability). Let ðV; PrÞ be a
probability space. Let A and B be events with PrðBÞ > 0. The
conditional probability of A given B (i.e., the probability of

A assuming B has occurred) is defined as PrðA jBÞ ¼ PrðA\BÞ
PrðBÞ .

Definition 5 (Law of total probability). Let ðV; PrÞ be a
probability space and fEi j i ¼ 1; 2; 3; . . .; ng be a finite

3. A reachability property is a property stating that a particular state
can be reached, while a safety property states that a “bad” state is never
reached; so reachability properties can be seen as the negation of a
safety property [44]. Because the focus of this work is on characterizing
reachable states, safety is discussed in a negated sense in relation to c.

4. A logical interval that semantically bounds program behavior is
discussed in [21], where it is referred to as a comprehensive failure
characterization.
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partition of V, where 8i:PrðEiÞ > 0. Then, for any event A,
PrðAÞ ¼Pn

i¼1 PrðA jEiÞ 
 PrðEiÞ.
The probability mass function yields the probability that

a discrete random variable is equal to some value. The prob-
ability mass of a set of values is the summation of the proba-
bility mass function applied to its elements. A logical
formula is the characteristic function of the set of its models,
thus the probability mass of a logical formula is the proba-
bility mass of each of its models.

2.5 Quantifying Logical Formulae

Given a logical formula and a probability distribution over
the free variables in the formula, there are a growing num-
ber of cost-effective methods to estimate the probability
mass contained in the formula. Some of these estimates are
exact, e.g., when the formula lies in the domain of linear
integer arithmetic [33]; in other cases the accuracy of esti-
mates are probabilistically bounded [49], [50].

3 CONDITIONAL QUANTITATIVE ANALYSIS

The problem this paper addresses is determining how likely
it is that a c-state is reached within some program. Unlike
the classical formulation of reachability, where either a path
to a c-state exists or not, quantifying the probability of
reaching a c-state requires considering many paths, in
general.

One approach to solving the problem of how to quantify
the probability mass of inputs reaching a c-state is via brute
force, i.e., enumerate all program paths and sum the mass
of those reaching a c-state, as proposed in [18]. Another
approach is to fuzz the input space to get a statistical bound
on the probability of reaching a c-state [51], [52], [53]. The
first approach suffers when the state space is large, while
the latter suffers when the probability of reaching a c-state
is exceedingly rare.

The solution advocated in this paper is to first determine
which regions of the input space can lead to a c-state, and
only quantify this reduced portion of the program state
space. We call this a conditional quantitative analysis.

Algorithm 1 defines the conditional quantitative analysis
algorithmusing the specified internal functions. CQA takes as
input a program, a reachability property (c), and a probability
distribution over the program’s input variables; and outputs a
quantitative characterization that bounds the input probabil-
ity mass reaching c. The “lower” quantity (l) provides a
sound lower bound on c-reaching inputs, i.e., l quantifies the
sufficient conditions on inputs reaching c, while the “upper”
quantity (u) provides a safe upper bound on c-reaching
inputs, i.e., u quantifies the necessary conditions.

CQA begins by initializing the lower and upper quantifi-
cations to zero in line 2. The function generate_intervals on
line 3 takes a program and a reachability property and
returns a nonempty, finite set of intervals that describe the
portions of the state space that may/must reach a c-state.
The intervals must satisfy the safety and disjointness prop-
erties of Definitions 1 and 2, respectively. A trivial imple-
mentation of generate_intervals would return the set
f½ false; true �g, which contains a single interval that implies
all program behavior—thus safely but trivially bounding

c-state reachability. A more informative implementation of
generate_intervals could, for instance, return the set f½a ^
b;a�; ½:a ^ g;:a ^ g�g, which contains two intervals: the first
denotes that a c-state must be reached when the program
inputs satisfy a ^ b (the interval’s lower bound), and that a
c-state may be reached when the program inputs satisfy a

(the interval’s upper bound); the second denotes an interval
whose lower and upper bound coincide—this means that a
c-state must be reached when the inputs satisfy :a ^ g.

Algorithm 1. Conditional Quantitative Analysis

Input: Program P , reach. property c, prob. distributionX
Output: Lower/upper quant. of c-reaching inputs ½l; u�
1: procedure CQAðP;c; XÞ
2: ½l; u�  ½0; 0�
3: I  generate intervals ðP;cÞ
4: for each I 2 I do
5: if I 	 I then
6: e estimate ðI;XÞ
7: ½l; u� þ¼ ½e; e�
8: else
9: ½l; u� þ¼ quantify in bounds ðP;c; I; XÞ
10: return ½l; u�
Specifications for CQA Functions

generate intervals ðP;cÞ
Input: Program P , reachability property c

Output: Set of disjoint logical intervals (see Definitions 1 and 2)

estimate ðf;XÞ
Input: Logical formula f , probability distributionX
Output: Estimate of PrðfÞ
quantify in bounds ðP;c; I;XÞ
Input: Prog. P , reach. prop. c, interval I, prob. dist.X
Output: [Overappr. of PrðIÞ, Underappr. of PrðIÞ]

Lines 4–9 use these computed intervals to focus quantifi-
cation efforts within the state space delineated by a given
interval. There are two cases to consider when deciding
how to quantify c-state reachability within an interval. In
one case—line 5—, the lower and upper bounds coincide,
so we can directly quantify the formula given by its upper
(or equivalent lower) bound. This is done by the function
estimate, which takes as input a logical formula and a proba-
bility distribution, and computes either an exact or a (proba-
bilistically bounded) approximate estimate—e—of the
probability mass that satisfies the given formula. In the case
of coinciding bounds, the computed probability mass e is
necessary and sufficient, so e is added to both the lower and
upper quantifications in line 7.

The other possibility—line 8—is that an interval’s
bounds do not coincide, in which case we must explore the
region of the state space between the lower and upper
bounds in order to quantify the c-reaching probability
mass contained within the interval. The function in line 9—
quantify_in_bounds—takes as input a program, a reachability
property, an interval, and a probability distribution, and
returns a pair whose first part quantifies a safe overapproxi-
mation of the probability mass reaching I—the lower bound
of I, and whose second part quantifies a safe underapproxi-
mation of the probability mass reaching I—the upper
bound of interval I. The output in line 10 gives the lower
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and upper bounds on the probability mass of reaching a
c-state.

Theorem 1 (Termination). Algorithm 1 terminates if genera-
te_intervals, estimate and quantify_in_bounds terminate.

Proof. The loop in lines 4–9 will run a bounded number of
times because I is a finite set, so if each function termi-
nates, Algorithm 1 will terminate. All functions called
within CQA are required to terminate due to both time
and space bounds, guaranteeing that CQA terminates. tu

Theorem 2 (Correctness). Algorithm 1 terminates with l pro-
viding a sound lower bound and u a safe upper bound on the
probability mass of a program reaching a c-state, given some
input probability distribution.

Proof. The correctness of CQA’s output follows from four
observations: (1) the function generate_intervals requires
all program behavior reaching a c-state to be contained
within I , implying all probability mass of reaching a
c-state is also in I , (2) the same function requires the
intervals of I to be disjoint, so no probability mass is
quantified twice, (3) the functions estimate and quanti-
fy_in_bounds are required to yield a sound underapproxi-
mation and a safe overapproximation on the probability
of reaching a c-state within the state space bounded by
an interval, and (4) the estimates on each interval’s proba-
bility mass are accumulated in l and u in either lines 7 or
9. So upon termination of the loop in line 10, l and u cor-
rectly provide lower and upper bounds on the probability
mass of reaching a c-state. tu
The remainder of this section discusses some of the pos-

sible instantiations of the functions used within Algorithm 1.
These instantiations are used in the evaluation of CQA, dis-
cussed in Section 4.

3.1 Instantiation of generate_intervals

One non-trivial instantiation of generate_intervals is given by
the framework of an alternating conditional analysis, which
computes a sound characterization of all the ways a pro-
gram either may or must satisfy some property. This is com-
puted by alternating between over- and underapproximate
analyses, conditioning analyses to ignore portions of the
program that have already been analyzed, and combining
the results of state-of-the-art analysis tools in a portfolio run
in parallel. ACA is based on the framework introduced
in [21], which was generalized in [22].

We will present the general idea of ACA by way of exam-
ple. Given the program in Listing 1, ACA begins by running
a portfolio of static analysis tools that search for a path
reaching a call to psi(). Suppose a tool provides evidence
of a path to psi(), then an underapproximate analyzer
uses this evidence to characterize the path as either valid or
spurious. This characterized space is now accounted for
and does not need to be analyzed again.

Suppose the given evidence describes constraints on x
that drive execution to one of the calls to psi(): x < 0.
ACA now checks if there are other paths to psi(). To do
so, blocking instrumentation is injected into the initial pro-
gram—via assume statements—to condition analyzers to
avoid this already-covered space.

Listing 1. Initial Program

main()

{

x = read();

y = read();

if (x < 0)

psi();

elif ((x > 9) && (x < y*y))

psi();

}

Listing 2. Conditioning 1

main()

{

x = read();

y = read();

assume(!(x < 0));

if (x < 0)

psi();

elif ((x > 9) && (x < y*y))

psi();

}

Listing 3. Conditioning 2

main()

{

x = read();

y = read();

assume(!(x < 0));

assume(!((x > 9) && (x < y*y)));

if (x < 0)

psi();

elif ((x > 9) && (x < y*y))

psi();

}

Listing 4. Conditioning 3

main()

{

x = read();

y = read();

assume(!(x < 0));

assume(!(x > 9));

if (x < 0)

psi();

elif ((x > 9) && (x < y*y))

psi();

}
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ACA runs the portfolio of analysis tools on the instru-
mented program of Listing 2. This time an overapproximate
analyzer claims that a different path to psi() is reachable,
with the given evidence of x > 9 ^ x < y � y. A second
assume statement is injected into the program, and the tool
portfolio is run on the program in Listing 3.

This time around, an overapproximate analyzer—upon
encountering the relational and nonlinear expression in the
second assume statement—overapproximates the state
space and declares that the call to psi() within the elif

block is still reachable. An underapproximator deems this
evidence spurious. In order to reach a fixed point, ACA
now generalizes the second blocking clause by relaxing the
constraint of x > 9 ^ x < y � y to be x > 9; this relaxed
conditioning is shown in the second assume statement in
Listing 4.

The tool portfolio is run on the program of Listing 4, and
an overapproximate analyzer declares that psi() is
unreachable given the conditioned program. Because the
safety proof comes from an overapproximate analysis, it is
assumed correct, and ACA terminates with two intervals
describing inputs constraints leading to psi(). One inter-
val has coinciding lower and upper bounds that exactly
describe input constraints leading to psi(): I1 	 I1 	 ðx <
0Þ, and another has noncoinciding lower and upper bounds:
I2 	 ðx > 9 ^ x < y � yÞ ) I2 	 ðx > 9Þ. Note that, while
I2 defines constraints on inputs that must reach psi(), this
is not the case for I2, which includes concrete inputs that do
not reach psi(), e.g., x 	 10 ^ y 	 3. This simple example
does not cover all cases of ACA; see [21] for an exhaustive
case analysis.

The intervals computed by ACA satisfy the requirements
of generate_intervals, in that its output consists of a lower bound
that is guaranteed to be subsumed by all reachable paths (the
must information), and an upper bound that is guaranteed to
subsume all reachable paths (themay information).

Across the 136 subjects in this study, the instantiation of
generate_intervals returns intervals with noncoinciding
upper and lower bounds on 129 subjects; 15 of these subjects
are composed of multiple intervals. The upper and lower
bounds coincide on the remaining 7 subjects, one of which
is composed of multiple intervals.

3.2 Instantiation of estimate

Inputs can be assumed distributed uniformly over their
domains or according to a given input distribution called a
usage profile [19]. For simplicity, a uniform distribution over
the input domains will be assumed throughout the paper;
extension to arbitrary usage profiles is orthogonal to our
contributions and can be straightforwardly implemented as
in [19] and [54].

For a finite input domain D, computing the probabilities
PrðcÞ of a constraint c can be reduced to computing the ratio
between the number of solutions of ]ðc ^DÞ and the size of
the domain ]ðDÞ. Model counting procedures may in gen-
eral be intractably complex [55]. Nonetheless, as with con-
straint solving problems, several algorithms are available
for the efficient solution of specific fragments of the prob-
lem. Linear integer constraints can be efficiently and exactly
solved using Barvinok’s algorithm [33] (with off-the-shelf

implementations including Latte [34] and Barvinok [36]).
Nonlinear constraints over numerical variables can rely on
progress in convex analysis [56], interval constraint pav-
ing [35], [57], and the approximate methods developed in
both program analysis [54], [58], [59] and statistical machine
learning [60]. Model counting over string domains includes
exact counters for regular languages [38], exact bound com-
putation [37], and mixed string/numerical counters [61].

More general—though usually more expensive—]SAT
and ]SMT solvers also exist for model counting over mixed
theories (e.g., [62], [63], [64]). The growing research interest
in model counting for program analysis and artificial intelli-
gence is driving a substantial research effort discovering
new fragments of theories where efficient solutions are pos-
sible (e.g., [65], [66]) and are expected to directly benefit
quantitative program analysis in the coming years.

As model counting is an orthogonal concern for CQA
(equally impacting all the existing quantitative analysis
techniques), for the implementations reproduced in this
paper we will focus on linear integer constraints.

3.3 Instantiations of quantify_in_bounds

Following the principle of conditional program analysis,
because all behaviors outside the logical interval of the
entire program space Ic ¼ ½Ic; Ic� have already been ana-
lyzed by generate_intervals,5 quantification techniques can
focus only on the residual behaviors, i.e., program paths sat-
isfying the assumptiona 	 :Ic ^ Ic.

In probabilistic terms, this can be formalized as comput-
ing the conditional probability PrðIcjaÞ, instead of PrðIcÞ,
as the analysis is restricted to the subspace of the sample
space that encloses all inputs satisfying a. Recalling Defini-
tion 4 (conditional probability), for each disjoint interval Ii
and its corresponding assumption ai we obtain

PrðIcjaiÞ ¼ PrðIc ^ aiÞ
PrðaiÞ : (1)

The total probability PrðIcÞ is the result of summing over
the conditional probabilities multiplied by the respective
PrðaiÞ, as in Definition 5.

We now discuss three possible instantiations of quanti-
fy_in_bounds; the first being a direct application of model
counting and the last two based on symbolic execution. Each
satisfies the requirements of quantify_in_bounds in that it: (1)
safely overapproximates its lower bound I and safely under-
approximates an interval’s upper bound I, and (2) is amena-
ble to conditioning. The second requirement is fulfilled
simply by each technique respecting the semantics of assume
statements. As the intervals of I are guaranteed to be disjoint,
the conditioning comes for free, because each technique will
reason only about the state space encoded by the disjoint
formulae.

5. Recall that generate_intervals characterizes behaviors that must
reach a c-state, i.e., Ic; and upon termination guarantees that all inputs
outside the upper bound, i.e., :Ic, must not reach a c-state. These two
behaviors lie outside the interval Ic, in that they lie “below” the lower
bound and “above” the upper bound, and have already been character-
ized by some analyzer; so they may safely be ignored by
quantify_in_bounds.
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We will refer to CQA whose quantify_in_bounds has been
instantiated with model counting, probabilistic symbolic
execution, and statistical symbolic execution, as CQA#,
CQApse, and CQAsse, respectively.

3.3.1 Counting Lower and Upper Bounds

The set of logical intervals I can be passed to a model count-
ing procedure that converts its bounds into a numerical
interval describing the contributions to the probability
mass, i.e., by summing over the counts of the lower bounds
and the counts of the upper bounds.

Applying model counting to an interval’s lower bound
and upper bound yields quantifications of these formulae
that are either exact or (probabilistically bounded) over-
and underapproximate estimates on the probability mass
defined by I and I, respectively; this satisfies the postcondi-
tion of quantify_in_bounds.

This instantiation of quantify_in_bounds is straightfor-
ward but can be very imprecise depending on the precision
of the bounds. The potential imprecision can be improved
upon by focusing underapproximate analyses within the
lower and upper bounds. Any behavior that is analyzed
within the interval is guaranteed to improve the bounds,
e.g., if c is found, then the lower bound raises, and if :c is
found, the upper bound drops. Below we discuss two tech-
niques that offer this kind of improved precision.

3.3.2 Probabilistic Symbolic Execution

Probabilistic symbolic execution extends symbolic execu-
tion by computing the probability of each execution path
being triggered by a program input [18]. As in standard
symbolic execution, a program execution path (or program
path) is uniquely identified by its path condition.

Program paths are classified in one of three ways, as: (a)
reaching a target state (denotedwith ac superscript), (b)miss-
ing a target state (denoted with a :c superscript), or (c) trun-
cated (denoted with a ? superscript) because the execution
along a path failed to reach a target state within the prescribed
depth or time limit. This classification of the execution paths
induces a partition on the path conditions into three sets: (a)
PCc ¼ fPCc

1 ; . . .; PC
c
i g, (b) PC:c ¼ fPC:c1 ; . . .; PC:cj g, and

(c) PC? ¼ fPC?
1; . . .; PC

?
kg. Because each path gives rise to a

disjoint path condition, a lower bound on the probability of
reaching a target state is given by

PrcðP Þ ¼
X

i

PrðPCc
i Þ: (2)

The probability of missing a target state, Pr:cðP Þ, and the
truncated probability, Pr?ðP Þ, have analogous definitions.
As the union of path conditions induces a partition of all
execution paths, the sum of these probabilities is 1, entailing
that with any two of them the third can be computed
arithmetically.

When the analysis of PSE is focused within an interval I,
the path conditions within PCc will raise the lower bound,
or safely overapproximate I’s probability mass; and the
path conditions within PC:c will dually drop the upper
bound by the probability mass contained in the set, so PSE
safely underapproximates I’s probability mass. Thus PSE
satisfies the postcondition of quantify_in_bounds.

3.3.3 Statistical Symbolic Execution

PSE inherits the path explosion issue of symbolic execution,
in addition to the cost of quantification procedures, which
may prevent it from exploring the entirety of a program’s
executions.

Statistical symbolic execution [20] addresses the problem
of incomplete exploration by prioritizing the exploration of
paths based on their probability mass. At each branch point,
SSE computes the probability of moving towards each of
the possible successor states by quantifying the solution
space of the branch condition. The exact probability of a
path is computable after its complete traversal.

As a sampled path is completely characterized by its path
condition, it does not need to be sampled again, and can be
pruned out of the sample space. This pruning allows for
faster convergence of the statistical estimator to a prescribed
accuracy, deterministically guaranteed termination, and
more efficient coverage of rare events (i.e., execution paths
with low probability).

The classification of program paths into three distinct
sets is the same as with PSE, as is the way in which the prob-
ability mass within the sets PCc and PC:c is used to satisfy
the postcondition of quantify_in_bounds.

4 EVALUATION

In this section, we explore the cost and effectiveness of con-
ditional quantitative analysis compared to the state-of-the-
art—namely probabilistic symbolic execution and statistical
symbolic execution—, as well as how bounds within CQA
can focus further analyses. Our goal is to provide informa-
tion about the runtime, accuracy, and cost of quantification
across techniques, when applied in a context that captures
challenges for evidence generation for safety certification of
software components. To this end, we look at three research
questions.

RQ1 How cost-effective is CQA compared to the state-of-the-
art in terms of runtime and accuracy of probabilistic bounds?

RQ2 How much quantification can be avoided using CQA?
RQ3 How does conditioning within CQA progressively focus

quantitative analysis?

4.1 Algorithm Implementations

To maximize consistency in our evaluation of different algo-
rithmic approaches we implemented them on top of a com-
mon set of existing analyses. We use the open-source
ALPACA from [41] since it is the only tool we are aware of
that implements a nontrivial instantiation of generate_interv-
als for computing sound conditional information to drive
CQA. We made minor modifications to invoke a model
counter [36] to count computed intervals. ALPACA uses the
CIVL symbolic executor for C programs [67]; it also enabled
us to use a portfolio of 9 different analyzers that partici-
pated in the SV-COMP’19 competition for the synthesis of
conditioning intervals, namely: CBMC [68], CPA-BAM-
BnB [69], CPA-Seq [70], ESBMC-incr [71], PeSCo [72], Sym-
biotic [73], UltimateAutomizer [74], UltimateTaipan [75],
and VeriAbs [76].

For consistency with ALPACA, our implementations of PSE
and SSE both build on CIVL. PSE extends the default depth-
first search in CIVL to report the current PC at the end of
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each path, which will then be categorized as either PCc,
PC:c, or PC?: PCc for paths that end due to a call to the SV-
COMP function __VERIFIER_error(), PC:c for execu-
tions terminating within the time bound without invoking
the error function, and PC? for paths that hit the search
depth limit. Only PCc and PC:c paths are counted, since
PrðPC?Þ ¼ 1� ðPrðPC:cÞ þ PrðPCcÞÞ.

SSE is implemented following the design in [20], by
annotating each explored node of the symbolic execution
tree with the fraction of the input domain reaching it (quan-
tifying the path condition up to the node). Transitions dur-
ing SSE exploration are randomly chosen according to the
relative probability mass of the direct successor nodes, that
is, for each direct successor, the ratio between the fraction of
domain that can reach it and the cumulative fraction of the
domain that can reach any direct successor. On backtrack,
either due to termination of a path or reaching the depth
limit, SSE subtracts the probability of the final path condi-
tion from each node along the way up to the root; nodes
with a probability of 0 are pruned from the tree and thus
will not be visited again (intuitively, the probability mass
annotating a symbolic node represents how much of the
executions through the node have not been explored yet;
when 0, all such executions have been explored and the
node will not be sampled in subsequent runs). We use Bar-
vinok [36] for model counting (default parameters, no time-
out). Using Barvinok off-the-shelf limits our prototype to
linear integer constraints.

Before counting, path conditions are first simplified
using the Z3 solver [77] and then sliced into independent
subproblems that do not share symbolic variables (follow-
ing the slicing rules in [19]). The simplification step helps to
mitigate the impact of Barvinok’s internal transformation
into Disjunctive Normal Form for inputs containing nested
disjunctions.

4.2 Artifacts

All artifacts, including tools, subjects, and generated data
are publicly available at bitbucket.org/mgerrard/cqa.

International standards establish safety integrity levels for
safety-related functions. For the highest integrity level the
standard imposes a probability of violation per invocation
of less than 10�4—low demand mode for SIL4 [9].6 The selec-
tion and filtering of subjects suitable for evaluating CQA
was driven by this requirement that each subject has a prob-
ability of failure below 10�4.

Our choice of building on ALPACA,which relies on analyzers
that competed in SV-COMP, naturally led us to consider the
SV-COMP benchmark suite [42] since the analyzers generally
are able to process subjects in the benchmark and interpret
SV-COMP annotation primitives, for example, __VERI-

FIER_error(), whose reachability defines c-states in our
evaluation.

More specifically, we considered the sequential subjects
from the benchmark that have property violations. From
these we selected 1400 for which at least one of the 9 tools
used in ALPACA could detect a violation within 15 minutes
(SV-COMP competition timeout); note that this does not

mean that ALPACA can characterize all violating inputs for
subjects making it past this filter. From these, we filtered
out subjects that could not be processed by the ALPACA, PSE,
and SSE implementations: 412 subjects suffered from the
inability to confirm a witness to a violation (a known prob-
lem in multiple SV-COMP tools), 34 subjects contained dou-
ble or float data that is not supported by the model counters
we used, 172 could not be handled due to incomplete sup-
port for C expressions in the ALPACA implementation, and
420 subjects could not be processed by CIVL because it either
enforced strict C standards that were not met by the sub-
jects, or the subject contained an unsupported feature. The
remaining 369 subjects were run through ALPACA, PSE, and
SSE implementations.

In specific domains or applications, inputs are usually
assumed as generated by an input probability distribution.
Unfortunately, this information is not available for any SV-
COMP benchmark, even when the benchmarks are compo-
nents of real software systems. Consequently, for our evalu-
ation we assume a uniform input probability.7

For the remaining 369 subjects we ran the five considered
quantitative analysis techniques to determine whether any
could compute a lower bound on the probability of viola-
tion that exceeded 10�4. Such subjects do not reflect the type
of rare violations that make certification evidence challeng-
ing to produce, e.g., [13], [14], [15], so we removed them
from our study. This resulted in a final set of 136 C subject
programs which average 2833 SLOC—only 6 of these sub-
jects have less than 100 SLOC and the largest is 9464 SLOC.

4.3 Results

We report the results of running CQA and (unconditioned)
PSE and SEE on the 136 subjects in aggregated data; the full
details of our experiments are included in the electronic
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2020.3016778.8 These details include a variety
of measures that capture characteristics of the subjects and
their analysis, for example, the number of paths explored,
the number of gray paths whose exploration was truncated
at depth bounds, and the share of analysis time spent in
model counting. We reference these measures in the discus-
sion of our results below.

Setup. We ran our analyses on a 2x 16-core Intel Xeon
Gold 6130 server with 64 GBs of RAM running Ubuntu
Linux 18.04. We established a timeout of 90 minutes for run-
ning any of the implementations on a subject. It is not possi-
ble to determine the optimal depth limit for a given subject
ahead of time, so for this evaluation we used a depth limit
of 1,000 symbolic states for both PSE and SSE.

Results Overview. Table 1 provides an overview of our
study results. There is a row for each algorithmic variant,
where CQA has three variants depending on the technique
used to instantiate quantify_in_bounds: CQA#, CQApse, and

6. More stringent probabilities are required for high demand contexts.

7. Arbitrary discrete distributions can be reduced to mixtures of uni-
form ones over a partition of the finite domain, as in [19] therefore sup-
porting arbitrary discrete profiles would add a linear complexity factor
in the size of the partition; however, no input distribution is specified
in SV-COMP.

8. Included with the submission and also available at bitbucket.org/
mgerrard/cqa.
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CQAsse. The columns classify the performance of each tech-
nique by the number of subjects, out of 136, that share a par-
ticular outcome. The Most acc. I and Most acc. I columns
report on the number of subjects on which a technique com-
putes the most accurate lower bound, and upper bound,
respectively. For the analyses that complete, we report the
Average runtime in seconds. The final three columns report
on different characteristics across runs. The Complete column
lists the number of subjects for which the technique finishes
the analysis without timing out or being depth limited. The
Timeout column lists the number of subjects that the tech-
nique could not analyze within the 90-minute bound. The
Bounded column lists the number of subjects for which the
technique hit the depth limit—this only applies to analyses
using PSE or SSE.

We note that a run of a technique may be both depth lim-
ited and timeout; for a given technique, the counts for com-
plete, timeout, and depth limited need not sum to 136. If
two techniques produce the same most-accurate bound (for
either I or I), then both are counted as having produced the
most-accurate bound; thus the columns reporting on accu-
racy in the table do not sum to 136.

RQ1 (Time/Accuracy). CQA improves the state-of-the-art
in quantitative analysis by computing more accurate proba-
bility bounds than previous techniques, at a comparable
cost. Across the study, both CQApse and CQAsse produced
more accurate lower and upper bounds than their uncondi-
tioned counterparts. All CQA variants produce a greater
number of most-accurate lower bounds than the state-of-
the-art. This is because the variety of analysis techniques
used with generate_intervals can discover c-state reachability
within state spaces in which unconditioned PSE/SSE find
little to no c-state reachability.

With respect to the upper bound, the instantiation of gen-
erate_intervals used in this study computes upper bounds
that, when quantified directly with a model counter, are too
approximate to compete with the exhaustive techniques of
PSE/SSE. Accordingly, CQA# computes the most-accurate
upper bound for the seven subjects in which the intervals
given by generate_intervals coincide; the eighth subject is a
degenerate case on which all techniques compute the same
trivial I. However, when quantify_in_bounds is instantiated
with PSE and SSE, these approximate bounds allow CQApse

and CQAsse to produce 23 and 2 more most-accurate upper
bounds than unconditioned PSE and SSE, respectively.

Both CQA# and CQAsse complete in less time, on average,
than the state-of-the-art. The average runtime of CQApse is
less time than SSE, but is nearly 14minutes longer, on average,
than PSE; the tradeoff for the longer runtime is an increase in
the accuracy of bounds produced byCQApse.

Some of the increased accuracy in CQApse and CQAsse is a
result of the provided conditioning allowing these techniques
to complete on more subjects than their unconditioned coun-
terparts. The time spent in generate_intervals causes CQApse

andCQAsse to time out on 1 and 3more subjects than PSE and
SSE, respectively, but this time spent refining the conditioning
allowed CQApse and CQAsse to avoid being depth-bounded
on 21 and 13more subjects than PSE and SSE, respectively.

Though the CQA variants produce a greater number of
most-accurate bounds than PSE and SSE, their strengths
were found to be complementary across this study.

Figs. 1 and 2 use linear diagrams [78] to depict the over-
lap between techniques for achieving the most-accurate
lower and upper bounds on given subjects, respectively. A
linear diagram is an alternative to Venn diagrams in show-
ing the intersection between sets, in which sets are depicted
as horizontal lines across the diagram, and their intersection
is given by overlapping vertical segments. Each subject is
demarcated by a vertical stripe. For example, the lefthand
side of Fig. 1’s linear diagram tells us that CQApse alone
computes the most-accurate lower bound for four subjects,
then both CQApse and PSE compute the most-accurate
lower bound for the next six subjects, and so on. Note that
the ith stripe in Fig. 1 does not necessarily correspond to the
same subject as the ith stripe in Fig. 2.

We highlight in gold those subjects onwhich some exhaus-
tive technique (i.e., symbolic-execution-based) could com-
plete. No technique always produces the most-accurate
bound, so we give the average distance to that best bound as
colored annotations laid over the linear diagram, e.g., when-
ever CQA# does not produce the most-accurate lower bound,
it is on average 1:7� 10�11 away from that best bound.

The main takeaway from Figs. 1 and 2 is that, in the con-
text of this evaluation, conditioned and unconditioned
quantitative analyses can be seen as having complementary
strengths in bounding the probability of reaching a c-state.
This is especially apparent from Fig. 2, where the set of sub-
jects for which CQA variants compute the most accurate
upper bound are nearly disjoint from those on which PSE/
SSE perform the best.

TABLE 1
Summary of Evaluation by Technique

Most Most Avg. Run characteristics

acc. I acc. I Time (s) Complete T/O Bounded

CQA# 80 8 1,269 133 3 0
CQApse 113 77 2,488 40 32 76
CQAsse 93 59 1,418 21 57 63
PSE 51 54 1,672 34 31 97
SSE 60 57 2,886 11 54 76

Fig. 1. Linear diagram of overlap for most-accurate I.

Fig. 2. Linear diagram of overlap for most-accurate I. Sets of the most-
accurate lower (Fig. 1) and upper (Fig. 2) bound for each technique are
depicted as horizontal lines, and their intersection by overlapping vertical
segments. Each subject is given by a vertical stripe; gold stripes are sub-
jects on which an exhaustive technique completes. The numbers give a
technique’s average distance to the best bound.
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The differences inmagnitude between the average distance
to the most-accurate bounds between Figs. 1 and 2 are due to
the fact that this study is done in the context of finding
c-states that have a low probability of occurring. This means
that even if a technique like PSE does not find any probability
mass reaching a c-state, if the most-accurate lower bound is
10�27, then PSE’s probability mass of 0 is still relatively close
to the most-accurate lower bound. In contrast, if some tech-
nique times out or hits a depth bound, the vast majority of the
probability mass involves paths that do not reach a c-state
may remain unaccounted for—e.g., in the worst case for CQA
techniques, all time is spent within generate_intervals and the
upper bound is not lowered at all, as with email_spec3_-

product29. So if one technique does not complete for a sub-
ject on which another technique is particularly effective in
collecting mass reaching :c-states, the distance to the most-
accurate upper bound can be many magnitudes more than to
that of themost-accurate lower bound.

The disjointness of each interval returned by generate_in-
tervals also offers the potential for parallelism through sepa-
rate interval quantification. While it is possible to merge
each separate interval into a single one and focus quantita-
tive techniques within this larger interval—by quantifying
within the space described by the disjunction of each upper
bound and the negation of each of the lower bounds (see
Section 3.3)—we observed a 2.9� speedup within CQApse

by quantifying each interval in parallel compared to doing
so all at once.9

In terms of both runtime cost and effectiveness in com-
puting accurate probability bounds, CQA is a clear
improvement on the state-of-the-art. But the two need not
be competitors. The complementary strengths of CQA var-
iants and unconditioned PSE/SSE observed across this
study recommends that both the conditioned and the uncon-
ditioned techniques should be applied, if possible.

RQ2 (Counter Calls). As pointed out in previous work on
quantitative techniques [18], [20], in addition to the traditional
cost of programanalysis—e.g., constructing a programmodel,
exploring its feasible branches, etc.—there is a significant
component of the cost that goes into quantification, i.e., calls
to a model counter. Being able to focus quantitative analyses
on small subspaces of a program can significantly cut down
on the number of calls made to a model counter. When an
interval is exact, i.e., I 	 I, this reduction can be drastic. (Note
that, even if the probabilitymasswithin a noncoinciding inter-
val is relatively small, this interval may still contain a large
number of paths, necessitating a proportional amount of
model count calls within quantify_in_bounds.)

We restrict this discussion to comparing techniques
among common subjects that complete. When two techni-
ques complete on a subject, they have produced the same
probability bounds, so the overall work to compute the
bounds is fixed, and we can compare quantification head-
to-head, e.g., we can compare the exhaustive quantification
done by PSE against that of CQApse, which divides its work

amongst ALPACA and PSE within intervals. Comparing on
completing subjects allows us to evaluate the effect condi-
tioning has on the cost of quantification. The possible
improvement in quantification is related to how the proba-
bility mass outside of the conditioned intervals is distrib-
uted across paths. If the probability mass is concentrated in
a single path outside of the intervals, then the improvement
within CQA will be negligible (a single call saved); but if
there are many such paths then the improvement can be
substantial.

On the single subject with noncoinciding intervals for
which both SSE and CQAsse complete—cdaudio_simpl1—,
SSE spends 1,246 seconds issuing 48,758 counter queries,while
CQAsse spends 252 seconds issuing 18,360 queries. For 24 of
the subjects with noncoinciding intervals on which both PSE
and CQApse complete, CQApse reduces the number of
counter queries and counter time by 15 percent—with
CQApse issuing an average of 15,060 queries in 1,233 seconds,
and PSE issuing an average of 17,412 queries in 1,424 sec-
onds. The 25th subject with a noncoinciding interval on
which both PSE and CQApse complete—floppy_simpl3—is
an outlier in that CQApse issues 1,750 queries in 3973 seconds,
while PSE issues 1,756 queries in only 368 seconds. The rea-
son for the large difference in count times is a combination of
the fact that this subject has a large number of symbolic vari-
ables and the conditioning includes a disjunctive formula,
causing an exponential blowup in each query’s clauses and
slowing down CQApse’s overall quantification considerably.
This is a scalability issue specific to the model counter we
used for the experiments when handling disjunctive con-
straints in high-dimensional spaces. Different model coun-
ters may offer different scalability tradeoffs for different
classes of constraints, e.g., [49].

When CQA provides intervals that do coincide, then a
significant number of model counts can be avoided using
CQA. This effect is observed on 7 of the 136 subjects in our
study. On one of those subjects—kbfiltr—it is possible to
characterize this reduction since CQA#, PSE, and SSE all
complete; for the remaining 6, PSE and SSE do not complete.
On the single subject for which CQA’s intervals coincide
and both PSE and SSE complete—kbfiltr—, the CQA tech-
niques spend under 1 second issuing 4 queries, while PSE
spends 123 seconds issuing 600 queries, and SSE spends 211
seconds issuing 16,408 queries.

The relation between reduced calls to a model counter
and reduced overall analysis time depends on the complex-
ity of a program’s constraints. The subjects in this study
have only linear integer constraints, meaning programs con-
taining more complex constraints will only further highlight
the benefit of fewer calls to a model counter.

RQ3 (Focusing). This research question will not compare
against the state-of-the-art but will instead look at how the
framework of CQA itself is used to progressively focus the
accuracy of its computed logical intervals. We assume for
this question that the computed intervals do not coincide,
i.e., Ic 6¼ Ic, and that there is some uncertainty that can be
progressively resolved. (If this were not the case, and the
lower and upper bounds of Ic coincide, then the “focusing”
is a few calls to a model counter, as discussed in RQ2.)

When two bounds of an interval do not coincide, this
means there is some amount of probability mass implied by

9. Merging disjoint intervals into a single one causes a blowup of
clauses-to-quantify due to the presence of disjunctions in the merged
upper bound as well as disjunctions resulting from negating the con-
juncted lower bounds, increasing the cost of constraint solving and
model counting in our experiments.
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the upper bound of which we are uncertain, i.e., we do not
know if thismass leads to ac-state or not. CQA can focus fur-
ther quantitative analyses within :Ic ^ Ic, as discussed
in Section 3.3. Within this focused subspace of the subject, any
probability mass proven to lead to a c-state effectively raises
Ic (the lower bound), and mass proven to miss a c-state
reduces Ic (the upper).Wewill refer to the reduction of uncer-
tainty as tightening an interval. How do further analyses
tighten an interval over time, e.g., is the upper bound first
reduced, followed by the lower?; is the rate of tightening lin-
ear? do intervals containing less probability mass get tight-
ened in less time than those containingmoremass?

Fig. 3 depicts how Ic is tightened from below and from
above across a sample of four subjects10 whose bounds do
not coincide; we will call each depiction a subject’s signa-
ture. The x-axis of a signature gives the running time of a
quantitative analysis, from 0 to 270 seconds. The y-axis of a
signature ranges from 0 to 1, and the gray areas represent
the probability mass whose uncertainty has been left unre-
solved at a given time. The y-axis is depicted on a log scale
in order to visualize miniscule changes in probability mass,
ranging from 2:3� 10�187 up to 1. This means that an upper
bound of 1� 10�11 will look the same as an upper bound of
0.9, so there can be a dramatic tightening of bounds that
appears as slight reductions on the logscale plot, e.g., the
upper bound of signature d is eventually lowered to 4:7�
10�10, though no shift in the upper bound is apparent in
logscale. In Fig. 3, the instantiated quantitative analysis is
PSE. The visual steps are an artifact of PSE reporting its
probability mass findings in 15-second intervals.

In the best case, a quantitative analysis will resolve all
uncertainty, signified in a signature by the absence of gray
after some time step. In the worst case, no uncertainty is
resolved, and the gray area is not reduced at all.

The best case is visualized in both signatures b and c,
though their respective uncertainties are resolved in different
ways. In signature b, all probability mass collected accounts
for inputs that do not lead to ac-state, and the upper bound is
successively lowered. In signature c, probabilitymass account-
ing for both inputs that miss and inputs that lead to a c-state
are collected in the first 15 second timestep, both raising the
lower bound and lowering the upper bound; eventually just a
sliver of uncertainty remains in a disjoint interval until PSE
resolves this bit of probabilitymass.

Signatures a and d are examples of subjects whose uncer-
tainty has not been resolved within a time bound. The
uncertainty shown in signature a is tightened from above
and below in distinct time steps, finally leaving a relatively
small amount of probability mass unresolved. Signature d
shows PSE raising the lower bound slightly, and, though

not apparent with the log scale, the upper bound is lowered
to 4:7� 10�10, but the remaining probability mass is left
unresolved.

The diversity of signatures indicates how, in relation to
some property, the resolution of a state space’s uncertainty
can occur in quite unpredictable ways. Some of this unpre-
dictability occurs because certain portions of the state space
contain more paths to explore than other portions; but part
of the unpredictability comes from the fact that probability
mass is not distributed evenly across paths.

The amount of probability mass contained in an interval is
not related to the number of paths explored in this interval.
For instance, one interval contains 6 paths whose probabilities
sum to 2:3� 10�9, while another interval contains 7,062 paths
whose probabilities sum to the same amount. At the other end
of the spectrum, one interval contains 16 paths whose proba-
bility mass covers most of the input space. This suggests that
it is difficult to predict based on the amount of probability
mass in unexplored intervals (given by: ð1�#IÞ �#I), how
long such an interval will take to explore.

4.4 Discussion

This subsection is a more anecdotal discussion of observa-
tions culled from the study.

We observed that PSE and SSE are cost-effective when
there are paths of modest number and depth whose con-
straints are amenable to efficient quantification. This was the
case for 33 of the subjects in the study. These range from 1082
to 2726 SLOCwith between 878 and 9,032 paths—all of length
less than 1,000. A representative example is email_spec8_-
product15, which took 1,996 seconds to analyze, of which
1,568 seconds was spent in quantification procedures, and
computed an exact probability of reaching a violation of
4:7� 10�38.

When a subject contains significantly more paths, as in
email_spec1_productSimulator, a 3236 SLOC subject
with at least 19705 paths, PSE times out. PSE faces chal-
lenges with subjects like Problem01_label15 where
paths are deep and quantification is expensive. On this 580
line subject, PSE explored 29,562 complete paths, but was
forced to abort the exploration of 42,098 after hitting the
depth limit and spent 84 percent of its time quantifying
path conditions.

Like PSE, SSE also performs well on the subjects with
small state spaces—a few thousand paths of depth less than
1,000—but PSE always outperforms SSE on these cases
(both explore the entire state space, but SSE has higher
model counting overhead). The data reveal cases where
SSE’s ability to prioritize state-space exploration by proba-
bility mass has notable benefits. Both SSE and PSE timeout
on token_ring_08. After analyzing 40,999 paths, PSE is
able to reduce the upper bound to 2:3� 10�9, but it does not
find any paths to a c-state, and its lower bound is not raised
at all. In contrast SSE, only analyzes 1,275 paths before

Fig. 3. Signatures of conditioned PSE raising/reducing the lower/upper bound across different subjects.

10. We chose these four signatures as representatives of others with
similar visual patterns. All signatures can be viewed at bitbucket.org/
mgerrard/cqa_signatures.
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timing out, but is able to reduce the upper bound to 4:7�
10�10 and raise the upper bound to 2:2� 10�19.

Many benchmarks in the study mimic the structure of
embedded control system components. They include a top-
level REPL that reads an input at each iteration, then applies
a cascade of filters to the inputs to determine how to update
its internal state, and finally executes an action based on the
input and state. The subjects vary in the size of their internal
state, the number of filters they apply, the nature of their
state updates, and the specific location of the property viola-
tion. They range in size from 580 to 9,464 SLOC and they
have substantial state spaces, as evidenced by PSE’s explo-
ration of more than 100k paths prior to timing out on
Problem03_label43.

Our manual analysis of representatives from this group of
subjects reveals a common structure to their violations. Prop-
erties are violated only when sequences of values satisfying
specific constraints are read during iterations of the top-level
REPL. For all of these subjects, there is an iteration bound on
the REPL beyond which no violation will be exhibited. This
give rise to an unbounded nonviolating state space.

It is no surprise then, that on all of these subjects PSE and
SSE either timeout or reach a depth limit. We note that for
subjects like these, a depth-limited symbolic execution to
handle infinite loops changes the semantics of such long
running subjects and may lead to unusable results (i.e.,
there may be violations beyond the depth bound that would
not be detected and quantified). While the maximum proba-
bility of such deep violations must be smaller than the prob-
ability of the gray paths, because their execution has been
truncated, in REPL control loops the total mass of gray
paths may be significantly large, preventing PSE and SSE
from obtaining tight violation probability bounds within a
feasible search depth.

While the CQA variants also cannot produce exact
bounds on this group of subjects, the conditioning provided
allows symbolic execution to avoid many unbounded non-
violating state spaces—the number of depth-limited paths
is always less for CQApse and CQAsse than their uncondi-
tioned counterparts. In many cases, the reduction of depth-
limited paths is drastic: on Problem03_label26, PSE is
depth-limited on 64,679 paths and yields an upper bound of
2:3� 10�9, while the conditioning given by generate_intervals
allows CQApse to only hit 7176 depth-limited paths and
yields an upper bound of 6:5� 10�18.

4.5 Limitations and Threats to Validity

Implementation. The main goal of this preliminary evaluation
was to explore the capabilities of a proof-of-concept proto-
type of the mathematical framework behind CQA. Our
implementation of PSE/SSE inherits all the limitations of
the current version of CIVL’s symbolic execution engine (e.g.,
strict conformance to C standards, limited support for non-
integer domains, specific assumptions about the memory
model) [79]. Our model counting interface delegates count-
ing of linear integer constraints to Barvinok [36], after basic
simplifications of the constraints via Z3 [77]; more advanced
or specialized counting routines developed for established
PSE/SSE analyzers may be faster.

Benchmark.Because there is no universally accepted specifi-
cation format for properties and violation witnesses, to

maximize compatibility with the tools in ALPACA we used the
SV-COMP benchmark. Filtering out subjects not analyzable
by our prototype tool implementations and with high viola-
tion probability, left a corpus of 136 programs that were suffi-
cient to highlight limitations of all the approaches we
considered. We remark that despite the limitations of the arti-
facts studied in this work, they have been able to confirm both
the limitations and the potential of CQA techniques that were
expected from theirmathematical formalization.

We caution the reader in making conclusions about the
external validity of our findings. While this corpus of pro-
grams may be a starting point, clearly a broader set of pro-
grams, ideally accompanied with realistic input distribution
specifications, will be needed to construct a comprehensive
benchmark for assessing quantitative analysis tools.

Internal Validity. The ability to integrate available tools
off-the-shelf 11allowed us to develop prototype CQA imple-
mentations and assess their potential. However, the tools
underlying ALPACA, PSE, and SSE are complex and highly-
configurable. We use these tools in their default configura-
tion and do not have control over their internals. We have
not controlled for all of the factors that may influence their
performance and this may impact the performance of CQA
techniques. This is quite challenging and benchmarking the
performance of static analysis tools and constraint solvers
remains an open problem, e.g., [80], [81], [82], [83], [84].
Nevertheless, we took measures to cross check the probabil-
ity intervals produced by all tools to confirm their consis-
tency and we monitored for anomalies in underlying
metrics reporting on the operation of the tools. After this
check, we found no inconsistencies in reported bounds
across the study.

4.6 A Benchmark for Analysis Techniques for High-
Confidence Systems

The results of this study establish an absolute ground truth
for 40 of the 136 subjects considered. These are the subjects
on which some exhaustive technique (i.e., symbolic-execu-
tion-based) could complete. For those subjects on which
none of the techniques could compute this ground truth,
the probability mass of reaching a c-state is in general
tightly bounded. There is a corpus of 135 examples on
which the probability of reaching a c-state ranges from less
than 4:7� 10�10 down to 4:8� 10�96. (The 136th subject is a
degenerate case in which all techniques compute the same
trivial I.)

Fig. 4 depicts the least upper bound computed by any
technique across subjects via an impulse plot. The y-axis
gives the upper bound on the probability mass reaching a
c-state in logscale, and each “impulse” on the x-axis repre-
sents one of the 135 nondegenerate subjects. The impulses
are sorted by descending heights of least upper bounds,
where the probability mass above each least upper bound
represents the probability mass that is guaranteed to be

11. Tools that participate in SV-COMP are able to interpret annota-
tion primitives such as __VERIFIER_error()—whose reachability
defines c-states in our evaluation, and __VERIFIER_assume

()—which allows us to inject assumptions about program variables
into the code. In this way, any analyzer competing in SV-COMP can be
plugged into ALPACA off-the-shelf.
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safe. Fig. 4 demonstrates that the techniques in this study
are able to compute highly accurate upper bounds on the
probability of reaching a c-state for the given subjects, and
we hope these bounds will soon be further lowered.

When analyzing the probability-of-failure in high-confi-
dence systems, the upper bounds offer the most appealing
guarantees, e.g., the assurance that your system will not fail
outside of these bounds. For the state-of-the-art in quantita-
tive analysis, the challenge and excitement lies in effectively
reducing these upper bounds. While the techniques used
within our study could not compute ground truths for all
subjects, we hope this corpus will be used as a benchmark
for other researchers to use in exploring analysis and testing
for high-confidence systems.

5 RELATED RESEARCH

In this work we proposed a framework to use a combination
of static analysis tools to synthesize conditions characteriz-
ing execution subspaces that must or may not reach a target
state, and use this information to either bound the probabil-
ity of reaching a target, or to condition subsequent path-sen-
sitive quantitative analysis procedures for PSE or SSE.

Static program analysis of non-quantitative properties is
a broad field, but we are applying the state-of-the-art rather
than extending it. Our instantiation of generate_intervals
using ACA (via ALPACA) provides us with ready access to a
large and diverse set of analyzers [21], [22]. These include
abstract interpretation based overapproximation tools, such
as CPACHECKER, and SMT-based underapproximation tools,
such as CBMC. The ACA framework builds upon research
that combines may and must analyses [12], [85], [86], [87],
[88], [89], [90]; applying these ideas is recommended in
order to implement a nontrivial instantiation of generate_in-
tervals. For CQA, the presence of overapproximating analy-
ses is critical since they can summarize and classify entire
sets of execution paths [91], which in turn can be quantified
as a whole instead of requiring a more costly path-sensitive
traversal of each path.

Conditioning is a method proposed in verification to
combine the portions of state space confirmed as safe or fail-
ing using different techniques [47]. Researchers have pro-
posed various methods to focus verification efforts on
reduced portions of a program: passing state predicates
between model checkers to restrict the considered state
space [47], [92]; combining verification and systematic test-
ing [93], [94]; transforming one program to another contain-
ing fewer execution paths while retaining the possible
property violations of the original program [95], [96]. With

CQA, we aimed at providing a mathematical foundation
linking logical conditioning to conditional probability theo-
rems, thus enabling the instantiation of conditional verifica-
tion in the area of quantitative analysis.

Quantitative analysis in software engineering has histori-
cally been focused on the analysis of probabilistic abstrac-
tions of architectural models via probabilistic model
checking [97] or on the definition of probabilistic abstract
interpretation methods [28], [98], [99]. The former can take
advantage of efficient probabilistic model checkers [97], but
requires a manual construction of the models, which are dif-
ficult to keep consistent with code implementations. The lat-
ter proves difficult to effectively generalize to the constructs
of modern programming languages (no tools exist for
industrial-strength languages, to the best of our knowl-
edge). Probabilistic symbolic execution [18] is a recent tech-
nique exploiting symbolic execution to extract conditions
on the input leading to target states. We presented techni-
ques in this family in Section 3. Variations of PSE and SSE
have also been used for exact/approximate reliability analy-
sis [19], [100], performance analysis [101], and detection and
automated exploitation of side-channel vulnerabilities in
both regular and probabilistic programs [102], [103]. In this
paper, we focused on non-probabilistic programs; investi-
gating possible extensions of CQA to general probabilistic
programs [104] and approximate computing [105], [106] is
left as future work.

Testing [52], [53] and classic underapproximating analy-
ses aim at producing actionable evidence to drive the
debugging process and their use is complementary to verifi-
cation and CQA for certification as they cannot prove the
absence of errors or sound bounds on the probability of
error [51]. As already discussed, statistical techniques can
be coupled with uniformly random testing to obtain statisti-
cal bounds on error probability (e.g., [24], [25], [26]), how-
ever, the number of runs required to achieve high accuracy
and confidence bounds may be prohibitive and rare paths
(e.g., guarded by an equality condition like x==42) are
unlikely to be explored. As a white-box analysis, CQA pays
the scalability cost of static analyses which can limit its
applicability to larger problems, for which weaker statistical
guarantees are the only viable alternative [107]. Despite
their limitations, CQA techniques have proven applicable to
components of up 9,400 SLOC which is larger than compo-
nent sizes suggested for safety critical systems [108].

6 CONCLUSION

We introduced Conditional Quantitative Analysis, which
instantiates principles from conditional verification to allow
logical evidence produced by non-quantitative static analy-
ses to support more expensive quantitative analyses. CQA
links logical conditioning used in verification to a conditional
probability framework, enabling quantitative analyses to
compute improved sound bounds on the probability of
property violations. Our preliminary evaluation found evi-
dence that CQA-enabled techniques extend the state-of-the-
art in quantitative program analysis, highlighting the limita-
tions and potential of several of them.

Our future work will seek to investigate further optimi-
zations of the techniques enabling the CQA framework and

Fig. 4. Least upper bounds per subject across techniques.
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their interactions, including the direct use of quantitative
information within the iterative process of ACA to greedily
drive logical interval synthesis and refinement towards effi-
ciently accumulating violation evidence with the largest
probability mass.

More broadly, we believe it essential for the research
community to focus on developing mathematically well-
founded analysis techniques to support the certification of
software in critical systems. We plan to work with research-
ers and practitioners developing such systems to build a
broader and more representative benchmark that can drive
future research advances.
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DPWord2Vec: Better Representation
of Design Patterns in Semantics
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Abstract—With the plain text descriptions of design patterns, developers could better learn and understand the definitions and usage

scenarios of design patterns. To facilitate the automatic usage of these descriptions, e.g., recommending design patterns by free-text

queries, design patterns and natural languages should be adequately associated. Existing studies usually use texts in design pattern

books as the representations of design patterns to calculate similarities with the queries. However, this way is problematic. Lots of

information of design patterns may be absent from design pattern books and many words would be out of vocabulary due to the content

limitation of these books. To overcome these issues, a more comprehensive method should be constructed to estimate the relatedness

between design patterns and natural language words. Motivated by Word2Vec, in this study, we propose DPWord2Vec that embeds

design patterns and natural language words into vectors simultaneously. We first build a corpus containing more than 400 thousand

documents extracted from design pattern books, Wikipedia, and Stack Overflow. Next, we redefine the concept of context window to

associate design patterns with words. Then, the design pattern and word vector representations are learnt by leveraging an advanced

word embedding method. The learnt design pattern and word vectors can be universally used in textual description based design

pattern tasks. An evaluation shows that DPWord2Vec outperforms the baseline algorithms by 24.2-120.9 percent in measuring the

similarities between design patterns and words in terms of Spearman’s rank correlation coefficient. Moreover, we adopt DPWord2Vec

on two typical design pattern tasks. In the design pattern tag recommendation task, the DPWord2Vec-based method outperforms two

state-of-the-art algorithms by 6.6 and 32.7 percent respectively when considering Recall@10. In the design pattern selection task,

DPWord2Vec improves the existing methods by 6.5-70.7 percent in terms of MRR.

Index Terms—Design pattern, word embedding, Word2Vec, semantic similarity, tag recommendation, design pattern selection

Ç

1 INTRODUCTION

SOFTWARE design patterns derive from the notion of design
pattern in the area of architecture [1], aiming to docu-

ment reusable experience for recurring software design
problems [2]. In recent years, many studies about design
patterns have been conducted [3], [4], [5]. As to the litera-
ture, there are roughly two ways to describe design pat-
terns: the formal way and the informal way.

The formal way specifies design patterns with formally
defined pattern languages. For example, the Gang-of-Four
(GoF) book respectively uses Unified Modeling Language
(UML) class diagram and sequence diagram to illustrate the

structure and collaborations of each design pattern [2]. A
number of studies are based on the formal descriptions of
design patterns [4], [6], as formal specifications enhance the
capabilities of machine processing [7]. However, there are
some weaknesses of the formal way. First, it is inconvenient
to precisely specify the intent and applicability of design
patterns. Second, building the meta-model of each design
pattern is usually costly [8]. Third, the formal way may lose
human readability, which is critically important to the util-
ity of design patterns [7].

Conversely, the informal way depicts design patterns
with free text. Comparing with the formal way, it is more
understandable and convenient to describe design pattern
relevant artifacts in words. Thus, the informal way is a
profitable supplement to the formal way. To provide tool
supports for design pattern relevant tasks based on infor-
mal descriptions, the key point is to establish the semantic
relationships between design patterns and natural lan-
guages, so that the retrieval or identification of design pat-
terns can be practically realized. However, to associate
design patterns with natural languages is no easy job. A
design pattern name is usually a phrase, such as “factory
method”. An experienced developer may capture the
semantics of the design pattern via the name as he/she
understands the relevant background. But for the automatic
tools, it is difficult to comprehend the connotations from
only these several words. More information about design
patterns should be provided for them to “learn” the back-
ground knowledge.
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To obtain exact semantic information of design patterns,
the existing studies usually take the descriptions in design
pattern books as standard definitions of design patterns [8],
[9], [10]. If a snippet of text is similar to the standard defini-
tion of a design pattern, then it is likely to be related to the
design pattern. Hence, the relatedness between design pat-
terns and natural languages can be estimated. However,
this kind of methods is still problematic. On one hand,
much information about design patterns is absent from
these books. Design pattern books usually depict the mecha-
nisms, scenarios, and specifications of design patterns [2].
As time goes by, many applications beyond the original
design pattern books have been developed. For example,
the Active Record design pattern is related to the Ruby on
Rails framework as Active Record provides the data model
of the framework.1 The AngularJS framework implements
the Dependency Injection design pattern itself and usually
accompanies by this design pattern.2 These relationships
cannot be mined from design pattern books. On the other
hand, the vocabulary extracted from design pattern books is
usually too small. The lengths of descriptions in design pat-
tern books are limited and many natural language words
may be out of the scope. It is difficult to handle the texts
containing many out-of-vocabulary words. Therefore, the
wide usage of this kind of methods is restricted.

In this study, we aim to overcome these issues by con-
structing a general method to estimate the relatedness
between design patterns and natural language words, in
order that it can be universally used in the tasks based on
informal descriptions of design patterns. The “words” here
refer to as both plain natural language words, such as
“factory” and “method”, and software specific terms, such
as “angularjs”. Inspired by theword embeddingmethod [11],
we propose DPWord2Vec that maps both design patterns
and natural language words into one vector space. With the
design pattern and word vectors, the similarity between a
design pattern and a word or a document can be calculated.
In this way, the relationship between natural languages and
design patterns can be built. However, there are two chal-
lenges to be addressed. First, how to find a relatively large
corpus about design patterns? Second, how to associate a
design pattern with its relevant natural language words for
vectors training?

To handle the first challenge, we build a general corpus
containing 491,555 documents. The general corpus consists
of two parts: the description corpus and the crowdsourced
corpus. The description corpus contains relatively formal
design pattern descriptions that are extracted from design
pattern books and Wikipedia. The crowdsourced corpus is
constructed based on a set of design pattern relevant Stack
Overflow posts obtained from our previous work [12]. Then
we extend the concept of context window in Word2Vec to
our general corpus and define the context windows for each
design pattern and each word respectively. In this way, the
linkages between design patterns and words are established,
that is, the design pattern context windows contain words
anddesign patterns appear inword contextwindows.Hence,
the second challenge can be properly addressed. Finally, the

design pattern and word vector representations are learnt by
leveraging an advanced word embedding method, namely
GloVe [13], based on these context windows.

To clarify the quality of the learnt design pattern and
word vectors, we deploy an evaluation with a dp-word
(design pattern - word) similarity task. Experimental results
on 2,000 manually labelled dp-word pairs show that the
learnt vectors by DPWord2Vec are more effective than
some widely used semantic relatedness estimation algo-
rithms, i.e., outperform these algorithms by 24.2-120.9 per-
cent in terms of Spearman’s rank correlation coefficient. To
show the practicability, we depict two applications of
DPWord2Vec to solve two typical design pattern tasks, i.e.,
design pattern tag recommendation and design pattern
selection. In the first application, when recommending the
top 10 design pattern tags for the posts in a software infor-
mation site, the DPWord2Vec-based method outperforms
two state-of-the-art tag recommendation methods by 6.6
and 32.7 percent respectively in terms of Recall@10. In the
second application, the method refined by DPWord2Vec
outperforms the two existing design pattern selection meth-
ods by 6.5 and 70.7 percent respectively when considering
the mean values of Mean Reciprocal Rank (MRR) over three
design pattern collections.

In this paper, we make the following contributions:

1) We propose DPWord2Vec that maps both design
patterns and natural language words into vectors to
support design pattern relevant tasks. To the best of
our knowledge, this is the first work that establishes
the universal relationship between design patterns
and natural languages.

2) We evaluate DPWord2Vec on a manually labelled
dp-word pair dataset to show its effectiveness in
semantic relatedness estimation.

3) DPWord2Vec is applied to two design pattern rele-
vant tasks, namely design pattern tag recommenda-
tion and design pattern selection. DPWord2Vec
outperforms the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
shows the background of the study. Section 3 presents the
framework of DPWord2Vec. The settings and results for
evaluating DPWord2Vec are depicted in Sections 4 and 5,
respectively. Sections 6 and 7 introduce two applications of
DPWord2Vec. Section 8 discusses potential threats to valid-
ity. Some studies related to our work are outlined in
Section 9. We conclude the paper in Section 10.

2 PRELIMINARIES

Before the depiction of DPWord2Vec, we demonstrate the
concept of design pattern in this study and briefly introduce
the word embedding technique.

2.1 Concept of Design Pattern

Generally speaking, design patterns are proven solutions to
recurring software design problems [2]. However, to the
best of our knowledge, there are no formal definitions nor
standard lists of design patterns. There exist numbers of
design pattern collections that are published with multiple
channels, such as design pattern books, academic papers, or

1. https://guides.rubyonrails.org/active_record_basics.html
2. https://angular.io/guide/dependency-injection
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online libraries [7]. Design patterns in different collections
may be depicted in different ways, e.g., in flat text format or
using UML. In this paper, we focus on the design patterns
with rich textual descriptions and collect design patterns
from various sources.

Similar to “design pattern”, “architecture pattern” is also
a means for software design. Strictly, they are not a same
concept, but the boundary between themmay not be unified
for different design pattern collections. For example, Model
View Controller is an example of architectural pattern in
Wikipedia3 but marked as a design pattern in MSDN.4

Therefore, instead of creating a standard subjectively, we
choose not to distinguish them in our study. Once an entity
is identified as a design pattern in some design pattern col-
lections, we regard it as a design pattern.

2.2 Word Embedding

Word embedding is a set of techniques that maps words or
phrases in the vocabulary to vectors of real numbers. The
core part of DPWord2Vec is also word embedding, but it
handles both words and design patterns. Word embedding
methods focus on mapping words into a continuous vector
space with a much lower dimension than the size of vocabu-
lary and the vector representation of each word is deter-
mined by supervised learning based on the corpus [11].

To facilitate the demonstration, we explain how word
embedding works with an example. Assuming there is a
corpus that contains a sentence: “software design patterns
encapsulate proven solutions that address recurring prob-
lems”. To mine the relationships between words, the sliding
context window strategy is usually used [11]. A context
window contains a central word and several surrounding
words which are at a distance of no more than c positions
from the central word. For example, the context window
with centre “patterns” and c = 2 contains the surrounding
words “software”, “design”, “encapsulate”, and “proven”.
Multiple local context windows are constructed as the cen-
tral word slides from the beginning (“software”) to the end
(“problems”) of the corpus.

Then the word vectors are learnt based on these local
context windows. The intuition is that if two words appear
frequently in the same context window then their vector
representations are highly associated. For example, the
objective of the Skip-gram model is to learn word vector
representations that are good at predicting each surround-
ing word by the vector of the central word [11]. Conversely,
the Continuous Bag-of-Words (CBOW) model aims to pre-
dict the central word by the concatenation or average of the
vectors of the surrounding words [11]. Different from them,
the GloVe model counts the number of the total co-occur-
rences of each pair of words through all the local context
windows and predicts the co-occurrence number by the
vectors of the words in the pair [13].

3 THE DPWORD2VEC FRAMEWORK

DPWord2Vec aims to embed natural language words and
design patterns into one vector space. This process can be

divided into four phases (as shown in Fig. 1). At first, the
corpus related to design patterns are acquired from multi-
ple sources. Next, the documents in the corpus are prepro-
cessed. Then, we propose a context window-based strategy
to strengthen the tie between words and design patterns. At
last, the word and design pattern vectors are trained based
on the corpus and the context windows.

3.1 Corpus Building

To train the vectors of words and design patterns, a corpus
relevant to design patterns should be built at first. Formally,
we construct a general corpus C, which contains multiple
documents. For each document doc in C, doc has two compo-
nents: the token component doc:Tokens, a sequence of natural
language words that describes some design patterns, and the
design pattern component doc:DPs, a set of design patterns
described by doc:Tokens. The general corpus C can be further
categorized into two groups according to their sources.

Description Corpus. Documents in this corpus are extracted
from design pattern books and Wikipedia. Some design pat-
tern books catalog their own lists of design patterns. For
example, GoF presents 23 design patterns with the problem
definitions and design specifications [2]. A design pattern is
usually described by a chapter or a section in a design pattern
book. Similarly, a number of design patterns are specified by
Wikipedia as entries with one page for each design pattern.5

A chapter or section of a design pattern book, or a Wikipedia
page of a design pattern forms a document doc. In this corpus,
doc:Tokens denotes the whole text in the chapter, section, or
page, but excluding the code snippets. Meanwhile, doc:DPs
contains only one element, i.e., the described design pattern.

Totally, the description corpus contains 431 documents,
which are associated with 13 design pattern books and 125
Wikipedia pages. Amongst the design pattern components,
349 unique design patterns are involved.

Fig. 1. The framework of DPWord2Vec.

3. https://en.wikipedia.org/wiki/Architectural_pattern
4. https://msdn.microsoft.com/en-us/library/ms978748.aspx 5. https://en.wikipedia.org/wiki/Category:Software design patterns
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Crowdsourced Corpus. Documents in this corpus are con-
structed by referring to the programming forum, i.e., Stack
Overflow.6 In the previous study [12], 187,493 design pat-
tern relevant question posts spanning from August 2008 to
December 2017 are detected in Stack Overflow.

A design pattern relevant post indicates the design pattern
name(s) appears at least one time in the post. However, it is
not a trivial string matching task to detect the design pattern
occurrences in Stack Overflow posts, as the discussions on
StackOverflow are usually informal [14], [15] and the name of
a design pattern may not be mentioned in a unique form. It is
also referred to as the morphological form issue [14]. The pre-
vious study has attempted to address this issue in two
aspects. On the one hand, the standard design pattern names
as well as other common names are collected simultaneously
from the existing design pattern collections, e.g., design pat-
tern books, inwhich the other well-known names of each con-
taining design pattern are usually presented explicitly, e.g.,
marked as “also known as”. These names include aliases, e.g.,
“open implementation” is an alias for “reflection”, and acro-
nyms, e.g., “mvc” is an acronym for “model view controller”.
On the other hand, regular expressions are leveraged to allow
some variants when searching a design pattern name in the
text of the Stack Overflow posts. For example, the regular
expression for “model view controller” is “model[ba-z]?view
[ba-z]?controller”, where “[ba-z]?” denotes a non-alphabetic
character that matches zero or one time, so that the variants
such as “model-view-controller”, “model_view_controller”,
and “modelviewcontroller” can be involved. A manual vali-
dation on the sampled posts shows that the detection
is acceptably accurate, i.e., achieves Precision value of
97.3 percent and Recall value of 87.8 percent. More details can
be obtained by referring to [12].

We use these question posts to construct the crowd-
sourced corpus. Moreover, it is enriched by all the answer
posts to these design pattern relevant question posts. A
question post and each of its answer post are assigned to
different documents. The relevant design pattern(s) to an
answer post is as same as its question post. For a document
doc in this corpus, doc:Tokens denotes a content merging the
title and body part of a question or answer post with code
snippets discarded, and doc:DPs is the set of the relevant
design pattern(s) to the post.

Finally, there are 491,124 documents in this corpus and
210 unique design patterns are involved.

By merging the two corpora, we obtain a general corpus
C, which contains 491,555 documents.7 The involved design
patterns are indexed and form a design pattern vocabulary,
namely VDP , with 372 design patterns. Although the docu-
ments in the description corpus are far less than those in the
crowdsourced corpus, the description corpus is indispens-
able for building the design pattern vectors. On one hand,
the description corpus makes it possible to build vectors for
the design patterns that are rarely discussed in Stack Over-
flow. On the other hand, this corpus tends to provide more
formal and precise depictions of design patterns than the

crowdsourced corpus. We will show its significance in
Section 5.1.

3.2 Corpus Preprocessing

Comparing to the general natural language documents, the
amount of design pattern relevant documents tends to be
quite small. Therefore, our built corpus is relatively smaller
than those for training the common word vectors [11], [13].
Based on this actuality, we perform preprocessing on the
token component of each document aiming to filter out the
insignificant and redundant information and build a com-
pact vocabulary.

At first, code-like tokens (e.g., function names) in a natural
language sentence are split according to its camel style to
ensure the semantic integrity of the sentence. With this step,
on the one hand, these code-like tokens can be converted into
more understandable identifiers [16] to better reflect the
semantic meanings. On the other hand, the volume of the
vocabulary can be reduced. Next, we tokenize and lowercase
the token component of each document. Then, the less infor-
mative tokens, including English-language stop words, spe-
cial tags (HTML tags in Stack Overflow posts, and reference
markers in design pattern books and Wikipedia pages), and
non-alphabetic characters (e.g., numbers) are removed from
the text, as they are not very useful to reflect the semantic rela-
tionship between the natural language and design patterns.
Moreover, each token is stemmed to its root form, e.g.,
“developer”, “developed”, and “developing” to “develop”.
As the words with a same root usually have similar mean-
ing [17] and the vector representations of themare also similar
in some word embedding methods [18], [19], we can simply
regard them as a same word without losing much semantic
information. At last, we discard the words that occur nomore
than five times in the corpus when constructing the vocabu-
lary but retain them in the corpus. These words are likely to
be noisy terms [20] and it is not significant to train the vectors
of them.

Some of the above steps, such as camel case splitting,
stop words removing, and word stemming, may be not
common in word embedding methods. With abundant
training corpora, vector representation of each distinct iden-
tifier in the text can be learnt. However, due to the scale of
the design pattern corpus, it is reasonable to conduct these
preprocessing steps to reduce the vocabulary size, i.e., the
number of vectors to be learnt, to adapt to the corpus. Fur-
thermore, the focus of this study is to build the semantic
relationship between natural languages and design pat-
terns, it is not a core concern to represent all the identifiers
precisely. As a common concept in the word embedding
methods, the word context will not be significantly affected
by the preprocessing, since the eliminated tokens contain
little semantic information and the meanings of the changed
tokens are mainly retained. It is adequate to apply the word
embedding methods to the preprocessed corpus.

After the preprocessing, we obtain a word vocabulary
VWord that contains 27,770 words.

3.3 Context Window Construction

As to the corpus we build, each document contains two
parts: the natural language words and the design patterns.
To train the vectors of words and design patterns together,

6. https://stackoverflow.com/
7. The detailed description corpus and crowdsourced corpus, as

well as the number of relevant documents to each design pattern are
available via https://github.com/WoodenHeadoo/dpword2vec.
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we should combine the two parts. In standard word embed-
ding models, words are usually associated by leveraging
the sliding context window-based strategy [11]. For exam-
ple, in the Skip-gram model, the vector representation of
the central word is learned for predicting the other words in
a context window. Similarly, the CBOW model uses the
composition of the vectors of the surrounding words in a
context window to predict the central word. Hence, a rea-
sonable method for associating natural language words and
design patterns is to locate them in a context window.

To this end, an intuitive way is to regard design pattern
names appearing in natural language text as special “words”.
Concretely, given a document doc in the corpus C, for the
design patterns in doc:DPs, we detect all the occurrences of
design pattern names (including aliases) in doc:Tokens and
replace them with predefined tokens. These predefined
tokens are the “words” of design patterns andmixedwith the
natural languagewords. Then design patterns can be handled
together with natural language words by the sliding context
window-based strategies. However, there is a main issue for
this way: design pattern names tend to appear infrequently in
the text. For instance, Fig. 2 presents a paragraph in a post
(#131766) of Stack Overflow. This paragraph indeed describes
the Dependency Injection design pattern, but the design pat-
tern name only appears one time at the beginning of the para-
graph. When applying the sliding context window-based
strategies to this paragraph, the design pattern Dependency
Injection can be only associated with some words in the front
but the rest are ignored.

To resolve this issue, we redefine the concept of context
window by considering both natural language words and
design patterns. In the new definition, the context window
size is not fixed, but there is also a parameter of context win-
dow size for words as the standard models. For clarity, we
name it as c.

There are two types of context windows:
Context Window for Word. For a word in a document, the

context window for this word contains other words around

the word with radius c and all the design patterns the docu-
ment describes. Formally, for a document doc in C, let
doc:TokensðiÞ denote the ith word of the text and
doc:Tokens:len denote the length of the text. The Context
Window of doc:TokensðiÞ is defined as

ContextWord
doc ði; doc:TokensðiÞÞ

¼fdoc:TokensðjÞjmaxf1; i� cg � j �
minfdoc:Tokens:len; iþ cg; j 6¼ ig [ doc:DPs:

(1)

Take the document in Table 1 as an example. Assuming c ¼
2, the Context Window for the sixth word “interface” con-
tains the two words ahead of it (i.e., “facade” and
“provide”), the two words behind it (i.e., “create” and
“subsystem”), as well as the two design patterns mentioned
in the document (i.e., “[abstract-factory]” and “[facade]”).

Context Window for Design Pattern. Given a design pattern
described by a document, the context window for the
design pattern consists of all the words in the text and the
other described design patterns. Formally, for a document
doc and a design pattern dp 2 doc:DPs, the Context Window
of dp is

ContextDP
doc ðdpÞ

¼fdoc:TokensðjÞj1 � j � doc:Tokens:leng
[ ðdoc:DPs� fdpgÞ:

(2)

For example, in Table 1, the Context Window for the design
pattern “[abstract-factory]” contains all the words (i.e.,
“abstract”, “factory”, ..., “class”) and the other design pat-
tern “[facade]”.

According to the definitions of the two context windows,
a design pattern can be associated with each word in the
document that describes the design pattern. The tie between
words and design patterns is strengthened. To show the
effectiveness of the new definitions, we use the performance
of the method that leverages design pattern name occur-
rences (mentioned above) for comparison in Section 5.3.

With the definitions, for any document doc in C, the con-
text window of each word in doc:Tokens and the context
window of each design pattern in doc:DPs are constructed.

3.4 Vectors Training

Once the context windows are clarified, the word and
design pattern vectors can be generated by any sliding con-
text window-based models. In DPWord2Vec, we choose
GloVe [13] for vector generation, due to the following
reasons:

Fig. 2. A paragraph that describes the Dependency Injection design pat-
tern. The design pattern name is in red bold font and the words in the
context window (of size five) of the name are in blue italic font.

TABLE 1
An Example for Two Types of Context Windows (c ¼ 2)

a As declared above, the stop words are eliminated from the text of the document (in strikeout fonts) and the rest of the words are stemmed to their root forms.
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1) GloVe is a state-of-the-art model that outperforms
Skip-gram and CBOW on several natural language
processing tasks with higher efficiency [13].

2) GloVe benefits from both global co-occurrences and
local context windows. Global co-occurrences suit to
present the dp-word relationships and design pat-
tern - design pattern relationships. Meanwhile, the
word - word relationships could be well handled by
local context windows. Therefore, the GloVe model
is suitable for this scenario.

To train the vectorswith GloVe, the input of GloVe should
be specified. Generally, the input of GloVe is the entries co-
occurrence counts matrix X, whose element Xij represents
the number of times entry j occurs in the context window of
entry i. In DPWord2Vec, entry j and entry i can be any word
in the word vocabulary VWord or any design pattern in the
design pattern vocabulary VDP . Therefore, in DPWord2Vec,
Xij is calculated respectively when entry i is a word and
when entry i is a design pattern according to the two defini-
tions of context window. Note that Xij ¼ Xji for any j and i
according to our context window definitions, hence only half
of the entries co-occurrence counts should be calculated.

Moreover, the dp-word co-occurrences are weighted.
According to [21], the frequencies of words follow Zipf’s law
in natural language corpora. Similarly, the number of rele-
vant posts in Stack Overflow to each design pattern exhibits
a long tail behavior [12]. That means, the distribution of
words or design patterns is highly skewed. Moreover,
according to the definitions, the context window of a design
pattern contains all the words in the document and the
design pattern is also contained in the context window of
each of the words. As a result, some design patterns may
appear commonly in the context windows of many words,
i.e., potentially relate to many words, and vice versa. When
dealing with the tasks which request to associate design pat-
terns with words, e.g., to retrieve design patterns by key-
words, we should ensure these very common design
patterns not to be over weighted. Likewise, the words that
are contained in the context windows of many design pat-
terns should also be well handled. Hence, a weighting strat-
egy is applied to diminish the effects of these common terms.
Formally, if entry j is a word and entry i is a design pattern,
Xij is tuned by the weights of j and i. The weights are calcu-
lated just like the inverse document frequency value

wj ¼ log
#VDP

OccurDP ðjÞ
� �

; wi ¼ log
#VWord

OccurWordðiÞ
� �

; (3)

where OccurDP ðjÞ denotes the number of unique design
patterns in VDP that ever occur in the context window of
word j and OccurWordðiÞ denotes the number of unique
words in VWord that ever occur in the context window of
design pattern i. The weights are normalized by the average
values

fwj ¼ wj

avgfwj0 jj0 2 VWordg ;fwi ¼ wi

avgfwi0 ji0 2 VDPg : (4)

Finally,Xij is recalculated as

fXij ¼ ceilðXij �fwi �fwjÞ; (5)

where ceilð:Þ is a function that converts a floating number to
the nearest integer.

Given the vector dimension, the vectors of words in VWord

and design patterns in VDP are generated by GloVe8 based
on the entries co-occurrence counts matrix X. For training
GloVe, we use the settings in [13], i.e., the number of itera-
tions is 100, the initial learning rate is 0.05, and the model
parameters xmax ¼ 100 and a ¼ 0:75. Finally, the word and
design pattern vectors are calculated as the sum of the
“input” and “output” vectors generated by GloVe.9

4 EVALUATION SETTINGS

In this section, we present the experimental settings for
evaluating the DPWord2Vec model, including evaluation
protocols, baseline algorithms, evaluation metrics, and
parameter settings of DPWord2Vec.

4.1 Evaluation Protocols

In this subsection, we demonstrate the strategy and dataset
for evaluating DPWord2Vec.

Word similarity tasks are usually leveraged to evaluate
the quality of word vectors in word embedding models [13],
[18], [22], [23]. Generally speaking, two semantically rele-
vant words should indicate that their vector representations
are similar [22]. In DPWord2Vec, “word” means natural
language word or design pattern. As we focus on the rela-
tionship between natural languages and design patterns,
only the dp-word similarity is considered. This similarity
can be estimated by calculating the cosine similarity of the
word vector and the design pattern vector. To the best of
our knowledge, there exist no publicly available datasets for
dp-word similarity evaluation. Therefore, we build a new
dataset of dp-word pairs with relatedness labels to address
this issue.10

Design Pattern Selection. At first, a list of design patterns is
selected. To obtain a diverse list of design patterns, we select
design patterns based on their frequencies, like the methods
for word similarity datasets construction [18], [23]. The fre-
quency of a design pattern means the number of documents
inC that describe the design pattern. The 372 design patterns
in VDP can be grouped into five classes according to five fre-
quency intervals: (0,10], (10,50], (50,400], (400,1500], and
(1500,+1). Except the first class which contains a relatively
large number of infrequent design patterns, the other four
classes have similar sizes, i.e., there are 34, 33, 33, and 34
design patterns in these classes respectively. We randomly
sample ten design patterns from each class and get a list of 50
design patterns.

Pair Construction. Next, for each design pattern, we select
a list of words to form pairs. Given a design pattern, if a
word is randomly selected from VWord, it is unlikely to be
related to the design pattern. In other studies, word pairs are
constructed by usingWordNet synonym sets [18], [23]. How-
ever, there are no similar databases specified for design pat-
terns as to our knowledge. Hence, we employ the frequency

8. https://nlp.stanford.edu/projects/glove/
9. The source code and the learnt word and design pattern vectors

can be accessed on https://github.com/WoodenHeadoo/dpword2vec.
10. We provide the dataset on https://github.com/WoodenHeadoo/

dpword2vec.
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of co-occurrence to select words. The intuition is if a design
pattern and aword appear in the same document frequently,
they are more likely to be relevant, then the word is more
likely to be chosen. Concretely, given a design pattern, 40
non-duplicated words are randomly chosen based on a dis-
tribution, in which the probability of choosing a word is pro-
portional to the number of documents containing both the
word and the design pattern. Then we obtain 50�40 = 2,000
dp-word pairs and the number is comparable to those in [18]
and [23].

Human Judgment. According to the last step of word simi-
larity datasets construction [18], [23], [24], the relatedness
between the design pattern and the word in each pair is
manually labelled. To reduce the influence of personal
biases, we recruit three graduate students to label the pairs.
These participants all have bachelor’s degrees majoring in
computer science or software engineering and have been
trained in object-oriented programming including design
pattern relevant skills. They are also experienced with anno-
tating software artifacts, such as evaluating the quality of
the enriched API specifications and scoring the results of
the code search algorithms.

Before labelling these pairs, all the participants go over
the materials of the involving design patterns as a retro-
spect. When labelling, each dp-word pair is sent to each par-
ticipant and he/she attempts to construct a context that the
word is mentioned and associated with the design pattern.
In this procedure, the participants are allowed to search for
the texts that contain the design pattern and the word on
the Internet to help them. If one still doubts whether such a
context exists, the documents in C, in which the design pat-
tern and the word co-occur, can serve as references. For
each participant, a pair is labelled as “related” if the design
pattern and the word can be associated in some certain con-
texts, and labelled as “unrelated” if they are hard to be
linked or the meaning of the word is so general that the link
seems to be too weak. The final label of a pair is “related” or
“unrelated” if the participants can reach an agreement, i.e.,
they all label it as “related” or “unrelated”. Otherwise, its
final label is “somewhat related”. That means, there exists
some uncertainty but the relatedness is between “related”
and “unrelated”.

From the labelling process, we get some observations.
Some pairs are consistently labelled as “related” since the
word can describe the use scenario of the design pattern
directly and the relationship between them can be easily
imagined. For example, Publish/Subscribe is a messaging
design pattern that provides instant notifications for distrib-
uted applications. The related words include “event” (the
notifications are events), “channel” (notifications are broad-
casted via the channel), and “endpoint” (the notification
publishers and subscribers are all endpoints). Some pairs
are related when considering the background of the entity
that the word represents. For example, the word “wpf”
refers to a programming framework. It is supposed to be
related to the Model View ViewModel (MVVM) design pat-
tern as it is a typical application of MVVM. For the pairs with
the consistent label “unrelated”, the association between the
word and the design pattern is usually too weak to make
sense. They may just be mentioned in a same document occa-
sionally, for instance, Sharding - “excel”, Iterator - “message”,

andDecorator - “plugin”. Thewordswhosemeanings tend to
be very general, such as “idea”, “make”, and “sometime”, are
also labelled as “unrelated” to anydesign patterns as it is diffi-
cult to specify a scenario that they can be related. Except for
the consistently labelled ones, some pairs are controversial.
For example, “dismiss” can represent a specific operation in
the ViewController design pattern. However, it is also some-
what a general meaning word. Two participants judge it to
be related to ViewController but the other one labels
“unrelated”. Hence, the final label is “somewhat related”. To
measure the degree of agreement among the participants, we
calculate the Fleiss’ Kappa. The value is 0.6421, which means
a substantial agreement. Therefore, the labelling results are
relatively reliable.

After the labelling process, 369 pairs (18.45 percent) are
labelled as “related”, 457 pairs (22.85 percent) are labelled
as “somewhat related”, and 1,174 pairs (58.7 percent) are
with the label “unrelated”.

4.2 Baseline Algorithms

There exist several similarity methods to estimate semantic
relatedness between natural language words. We take three
categories of intensively used methods as baselines. This
categorization can cover that adopted in [25].

4.2.1 Latent Semantics Based Methods

In this category ofmethods, thewords anddesign patterns are
represented by latent variable vectors. Then the relatedness
between a word and a design pattern can be measured by the
cosine similarity.11 This category includes Latent Semantic
Indexing (LSI) and Latent Dirichlet Allocation (LDA).

LSI (also known as Latent Semantic Analysis, LSA) is an
unsupervised algorithm of analyzing the relationships
between documents and terms by producing a set of latent
semantic concepts [26]. It has been used in estimating seman-
tic relatedness in source code [25]. In the evaluation, the
input of LSI is the term� document matrix, in which an ele-
ment represents the frequency of a term (word or design pat-
tern) appearing in a document. Then the words and the
design patterns are represented in a low-dimensional (latent)
space by applying singular value decomposition. The
dimension of the latent space is initially set as 10 and then
gradually increased. During this process, the performance of
LSI is evaluated. The value which achieves the best perfor-
mance is retained and recorded. Finally, the dimension is set
as 400.12

LDA is a topic modeling technique that has been used for
analysing software-specific data in several studies [20], [27],
[28], [29]. To use LDA in the evaluation, each document in
the corpus C is represented as a bag of words and design
patterns without order. With the Gibbs sampling based
implementation of LDA [30], each word or design pattern
in a document is assigned to a topic. By considering the
whole corpus, the words and the design patterns can be rep-
resented as probability distributions over topics. The topic

11. https://en.wikipedia.org/wiki/Cosine_similarity
12. In fact, the performance of LSI in terms of NDCG@40 and

Spearman’s r does not change much when the dimension is larger than
250. The details are shown on https://github.com/WoodenHeadoo/
dpword2vec/blob/master/baselines/LSI.md.
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number is set to 40 as it has been shown to be appropriate
for the Stack Overflow dataset [28].

4.2.2 Co-occurrence Based Methods

Co-occurrence based methods calculate the similarity (or
distance) between a word and a design pattern directly
based on their co-occurrences, including Pointwise Mutual
Information (PMI) and Normalized Google Distance (NGD).

PMI is an intuitive and computationally efficient related-
ness method for massive corpora of textual data [31]. NGD is
a semantic distance measure between words or phrases
based on information distance and Kolmogorov complex-
ity [32]. It has been verified to be effective in quantifying
semantic relatedness between individual code terms (named
Normalized Software Distance, NSD) [25]. Since NGD is a
distance measure, the similarity can be obtained by negating
the value of NGD. Both PMI and NGD take the frequency of
a word (i.e., the number of documents containing the word),
the frequency of a design pattern (i.e., the number of docu-
ments containing the design pattern), and the frequency of
the co-occurrence (i.e., the number of documents containing
both the word and the design pattern) in the corpus C as
input, but calculate themeasures in different ways.

4.2.3 Vector Space Model Based Method

Another baseline is the Vector Space Model (VSM). Specifi-
cally, we use the Term Frequency - Inverse Document Fre-
quency (TF-IDF) [33] schema to model the text. By
multiplying each row of the term� documentmatrix (which
is also the input of LSI) by the IDF value of the correspond-
ing term, we obtain a matrix of TF-IDF values. Each row of
the TF-IDF matrix can be regarded as the vector of the corre-
sponding term (word or design pattern), which indicates
the TF-IDF value of the term in each document. With these
term vectors, the dp-word similarity can be also obtained
by calculating the cosine similarity. Actually, the calculation
of the IDF values is redundant in this case. Since the IDF
weighting is operated on each entire term vector, the multi-
plied IDF values are eliminated automatically when calcu-
lating the cosine similarities. Therefore, this model is
equivalent to represent a term with a row of the term�
documentmatrix.

4.2.4 Software-Specific Method

In the evaluation, we consider a domain-specific method,
WordSimSE, which aims to build WordNet like resources
for software [24]. WordSimSE is a composite method that
measures the similarity between terms by combining
weighting strategy and co-occurrences. We use the Word-
SimSE method to calculate the dp-word similarities based
on the corpus C. Moreover, there are three parameters to be
clarified. According to the definition in [24], a word or a
design pattern can be classified into one of the three groups:
popular software tag, if it is a top 10 percent most frequent
Stack Overflow tag; non-popular software tag, if it is a Stack
Overflow tag but not in the top 10 percent; and ordinary
term, otherwise. The three groups are weighted with three
different parameters, namely 2.8, 2.0, and 1.4, which are
also used in [24].

4.3 Evaluation Metrics

In our built dataset, each design pattern is paired with 40
words, which are labelled as “related”, “somewhat related”,
or “unrelated” to the design pattern. We want to investigate
whether the similarity scores given by the similarity meth-
ods could correspond with the labelled ones. To this end,
we use two metrics for evaluation, namely NDCG and
Spearman’s rank correlation coefficient.

Normalized Discounted Cumulative Gain (NDCG) is a
measure of ranking quality in information retrieval and
employed in several software engineering tasks [34], [35],
[36]. For each design pattern, a similarity method ranks the
40 words in descending order according to their similarity
scores. The measureNDCG@k is calculated as

NDCG@k ¼ DCG@k

IDCG@k
;DCG@k ¼

Xk

i¼1

ri
log 2ðiþ 1Þ ; (6)

where ri denotes the degree of relevancy of the ith
ranked word and its permissible values are 3 (“related”),
2 (“somewhat related”), and 1 (“unrelated”). IDCG@k is
the ideal value of DCG@k that normalizes the measure
into [0,1].

Spearman’s rank correlation coefficient (Spearman’s r) is
a non-parametric measure of rank correlation which is usu-
ally used in the evaluations of word similarity tasks [13],
[18], [23]. It represents the correlation between the ranks of
the 40 words based on the similarity scores of a similarity
method and the ranks based on the labelled relevance scores.
However, there are only three unique labelled relevance
scores in our dataset. Following [37], words with a same
score are assigned with a same average fractional rank. Spe-
cifically, after ranking the 40 words according to the three
labels, we assume that the first m1 words are “related”, the
middle m2 words are “somewhat related”, and the last m3

words are “unrelated”. The rank of the “related” words is
1
m1

� ð1þm1Þm1
2 ¼ m1þ1

2 , the rank of the “somewhat related”
words ism1 þ m2þ1

2 , and the rank of the “unrelated” words is
m1 þm2 þ m3þ1

2 . Then the coefficient is calculated as

r ¼ 1� 6
PN

i¼1 d
2
i

NðN2 � 1Þ ; (7)

where N ¼ 40, denotes the length of the rank list, and di is
the difference between the two ranks of the ith word.

5 EVALUATION RESULTS

In this section, we investigate the following four research
questions (RQs) to evaluate different aspects of DPWord2Vec.

5.1 RQ1: How Do the Settings of the Parameters
Affect the Performance of DPWord2Vec?

5.1.1 Motivation

The performance of DPWord2Vec may vary when using dif-
ferent settings. In this RQ, we investigate how DPWord2Vec
performs under different values of the parameters, i.e., the
dimension of the vectors, the size of context window for
words, and the ratio of the weights of the two corpora.
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5.1.2 Approach

Each of the three parameters is investigated independently.
Specifically, we adjust the value of one parameter and ana-
lyse how the performance of DPWord2Vec changes. Mean-
while, the other two parameters keep fixed.

We change the value of the vector dimension (d) from 50
to 1,000, including 50, 100, 200, 300, 400, 500, 800, and 1,000.
The value of the context window size for words (c) varies
from 5 to 100, including 5, 10, 20, 30, 40, 50, 80, and 100.More-
over, we explore the importance of the description corpus
and the crowdsourced corpus under different ratios of
weights (r). The ratio m : n indicates that each document in
the description corpus and each document in the crowd-
sourced corpus are added into the final corpus for m and n
times, respectively.

5.1.3 Results

The results for the three parameters are presented respec-
tively at follows.

Dimension of Vectors. The fold lines in Fig. 3a plot how the
mean values of NDCG@k change with different vector
dimensions. For simplicity, we only show the results for k =

5, 10,..., 40. The bars in Fig. 3a show the mean values of
Spearman’s r on different vector dimensions. The settings
of the other two parameters are c = 10 and r = 1:1. In
Fig. 3a, we notice that all the fold lines have similar
trends. The values of NDCG rise slightly when the vector
dimension varies from 50 to 200 and then keep stable as
the vector dimension increases further. Meanwhile, by
referring to the bars, a similar trend can also be found on
Spearman’s r. In general, the performance of DPWord2-
Vec is not very sensitive to the vector dimension in terms
of NDCG and Spearman’s r.

The dimension of the vector controls over the granularity
of the representation of a word or a design pattern. A larger
vector dimension tends to produce more fine-grained and
detailed vector representations. However, the performance
cannot further improve when the vector dimension is larger
than 200. It may imply that the representations of words
and design patterns reach the saturations at this vector
dimension based on the current model and corpus.

Size of Context Window for Words. The values of NDCG
and Spearman’s r under different settings are presented in
Fig. 3b as line chart and bar chart, respectively. The other
two parameters are fixed at d = 100 and r = 1:1. As shown in
the figures, both NDCG and Spearman’s r all have an
approximately descending trend as the context window
size increases, especially from c = 10 to c = 20. The perfor-
mance at c = 5 is comparable to that at c = 10. For example,
NDCG@40 is 0.9556 at c = 5 and 0.9548 at c = 10, the former
is slightly better; Spearman’s r is 0.6141 at c = 5 and 0.6273
at c = 10, the later is slightly better. Generally, the descend-
ing trends are not very significant.

The context window size in DPWord2Vec only affects the
context windows for words, it determines the number of
surrounding words that a word is associated with. Too large
context window size results in too many surrounding
words that would diminish the syntactic information. It
may lead to low-quality vector representations of words
and design patterns, and then impairs the performance.

Ratio of Corpora Weights. The results are shown in Fig. 3c.
The other two parameters are set as d = 100 and c = 10.
From the figures, we notice that the values of both NDCG
and Spearman’s r reach their peaks at r = 1:1, i.e., when the
two corpora are directly mixed. The performance at r = 5:1
is the most similar one to that at r = 1:1. When changing the
ratio, the performance drops and reaches the worst in the
two directions at r = 1:0 and r = 0:1. That means, we will get
bad results when using only one of the two corpora.13

From the results, we can conclude that both the descrip-
tion corpus and the crowdsourced corpus are all indispens-
able for good performance. Although the description
corpus is much smaller than the crowdsourced corpus, its
effects cannot be neglected. The description corpus may
stand for “quality” which supplies precise descriptions of
design patterns, and the crowdsourced corpus stands for
“quantity” which provides rich textual data relevant to
design patterns.

Fig. 3. Mean NDCG and Spearman’s r of DPWord2Vec under different
parameter settings on the 50 design patterns.

13. Some words or design patterns may be out of the vocabulary
when using only one corpus. In this case, the vectors are represented as
random initial values. It may be a reason for the bad results. Neverthe-
less, it also implies that neither of the corpora is negligible.
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5.1.4 Conclusion

Generally, the performance of DPWord2Vec is not very sen-
sitive to the dimension of vectors, but the settings of the con-
text window size and the corpora weights affect the
performance. To get a good performance, the context win-
dow size for words should not be too large, and the descrip-
tion corpus and the crowdsourced corpus should be
balanced. The following experiments are all based on the set-
tings that d = 100, c = 10, and r = 1:1.

5.2 RQ2: Does DPWord2Vec Outperform the
Baseline Algorithms in the dp-Word Similarity
Task?

5.2.1 Motivation

In this RQ, we explore whether DPWord2Vec can be
superior to the baseline algorithms in dp-word similarity
estimation.

5.2.2 Approach

We compare DPWord2Vec against the six baseline algo-
rithms, namely LSI, LDA, PMI, NGD, VSM, and Word-
SimSE, on our dp-word pair dataset. The two metrics, i.e.,
NDCG and Spearman’s r, are applied for evaluation.

5.2.3 Results

Fig. 4a shows the mean values of NDCG@k of the five algo-
rithms and DPWord2Vec over the 50 design patterns on
various k. Fig. 4b presents the averaged value of Spearman’s
r of these algorithms. As shown in Fig. 4a, DPWord2Vec
almost outperforms all the baseline algorithms for all values
of k. For example, NDCG@40 of DPWord2Vec is 0.9548,

which outperforms those of LSI, LDA, PMI, NGD, VSM,
and WordSimSE by 0.0173, 0.0494, 0.0559, 0.0472, 0.0155,
and 0.0421, respectively. In Fig. 4b, DPWord2Vec outper-
forms LSI, LDA, PMI, NGD, VSM, and WordSimSE by 32.3,
120.9, 60.4, 57.4, 24.2, and 63.9 percent respectively in terms
of Spearman’s r. As the metrics are only shown in mean val-
ues, we use Wilcoxon signed rank test [38] to investigate
whether there are significant differences between the per-
formance of DPWord2Vec and the baseline algorithms over
the 50 design patterns. For NDCG@40, the p-values when
comparing DPWord2Vec against the baseline algorithms
are all less than 3e-6. For Spearman’s r, the corresponding
p-values are all less than 1e-7. That means, DPWord2Vec
significantly outperforms the baseline algorithms in terms
of NDCG and Spearman’s rank correlation coefficient.

Among the baseline algorithms, LSI and VSM achieve bet-
ter performance and the other four have somewhat compara-
ble performance when considering NDCG and Spearman’s
r. We note that LSI and VSM are all based on the term�
document matrix. It means that this way of text representa-
tion is relatively suitable for this task. The software specific
method, WordSimSE, does not perform quite well in the
evaluation. A possible reason is that there are differences
between the software domain and the design pattern
domain, as design patterns are universal solutions to recur-
ring design problems and tend to be independent of specific
software entities.

To gainmore intuitions of how the algorithms perform,we
give an example of ranked lists of these algorithms. Table 2
shows the top ten most related words to the design pattern
Record Set [39] ranked by each algorithm. For DPWord2Vec,
the ten words are all labelled as “related” or “somewhat
related” to the design pattern Record Set. The top ten lists of
the other algorithms all contain “unrelated” words, which are
shown in boldface. For example, for LDA, PMI, andNGD, the
top ten lists are contaminated by the noise word “jone”. The
word “jone” is a person name and usually used as an example
of usernamewhen discussing database records in Stack Over-
flow (e.g., post #10050790). However, “jone” is not semanti-
cally related to Record Set. The top ten lists of LSI, VSM, and
WordSimSE contain words with too general or vague mean-
ings, e.g., “try”, “get”, and “use”.

5.2.4 Conclusion

DPWord2Vec significantly outperforms the baseline algo-
rithms on the dp-word similarity task in terms of NDCG
and Spearman’s r.

5.3 RQ3: Does the Usage of the New Context
Windows Contribute to the Performance of
DPWord2Vec?

5.3.1 Motivation

In DPWord2Vec, we define new context windows for design
patterns and words respectively (Section 3.3). In this RQ, we
explore whether the usage of these context windows is an
advisable choice to associate design patternswith words.

5.3.2 Approach

To investigate the effects of the new context windows, we
replace them with the traditional fixed context windows

Fig. 4. Mean NDCG and Spearman’s r of each baseline algorithm and
DPWord2Vec on the 50 design patterns.
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used in Word2Vec [11] and repeat the experiments on the
dp-word pair dataset. As the words and the design patterns
are independent in the corpus C, we use two strategies to
integrate words and design patterns into sequences, namely
the occurrence strategy and the shuffling strategy, so that they
can be handled by the traditional context windows.

The design pattern name occurrences strategy is to detect
the occurrences of design pattern names in the text as
design pattern tokens. This strategy is discussed in Sec-
tion 3.3. The shuffling strategy is leveraged in a recent study
to align words and APIs into a fixed context window [40].
Following [40], for a document doc, the words in doc:Tokens
and the design patterns in doc:DPs are merged and ran-
domly shuffled for ten times to produce ten token sequences
(containing both words and design patterns).

Moreover, we also consider two other strategies which
represent design patterns in higher levels rather than token
level. They are from Doc2Vec [41] and Category enhanced
Word Embedding (CeWE) [42], respectively. The original
Doc2Vec aims to embed words and paragraphs or docu-
ments into vector spaces. Based on this model, we regard a
design pattern as a document-level term to learn its vector
representation. Specifically, the vector of each document in
Doc2Vec is substituted with the vector of the design pattern
which is contained in the document. Each design pattern in
VDP always keeps a unique vector even if it appears in differ-
ent documents. However, a document may contain multiple
design patterns. In this case, its word tokens (doc:Tokens) are
duplicated multiple times so that each duplicate can be com-
bined with a design pattern. Recently, Nguyen et al. have
used the same approach to produce the vector representa-
tions of APIs andwords [43].

Likewise, CeWE can learn the vector representations of
words as well as categories. A category indicates a label or a
classification of documents. A document may belong to
multiple categories. In this study, we regard each design
pattern as a category. In this way, design patterns are also
associated with words in document level and their vectors
can be obtained accordingly.

For all the strategies above, the parameters, including
the dimension of the vectors, the size of context window, the
initial learning rate, and the number of iterations, are the
same as in Section 3.4. As introduced in [42], the parameter �
of CeWE is set to be 1=ð2 � cþ 1Þ, where c is the size of con-
text window.

5.3.3 Results

The results are shown in Figs. 5a and 5b in terms of NDCG
and Spearman’s r, respectively. As shown in the figures, we

notice that the performance of DPWord2Vec with the occur-
rence strategy (Occ.) is poor. For example, the Spearman’s r
is 0.1315, even worse than all the baseline algorithms in Sec-
tion 5.2. DPWord2Vec with the shuffling strategy (Shuff.),
and the strategies of Doc2Vec and CeWE, achieve compara-
ble performance. Among them, the shuffling strategy tends
to be slightly better than the other two, but still surpassed
by DPWord2Vec with the new context windows. According
to Wilcoxon signed-rank test, the differences between the
performance of the default DPWord2Vec and that with the
other strategies on NDCG@40 and Spearman’s r are statisti-
cally significant (p-values are all less than 1e-5).

The drawback of the occurrence strategy is obvious. As the
design pattern names tend to be sparse in the text, it is hard
to mine the relationships between words and design pat-
terns adequately by leveraging the context windows. With
regard to the shuffling strategy, it may break the structure of
the natural language sentences and do harm to the capture
of semantic relationships. Moreover, the shuffling process
will significantly increase the size of the corpus (almost ten
times the original one) which results in extra computation
complexity.

The two document-level strategies, i.e., that from Doc2-
Vec and CeWE, have similar mechanisms. The core is that,
in each document, the vectors of the design patterns are
integrated with the vectors of the surrounding words in a
context window to predict the central one. Hence, design
patterns can be deemed to be contained in the context of
words in some way. However, there exists no similar con-
text for design patterns and the design patterns in a docu-
ment are not predicted by the vectors of the involving

TABLE 2
The Top 10 Most Related Words to Record Set

Design Pattern of Each Algorithm

Fig. 5. Mean NDCG and Spearman’s r of the variants of DPWord2Vec on
the 50 design patterns. Occ. = DPWord2Vec with the occurrence strategy,
Shuff. = DPWord2Vec with the shuffling strategy, Doc2Vec = DPWord2-
Vecwith the strategy of Doc2Vec, CeWE=DPWord2Vecwith the strategy
of CeWE,W/OW. = DPWord2Vec without the weighting strategy.
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words. Compare to these strategies, the new context win-
dows can build stronger ties between design patterns and
words.

5.3.4 Conclusion

DPWord2Vec with the new context windows can achieve
better results than the variants with the two serializing strat-
egies and the two document-level strategies. Thus, the usage
of the new context windows does contribute to the perfor-
mance of DPWord2Vec.

5.4 RQ4: Does the Weighting Strategy Contribute
to the Performance of DPWord2Vec?

5.4.1 Motivation

A weighting strategy is applied in the training phase of
DPWord2Vec (Section 3.4). To verify whether this strategy
is redundant, we set up this RQ.

5.4.2 Approach

We construct a variant of DPWord2Vec by removing the
weighting strategy. Then the performance of the variant is
compared against that of the default DPWord2Vec.

5.4.3 Results

The results are also presented in Figs. 5a and 5b (W/OW.).
In Fig. 5a, we observe that there are minor effects on
NDCG@k with small k after removing the weighting strat-
egy. The differences are obvious when k is larger than five.
When considering all the 40 words for each design pattern,
the values of NDCG@40 and Spearman’s r after removing
are respectively 0.9471 and 0.5603, which are all worse than
the original ones, i.e., 0.9548 and 0.6273. As the mean values
seem to be close, we perform Wilcoxon signed-rank test on
NDCG@40 and Spearman’s r. The p-values are respectively
2.72e-3 and 1.05e-5, which indicates the differences are sig-
nificant according to the p < 0:05 standard. Moreover, we
quantify the magnitude of the difference of performance by
analysing the effect size. Specifically, Cohen’s d [44] is calcu-
lated to measure the differences between the means of the
metrics with and without the weighting strategy. The
results for NDCG@40 and Spearman’s r are 0.2959 and
0.6087, which indicate a small-medium effect size and a
medium-large effect size [45], respectively. That means, the
effect of the weighting strategy on the performance is not
negligible.

Based on the results, we note that DPWord2Vec achieves
better performance with the weighting strategy, especially
in terms of NDCG@k with k > 5. Without the weighting
strategy, the irrelevant but frequent words, such as “get”
and “case”, may be included in the top k list with a rela-
tively large k and ranked ahead of the ones which are
labelled as “related”. The weighting strategy could effec-
tively weaken the relationships between the design patterns
and these words, thus improves the performance.

5.4.4 Conclusion

DPWord2Vec can benefit from the weighting strategy for
measuring dp-word similarity.

6 APPLICATION I: DESIGN PATTERN TAG
RECOMMENDATION

Many software information sites allow developers to label
their posts with tags, such as Stack Overflow, Ask Ubuntu,
and Freecode. Tags are short descriptions within a few
words long that are provided as metadata to classify, iden-
tify, and search software objects in these sites [46]. To
improve the quality of tags in software information sites, a
series of automatic tag recommendation methods have been
proposed to recommend appropriate tags for new posts
based on existing tag candidates [47], [48], [49], [50], [51]. In
this application, we consider a design pattern specific tag
recommendation task that recommends design pattern tags
for design pattern relevant posts. That is, each recommended
tag is a design pattern. By the recommendations, the synony-
mous design pattern tags could be better avoided, which
results in better information organization and retrieval for
design pattern relevant posts.

6.1 Common Methods for Tag Recommendation

Actually, the design pattern tag recommendation task can also
be accomplished by general tag recommendation methods.
We briefly introduce themethods for tag recommendation.

The main intuition of the existing tag recommendation
methods is to use the historical information of tag assign-
ments to recommend tags for new posts. Concretely, the tag
recommendation methods analyse the existing posts and
their tags in a software information site, and then infer the
relationship between a tag and a word or a whole post.
When a new post is coming, the same analysis process is
deployed on this post with the inferred results and each tag
is given a likelihood score. The top few tags with the highest
likelihood scores will be recommended. By restricting the
tags to design pattern tags, i.e., each tag represents a design
pattern, these methods are directly applied in the design
pattern tag recommendation task.

6.2 Design Pattern Tag Recommendation Based
on DPWord2Vec

In this part, we explain how to recommend design pattern
tags by leveraging DPWord2Vec.

With DPWord2Vec, design patterns and natural lan-
guages are associated. We can use these associations for
design pattern tag recommendation. As the content of a
post is a typical document that contains multiple words, to
recommend design pattern tags for a post, the relationship
between a design pattern and a document should be built
based on the word and design pattern vectors. Therefore,
we adopt the text semantic similarity [52] to measure the
relatedness between a design pattern and a set of words

SimðWords; dpÞ ¼ 1

2

�P
w2Words IDF ðwÞ � Simðw; dpÞP

w2Words IDF ðwÞ
þ max

w2Words
Simðw; dpÞ

�
; ð8Þ

where IDF ðwÞ is the inverse document frequency14 value of
the word w in the corpus C and Simðw; dpÞ is the vector
cosine similarity between w and the design pattern dp.

14. https://en.wikipedia.org/wiki/Tf-idf
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Generally, given a new design pattern relevant post, there
are three steps for design pattern tag recommendation:

1) Preprocess and tokenize the textual description of
the post following the procedures in Section 3.2.

2) For each design pattern tag in the tag candidate set,
calculate the similarity between the design pattern
and the post as Formula (8).

3) Rank the design pattern tags in descending order
according to their similarities and recommend the
top k design pattern tags.

6.3 Evaluation on Design Pattern Tag
Recommendation

6.3.1 Motivation

In the evaluation, we try to explore whether the DPWord2-
Vec-based method performs better than the common tag
recommendation methods on the design pattern tag recom-
mendation task.

6.3.2 Approach

To evaluate the effectiveness of the DPWord2Vec-based
method, we compare it against the state-of-the-art tag rec-
ommendation algorithms on a real-world dataset. We detail
the strategies for evaluation, the constructed datasets, the
state-of-the-art tag recommendation algorithms, and the
leveraged metrics as follows.

Strategies. As to our knowledge, there are two software
information sites in which design patterns are broadly dis-
cussed: Stack Overflow and Software Engineering.15 How-
ever, on one hand, the posts in Stack Overflow have been
leveraged by DPWord2Vec, it is inappropriate to use them to
evaluate DPWord2Vec again. On the other hand, the amount
of design pattern relevant posts in Software Engineering is
relatively small (less than 3,000, a dataset of tag recommenda-
tion usually contains more than 13,000 posts [47], [48], [49],
[50], [51]), it may be detrimental for the other tag recommen-
dation algorithms to train proper models based on these
posts. Therefore, the main strategy for evaluation is to use the
Software Engineering posts for testing, and use the Stack
Overflow posts to train tag recommendationmodels.

Datasets. We download the Stack Overflow posts (from
August 2008 to December 2017) and the Software Engineer-
ing posts (from September 2010 to March 2019) to construct
the datasets. Before that, the design pattern tags should be
detected. At first, we construct the regular expressions for
the names of each design pattern in VDP . Specifically, each
design pattern name is split into word(s), i.e., word1,
word2; . . . ; wordn, and the regular expression is written as
“word1-?word2...-?wordn(-pattern)?” (as words can only be
separated by hyphens in tags). In this way, the tags like
“active-record”, “activerecord”, and “active-record-pattern”
can all be matched with the design pattern name “active
record”. Next, all the tags of these posts are extracted and a
tag is mapped to a design pattern if it matches with a name
of the design pattern via the corresponding regular expres-
sion. Then, we manually review each mapped tag if it has a
description in the corresponding software information site

to filter out false-positive tags that do not denote the design
patterns. At last, multiple tags are merged into one tag if
they are mapped to the same design pattern. Finally, 94 and
36 design pattern tags are detected in Stack Overflow and
Software Engineering, respectively. In this way, the design
pattern tags of the two sites are unified and these tags have
a one to one correspondence with the design patterns.

With the design pattern tags, we construct two datasets: a
dataset for training the common tag recommendationmodels
and a dataset for testing the common models and the
DPWord2Vec-based model. To build the training set, we
extract the Stack Overflow posts that contain the design pat-
tern tags but discard the tags appearing in less than 50 posts
as they are less interesting and less useful to serve as repre-
sentative tags [47]. For the test set, we extract the Software
Engineering posts that contain the design pattern tags but dis-
card the tags not appearing in the training set as they cannot
be recommended by the common tag recommendation algo-
rithms. Finally, the training set contains 176,427 Stack Over-
flow posts and 74 design pattern tags which are used as
candidates, the test set contains 2,986 Software Engineering
posts and 35 design pattern tags.16 Like the training set here,
the crowdsourced corpus, which is for training the design
pattern and word vectors, is also constructed based on the
StackOverflowposts. It should be noted that they are distinct.
The crowdsourced corpus consists of the posts with at least
one design pattern name appearing in the titles, bodies, or
tags. It involves 210 design patterns in total. In contrast, the
training set only cares about the posts containing design pat-
tern tag(s). The latter can be roughly covered by the former.

According to the settings above, the common tag recom-
mendation models are trained on the Stack Overflow posts
containing the design pattern tags. Meanwhile, our DPWord2-
Vec-basedmodel relies on the design pattern andword vectors
learnt form the corpus C. In other words, these models do not
have a consistent training set. To achieve unbiased compari-
sons, we conduct another part of evaluation in which the
corpus C is also used for training the common tag recommen-
dationmodels. Specifically, each document inC is regarded as
a post and each design pattern in a document is regarded as a
design pattern tag. Then, all the 372 design patterns in VDP

serve as candidates.
State of the Arts. To the best of our knowledge, there are

three common tag recommendation algorithms, TagMul-
Rec [49], EnTagRec++ [50], and FastTagRec [51], shown to
be the state-of-the-art on software information sites. Similar
to word embedding models, FastTagRec represents words
as vectors and recommends tags using neural network-
based classification. Given a new post, TagMulRec first
locates the posts that are semantically similar to it, and then
exploits multi-classification to produce a ranked tag list.
EnTagRec++ integrates the historical tag assignments and
the information of users for tag recommendation. However,
EnTagRec++ cannot be applied here as the training set and
the test set are from different sites which do not share the
same group of users. Therefore, we only take TagMulRec
and FastTagRec for comparisons.

15. https://softwareengineering.stackexchange.com/

16. The training and test sets, as well as the original tag - design pat-
tern mappings are available on https://github.com/WoodenHeadoo/
dpword2vec.

1240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

https://softwareengineering.stackexchange.com/
https://github.com/WoodenHeadoo/dpword2vec
https://github.com/WoodenHeadoo/dpword2vec


In addition, with the concern that the design pattern
names may appear in the posts explicitly, we deploy a base-
line method which leverages the occurrences of design pat-
terns. Specifically, the design pattern names of each design
pattern in the tag candidate set are searched in the Software
Engineering posts (the test set) by using the regular expres-
sions (as discussed in Section 3.1). A post is supposed to
contain a design pattern tag if one of the design pattern
names appears in the title or body of the post. Since the
common tag recommendation methods only provide likeli-
hood scores for ranking the candidate tags, for this baseline
method, the design pattern tags are also sorted according to
the numbers of design pattern occurrences for comparabil-
ity. If there are no or not enough design pattern occurrences
found in the post, the design pattern tags are sorted in
alphabetical order.

Metrics. The recommending strategy of all the algorithms
above is to provide a rank list of candidate design pattern tags
and recommend the top k ones. To evaluate the recommenda-
tions, we exploit three metrics, Recall@k, Precision@k, and
F1� score@k, which are usually used to evaluate tag recom-
mendation systems on software information sites [49], [51]. In
particular, the sample-wisemetrics are calculated as

Recall@ki ¼ jRankListki \ Tagij
jTagij ; (9)

and

Precision@ki ¼ jRankListki \ Tagij
k

; (10)

where Tagi and RankListki are the set of real design pattern
tags and the set of top k recommended design pattern tags
for the ith posts in the test set, respectively. By combining
Recall@ki and Precision@ki

F1� score@ki ¼ 2 �Recall@ki � Precision@ki
Recall@ki þ Precision@ki

: (11)

Then the set-wise metrics Recall@k, Precision@k, and F1�
score@k are respectively the average values of the sample-
wise metrics in Formulas (9), (10), and (11) over all the posts
in the test set. According to the literature [47], [48], [49],
[50], [51], k is set to 5 and 10.

6.3.3 Results

As introduced before, the evaluation contains two parts. In
the first part, the StackOverflowposts with the design pattern
tags are used for training the TagMulRec model and the Fast-
TagRec model, the Software Engineering posts are used for
testing all the models. The tag candidate set for recommenda-
tion includes the 74 design pattern tags appearing in these
Stack Overflow posts. The results are shown in Table 3. The
best result on each metric is shown in boldface. As shown in
the table, the DPWord2Vec-basedmethod achievesmuch bet-
ter performance than TagMulRec, i.e., over 30 percent
improvements on all metrics. When comparing against Fast-
TagRec, the improvements are not so apparent, i.e., all within
10 percent.We performWilcoxon signed-rank test on sample-
wise metrics of all the 2,986 posts and the p-values on the six
metrics are all less than 0.0025when comparingDPWord2Vec

against FastTagRec. That means, the DPWord2Vec-based
method significantly outperforms FastTagRec in statistics.

In the second part, we train the TagMulRec model and
the FastTagRec model using the corpus C and test all the
models with the Software Engineering posts. The candi-
dates are changed to all the 372 design patterns in VDP .
Table 4 presents the evaluation results. From the table, we
notice that the performance of TagMulRec and FastTagRec
improves on all the metrics contrast to the previous ones,
but is still not as good as that of the DPWord2Vec-based
method. The DPWord2Vec-based method is relatively sta-
ble as the results are almost unchange when involving more
design pattern tag candidates. According to the results of
Wilcoxon signed-rank test, the differences on Recall@5,
Precision@5, and F1� score@5 are not significant, i.e., the
p-values are 0.22, 0.44, and 0.19, respectively. However, the
DPWord2Vec-based method still significantly outperforms
FastTagRec when recommending ten design pattern tags,
i.e., p-values on Recall@10, Precision@10, and F1�
score@10 are all less than 1e-6. It implies that the DPWord2-
Vec-based method benefits from not only a comprehensive
corpus but also an appropriate algorithmic model.

As shown in Tables 3 and 4, it is surprising that the per-
formance of the baseline method is better than that of Tag-
MulRec on all metrics, although surpassed by that of
FastTagRec and the DPWord2Vec-based method. That
means, to detect the design pattern occurrences is also effec-
tive for design pattern tag recommendation to some degree.
From the perspective of Recall, the names of a part of the
design patterns serving as tags appear in the text of the
posts as well. But it does not achieve a quite ideal coverage.
From the perspective of Precision, an occurrence of a design
pattern name in a post does not necessarily mean that it is
also a tag of the post, as the design pattern may be not the
main focus or the mentioned design pattern name is ambig-
uous. Comparing Table 4 against Table 3, we notice that the
baseline method has minor changes in performance when
enlarging the tag candidate set. The reason is that the newly
involved design patterns appear rarely in the posts.

Generally, the performance of the DPWord2Vec-based
method is relatively close to that of FastTagRec. Nevertheless,
there are some advantages of our method. On the one hand,
the DPWord2Vec-basedmethod ismore efficient than FastTa-
gRec. As DPWord2Vec is based on the GloVe model, the time
complexity for calculating and updating the gradients is usu-
ally OðdðjCj1=a þ jDPTagsj1=bÞÞ for some a, b > 1 [13], where
d denotes the dimension of the vectors, jCj denotes the total
number of word tokens, and jDPTagsj denotes the total

TABLE 3
The Results on the Design Pattern Tag Recommendation Task
(Stack Overflow Posts for Training TagMulRec and FastTagRec,
the 74 Design Pattern Tags in Stack Overflow as Candidates)

Baseline TagMulRec FastTagRec DPWord2Vec

Recall@5 0.7369 0.5279 0.8167 0.8399
Precision@5 0.1618 0.1123 0.1786 0.1837
F1� score@5 0.2625 0.1838 0.2901 0.2984
Recall@10 0.7369 0.6954 0.8658 0.9230
Precision@10 0.0809 0.0749 0.0952 0.1017
F1� score@10 0.1448 0.1345 0.1704 0.1820
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number of design pattern tag occurrences in the training set.
As jDPTagsj ought to bemuch smaller than jCj, the time com-
plexity can be written as Oðd � jCj1=aÞ. For FastTagRec, the
time complexity is Oðd � jCj � logðjDPCandsjÞÞ [51], where
jDPCandsj denotes the size of the design pattern tag candi-
date set. Hence, the DPWord2Vec-basedmethod ismore scal-
able when involving more posts for training (jCj gets larger).
Moreover, enlarging the tag candidate set will make the
model of FastTagRec more complex, but not explicitly
increase the model complexity of the DPWord2Vec-based
method. On the other hand, the DPWord2Vec-based method
is more understandable. FastTagRec is essentially a classifica-
tion model. It regards each design pattern tag candidate as a
class and recommends tags by training the classifier. How-
ever, the classifier is somewhat a black-box for the users. In
contrast, DPWord2Vec represents the elements of the natural
language and the tag candidates as vectors, and ranks the tags
according to the similarities between them and the post. It
tends to be more intuitive and acceptant for humans. More-
over, by exploring the sentences or phraseswith high similari-
ties to the tags, the users could understand the motivation of
the recommendation better.

6.3.4 Conclusion

In the design pattern tag recommendation task, the
DPWord2Vec-based method performs better than TagMul-
Rec and FastTagRec in terms of Recall, Precision, and F1-
score, even when they are provided with the same data for
training. This shows that the learned word and design pat-
tern vectors could better express the relationships between
a post and a design pattern.

7 APPLICATION II: DESIGN PATTERN SELECTION

When developing a software (sub)system, the developer(s)
may be willing to leverage design patterns to facilitate the
development process. This is called a design problem. How-
ever, there exist a large number of design patterns [7] and
determining the applicability of these design patterns
heavily depends on the experience of a developer [53]. It is
usually difficult to find the right design pattern(s) for a
given design problem especially for novice developers [8].
To resolve this problem, several studies focus on selecting
appropriate design pattern(s) automatically based on the
textual description of the design problem [8], [54]. The tex-
tual description is a short text that may depict the main fea-
tures, requirements of the (sub)system, or how it works.

In this application, we attempt to solve this design pat-
tern selection problem by leveraging the learnt word and

design pattern vectors. Comparing to the previous task, i.e.,
design pattern tag recommendation, design pattern selec-
tion is usually a more challengeable task. In the previous
task, a post may involve explicit characteristics of design
patterns, e.g., design pattern names. However, in this task,
the description of the design problem cannot contain such
information as the suitable design pattern(s) is assumed to
be unknown. The semantic meaning of the description
should be explored and it should match the application sce-
narios of the selected design pattern(s).

7.1 General Method of Design Pattern Selection

In this part, we introduce the general framework of design
pattern selection in the existing studies.

The existing design pattern selection approaches usually
use the problem definition of a design pattern as the oracle
for design pattern selection [8], [54]. The problem definition
describes what problems the design pattern solves and
where the design pattern can be applied. For example, in
the GoF book, the problem definition contains the intent,
motivation, and applicability Sections [8]. Given a design
problem description and a collection of design patterns, the
design pattern selection procedure can be detailed in the fol-
lowing three phases [8], [54].

Vectorizing the Documents. The documents, i.e., the design
problem description and the problem definitions of design
patterns, are preprocessed and vectorized by leveraging the
vector space model, in which each document is presented
as a feature vector and each feature indicates the weight of a
word in the document.

Determining the Design Pattern Class. This phase aims to
preliminarily find a set of design patterns that are likely to be
right for the design problem. It is motivated by the expert
classification of design patterns. For example, the 23 design
patterns in GoF are divided into three classes, i.e., Creational
Patterns, Structural Patterns, and Behavioral Patterns [2],
and each class focuses on one type of design problems.
Therefore, the goal is to determine the most suitable design
pattern class for the design problem. With this phase, the
design pattern selection process can leverage the expert clas-
sification information besides the similarity between the
design problem and the oracle of a design pattern. Hence,
this phase is a reinforcement for the similarity-based selec-
tion and the accuracy is expected to be improved.

To determine the design pattern class, text categorization
methods are applied to these vectorized text documents. For
example, [8] leverages supervised learning methods to build
a classifier for textual descriptions based on the expert clas-
ses of design patterns. Then the design problem description
is classified into a class by the classifier and the design pat-
terns in this class are delivered to the next phase. Similarly,
[54] uses clustering methods to group the problem defini-
tions of design patterns and the design problem description
into multiple clusters. This partition may be not consistent
with the expert classification, but the numbers of classes (or
clusters) in the two partitions are equal. The design patterns
whose problem definitions are in the same cluster with the
design problemdescription are retained for further selection.

Suggesting the Design Pattern(s). With the determined
class of design patterns, the appropriate design pattern(s) is
further suggested based on the similarities between the

TABLE 4
The Results on the Design Pattern Tag Recommendation Task
(Corpus C for Training TagMulRec and FastTagRec, All the 372

Design Patterns as Candidates)

Baseline TagMulRec FastTagRec DPWord2Vec

Recall@5 0.7358 0.5559 0.8322 0.8399
Precision@5 0.1615 0.1183 0.1826 0.1837
F1� score@5 0.2620 0.1936 0.2963 0.2984
Recall@10 0.7369 0.7040 0.8895 0.9224
Precision@10 0.0809 0.0758 0.0978 0.1017
F1� score@10 0.1448 0.1361 0.1750 0.1819
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design problem description and the problem definitions of
design patterns. Concretely, the ith design pattern in the
determined class is suggested if

jSij > u1
jSi � Smaxj � u2

;

�
(12)

where Si is the similarity between the problem definition of
the ith design pattern and the design problem description,
Smax is the maximum among the similarity Sj correspond-
ing to each design pattern in the determined class, and u1
and u2 are thresholds that should be specified manually. We
note that more than one design patterns may be selected
finally. The result relies on the values of the thresholds.

7.2 Refined Design Pattern Selection Method Based
on DPWord2Vec

With the learnt design pattern and word vectors, we show
how to refine the existing design pattern selection method.

As to the depictions above, the design pattern selection
method depends on the expert classification of design pat-
terns. However, this classification may involve inconsisten-
cies and anomalies [8]. In other words, the classification
may not be fully reflected by the problem definitions of the
design patterns. As a result, the determined class may be
unreliable. Therefore, we modify the second phase, i.e.,
Determining the Design Pattern Class, by leveraging the
learned word and design pattern vectors to refine the design
pattern selection method.

There are three steps for the modified phase:

1) Preprocess and tokenize the design problem descrip-
tion following the procedures in Section 3.2.

2) For each design pattern candidate, calculate the simi-
larity between the design pattern and the design
problem description as Formula (8).

3) Perform k-means clustering [55] on the design pattern
candidates to group them into the “relevant” class
and “irrelevant” class based on their similarities with
the design problem description. The initial centroids
of the two clusters are the maximum and minimum
of the similarities, respectively. The “relevant” class
is considered as the candidate design pattern class for
the design problem.

This new phase doesn’t use any information of the expert
classification but leverages the relatedness between the
design problem and design patterns inferred from the word
and design pattern vectors. The design patterns with very
weak relatedness to the design problem are unlikely to be
the appropriate ones and eliminated, the rests are retained
for further selection. Except for the second phase, the first
and third phases of the method keep unchanged.

7.3 Evaluation of the DPWord2Vec-Based Method

7.3.1 Motivation

To investigate whether the refined method based on
DPWord2Vec is effective, we set up this evaluation.

7.3.2 Approach

We compare the refined method based on DPWord2Vec
against the existing ones on design pattern selection

benchmarks. In the following parts, we depict the bench-
marks, the methods for comparison, the evaluation metrics,
and the settings of all the methods, respectively.

Benchmarks. The benchmarks we use are the same as
those used in [54], which involve 80 design problems and
three design pattern collections, namely GoF [2], Secu-
rity [56], and Douglass [57]. The GoF collection includes 23
object-oriented design patterns which are divided into three
classes. The Security collection includes 46 design patterns
used in integrating security systems and presented in eight
classes. There are 34 real-time system relevant design pat-
terns in the Douglass collection and they have been divided
into five classes. The numbers of design problems corre-
sponding to the three collections are 30, 30, and 20, respec-
tively. For each design problem, only one design pattern in
the collection is regarded as correct.17

Following [54] and [8], for each collection, the evalua-
tion is deployed independently. Only the design patterns
in this collection are considered as the original candidates
for selection.

State of the Arts. As to our knowledge, there are two stud-
ies, [54] and [8], that propose completely automatic design
pattern selectionmethods based on publicly available textual
descriptions of design patterns. The methods in these two
studies all follow the three-phases framework mentioned
above. In this evaluation, we take them for comparison.

Metrics. Following [54] and [8], the design pattern selec-
tion methods are evaluated by the Ratio of Correct Detection
of Design Pattern (RCDDP)metric, which is calculated as

RCDDP ¼ 1

N

XN

i¼1

jSDPi \ CDPij
jSDPij ; (13)

where N is the number of design problems for the design
pattern collection, CDPi is the set of correct design pattern
(s) to solve the ith design problem (contains only one design
pattern in the dataset), and SDPi is the set of suggested
design pattern(s) by the design pattern selection method.

As to the definition above, the RCDDP metric depends
on the values of the thresholds u1 and u2, as they will deter-
mine which design pattern(s) is finally suggested, i.e., SDPi.
It may make the comparisons complicated, since the appro-
priate values of the thresholds for different design pattern
selection methods may be not unified. Actually, our refined
method only modifies the phase of determining the design
pattern class, but does not deal with the settings of the
thresholds. Without losing the reasonability, we leverage
another metric for evaluation, namely Mean Reciprocal
Rank (MRR) [58], which is not affected by the thresholds.
MRR is a standard evaluation metric in information
retrieval and used in several software engineering related
studies [59]. Specifically,

MRR ¼ 1

N

XN

i¼1

1

rankic
; (14)

17. The 80 design problems and the corresponding correct design
patterns can be found on https://github.com/WoodenHeadoo/
dpword2vec.
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where rankic denotes the position of the correct design pat-
tern to the ith design problem in the rank based on the simi-
larities in the third phase. The expression 1=rankic is called
as reciprocal rank. If the correct design pattern is eliminated
in the second phase, then the reciprocal rank is 0. As to the
definition, the value of MRR is low if most of the correct
design patterns are omitted; and high if the irrelevant
design patterns ranked before the correct ones are elimi-
nated. Therefore, MRR is able to evaluate the candidate
design pattern class produced in the second phase.

Settings of the Methods. The methods in [54] and [8] are
more like frameworks rather than concrete algorithms. That
means, the concrete algorithms for each step should be spec-
ified according to the realities. Therefore, we unify the set-
tings for all methods and leverage the moderate ones that
perform best in the most cases according to the results in
[54] and [8].

Specifically, the TF-IDF technique is used for the vectori-
zation of the documents in the first phase. In the second
phase, the improved global feature selection scheme [60] is
used to reduce the dimension of the document vectors. The
support vector machine [55] classification algorithm and
fuzzy c-means clustering [61] algorithm are leveraged to
determine the candidate design pattern class for the method
in [8] and the method in [54], respectively. The number of
classes (clusters) is consistent with that of the expert classifi-
cation in each design pattern collection. In the third phase,
the cosine similarity is applied to measure the correlation
between the vectorized problem definitions of design pat-
terns and design problem descriptions.

For the refined method, the TF-IDF technique and cosine
similarity are also used in the first and third phases, respec-
tively. But the second phase is replaced by the modified one.

According to [54] and [8], the effective values of the
thresholds and the number of features (dimension of the
document vectors after feature selection) rely on the design
pattern collections. Hence, we attempt to find the most suit-
able settings for each collection and report the optimal
results. For the methods in [54] and [8], we try various fea-
ture numbers from 50 to the vocabulary size at an interval
of 50 and the best one in terms of MRR is recorded. Then,
for each method, we find the highest value of RCDDP by
traversing all the combinations of u1 and u2 from the range
{0, 0.1, 0.2,..., 1.0} and the range {0, 0.01, 0.02,..., 0.10} [8],
respectively.

7.3.3 Results

The metric values and the corresponding parameter settings
are displayed in Table 5. As shown in the table, the refined
method achieves the best performance on all three collec-
tions. Averaging across the three collections, the refined
method outperforms the method in [54] (M1) by 6.3 and 6.5
percent in terms of RCDDP and MRR, respectively. The per-
formance of the method in [8] (M2) is overall unsatisfactory.
For example, the refined method improves M2 by over 70
percent in terms of the mean value of MRR.

The possible reason for the bad results of M2 is that too
many correct design patterns are eliminated when deter-
mining the design pattern class. To show this observation,
for each method on each collection, we calculate the ratio of

cases in which the correct design pattern is eliminated after
the second phase. The results are also shown in Table 5,
namely Erroneously Eliminating Ratio (EER). From the
results, we notice that the EERs of M2 are very high for all
the collections. For example, the EER of M2 is 63.33 percent
for the GoF collection. That means, the correct design pat-
terns of the 19 among the 30 design problems are mistak-
enly eliminated. Meanwhile, the EERs of the refined
method are the lowest among all the methods on the three
collections.

Notably, the performance of the refined method is not
much better than that of M1 on the Douglass collection.
The MRR values are respectively 0.7058 and 0.6917, which
are quite similar. Generally, the quality of the learnt design
pattern vectors relies on the design pattern relevant docu-
ments. However, in the corpus C, the number of docu-
ments relevant to each design pattern in the Douglass
collection seems to be too few. Counting all the 20 design
patterns mentioned in the benchmarks, nine of them relate
to less than 10 documents each, eight design patterns
occupy 10 to 49 documents each, and each of the other
three ones involves 50 to 73 documents. It could be the rea-
son for the nonsignificant improvement in the Douglass
collection.

The main difference among M1, M2, and the refined
method is the way of determining the candidate design pat-
tern class. M2 chooses one class of the expert classification
as the candidate class but this way does not work well. M1
does not completely follow the expert classification but use
it during the feature selection. The performance of M1 is
much better than that of M2, but not as good as that of the
refined method. It implies that the way by leveraging the
learnt word and design pattern vectors is more appropriate
to find a candidate set of design patterns than the way by
using the expert classification.

7.3.4 Conclusion

The refined method based on DPWord2Vec is superior to
the methods in [54] and [8] on the benchmarks. Therefore,
DPWord2Vec contributes to accomplish the task of design
pattern selection.

TABLE 5
The Results and Parameter Settings on the Design

Pattern Selection Task

M1 = the method in [54], M2 = the method in [8], Refined = the refined method
based on DPWord2Vec
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8 THREATS TO VALIDITY

8.1 Internal Validity

There are several threats to internal validity of our work.
First, the size of the corpusmay restrict the effectiveness of

DPWord2Vec. The corpus in this paper is relatively small
comparing with those used in other word embedding meth-
ods [11], [13]. This may influence the quality of the learnt
word and design pattern vectors. However, we believe this
problemwould be alleviated as more design pattern relevant
documents could be extracted in the coming future due to the
popularity of programming forums. Second, only the default
values of the parameters are used to build the word and
design pattern vectors. However, the empirical study shows
that the performance of DPWord2Vec is not very sensitive to
the settings of the main parameters, i.e., the context window
size for words and the dimension of vectors. Third, the
human judgment process of the dp-word pairs may contain
uncertainties, since it may be not easy to judge whether a
design pattern and a word is related sometimes. However,
such procedures are common practice in similarity tasks of
various domains [18], [23], [24], [25]. We try to mitigate the
uncertainties by involving a new label, i.e., “somewhat
related”.Moreover, the Fleiss’ Kappameasure shows that the
annotators reach a substantial agreement. Finally, the way of
determining design pattern relevant posts for constructing
the crowdsourced corpus is not completely precise. This fac-
tor is in the scope of our previous study. We have performed
a validation to ensure the reliability of the results [12].

8.2 External Validity

The threats to external validity relate to the generalization of
DPWord2Vec. We sample 2,000 dp-word pairs to evaluate
DPWord2Vec in terms of dp-word similarity and employ
two applications to evaluate DPWord2Vec in terms of
design pattern - words (document) similarity. It is unclear
whether DPWord2Vec still works well on other tasks. More
datasets or applications will be investigated to reduce this
threat in the future.

9 RELATED WORK

9.1 Word Embedding for Software Artifacts

Similar to our work, numbers of studies leverage word
embedding methods on software artifacts to aid in software
engineering relevant tasks.

Some studies focus on mapping APIs into vector space.
Nguyen et al. propose API2Vec that learns API vectors based
on API usage sequences extracted from code corpora [62].
Similarly, Li et al. embed natural language words and APIs
at the same time by leveraging both API sequences and the
method comments [40]. To establish API mappings between
third-party libraries, Chen et al. present an unsupervised
deep learning-based approach to map both API usage
semantics andAPI description semantics into vectors [63].

Meanwhile, some studies aim to learn the representa-
tions of programs. Alon et al. produce general representa-
tions of programs based on the paths in abstract syntax
trees [64]. Henkel et al. represent programs as abstractions
of traces obtained from symbolic execution and learn the
vectors of the abstractions using word embedding [22].

Piech et al. introduce a neural network method to learn the
feature embedding of a whole program and give automatic
feedback based on the representation [65].

Moreover, some studies directly use word embedding
methods on software-related documents to support some
other tasks. Ye et al. train the word embeddings on API rele-
vant documents and aggregate them to estimate semantic
similarities between documents [59]. Calefato et al. exploit
word embedding on Stack Overflow posts to help to analyse
the sentiments of developers [66]. Guo et al. attempt to gen-
erate trace links among software artifacts by utilizing word
embedding and recurrent neural network trained on clean
text from related domain documents [67].

Different from these studies, our work concentrates on
associating natural language words and design patterns by
embedding them into one vector space. To the best of our
knowledge, no previous studies have ever considered the
general relatedness between words and design patterns.

9.2 Tag Recommendation in Software Information
Sites

In the first application, we apply DPWord2Vec to the design
pattern tag recommendation task. There exist a series of tag
recommendation methods specified for software informa-
tion sites.

To automatically recommend tags in software informa-
tion sites, Xia et al. propose TagCombine which ranks each
tag candidate by integrating three ranking component [47].
After that, EnTagRec is proposed and outperforms TagCom-
bine on four software information sites in terms of Recall [48].
To adopt tag recommendation methods in large-scale soft-
ware information sites, Zhou et al. propose a more scalable
approach called TagMulRec [49]. TagMulRec outperforms
EnTagRec in terms of Precision and F1-score on four soft-
ware information sites. Then Wang et al. enhance EnTagRec
to a new version, namely EnTagRec++, by leveraging the
information of users of software information sites [50]. EnTa-
gRec++ improves TagCombine by over 10 percent on five
software information sites in terms of Recall. Recently, Liu
et al. propose FastTagRecwhich recommends tags using neu-
ral network-based classification [51]. An evaluation on ten
software information sites shows FastTagRec is more accu-
rate than TagMulRec.

Most of these methods can also be used in the design
pattern tag recommendation task. In the evaluation, the
DPWord2Vec-based design pattern tag recommendation
method is compared against the state-of-the-art ones, i.e.,
FastTagRec and TagMulRec, to show its effectiveness.

9.3 Design Pattern Selection Based on Text

The related work for the second application is about design
pattern selection. We focus on the methods leveraging tex-
tual descriptions here. These works can be roughly catego-
rized into two types.

The first type is based on design pattern use cases and
recommend design patterns by exploring the most similar
use cases to the current design problem. Gomes et al. pro-
pose a case-based reasoning approach for design pattern
selection and index cases by using WordNet [68]. Similarly,
Muangon et al. present a design pattern searching model by
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combining case-based reasoning and formal concept analy-
sis techniques [10]. Bouassida et al. integrate case search and
questionnaire strategy to create an interactive design pat-
tern selection method [69]. These approaches are based on
the assumption that there exists a case library. However,
few such libraries are publicly available.

The second type is based on general textual descriptions
of design patterns. Palma et al. provide an expert system for
design pattern recommendation and parses design pattern
descriptions to formulate questionnaires for designers [9].
In [70], Pavli�c et al. document the knowledge of design pat-
terns by building an ontology for design pattern advise-
ment. The studies [54] and [8] automate the process and
only utilize the original descriptions in design pattern books
for design pattern selection.

In this application, we follow the automatic design pat-
tern selection framework in [54] and [8] but refine the
design pattern class determining phase by DPWord2Vec.
The refined method outperforms the methods in [54] and
[8] on the benchmarks.

10 CONCLUSION

In this work, we propose DPWord2Vec, a framework that
maps both natural language words and design patterns into
one vector space. With the word and design pattern vectors,
each design pattern is associated with English natural lan-
guage. DPWord2Vec leverages the word embedding method
to learn the word and design pattern vector representations
based on two built corpora with our redefined context win-
dows. An evaluation on a dp-word pair dataset shows that
DPWord2Vec is more effective than the baseline methods in
measuring the dp-word similarity.Moreover, two design pat-
tern relevant applications are leveraged to investigate the use-
fulness of DPWord2Vec. The experimental results indicate
that DPWord2Vec can outperform the state-of-the-art algo-
rithms on the specific tasks.

In the future, on one hand, we will extract more design
pattern relevant documents from other sources to enrich the
corpora; on the other hand, we will attempt to apply
DPWord2Vec to more design pattern relevant tasks. More-
over, it is also worth investigating the effectiveness of
DPWord2Vec on the corpora of non-English languages.
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Abstract—Code completion is to predict the rest of a statement a developer is typing. Although advanced code completion approaches

have greatly improved the accuracy of code completion in modern IDEs, it remains challenging to predict project-specific API method

invocations or field accesses because little knowledge about such elements could be learned in advance. To this end, in this paper we

propose an accurate approach called HeeNAMA to suggesting the next project-specific API member access. HeeNAMA focuses on a

specific but common case of code completion: suggesting the following member access whenever a project-specific API instance is

followed by a dot on the right hand side of an assignment. By focusing on such a specific case, HeeNAMA can take full advantages of

the context of the code completion, including the type of the left hand side expression of the assignment, the identifier on the left hand

side, the type of the base instance, and similar assignments typed in before. All such information together enables highly accurate code

completion. Given an incomplete assignment, HeeNAMA generates the initial candidate set according to the type of the base instance,

and excludes those candidates that are not type compatible with the left hand side of the assignment. If the enclosing project contains

assignments highly similar to the incomplete assignment, it makes suggestions based on such assignments. Otherwise, it selects the

one from the initial candidate set that has the greatest lexical similarity with the left hand side of the assignment. Finally, it employs a

neural network to filter out risky predictions, which guarantees high precision. Evaluation results on open-source applications suggest

that compared to the state-of-the-art approaches and the state-of-the-practice tools HeeNAMA improves precision and recall by

70.68 and 25.23 percent, relatively.

Index Terms—Code completion, non-API, deep learning, heuristic, LSTM

Ç

1 INTRODUCTION

THE purpose of code completion is to predict the rest (or a
part of the rest) of a statement a developer is typing.

Code completion feature provided by modern Integrated
Development Environments (IDEs) plays an important role
in software development process [1], [2]. The usage data col-
lected from 41 Java software developers suggests that code
completion is one of the most commonly used commands
[3]. It is executed as frequently as the common editing com-
mands, e.g., delete, save, paste and copy.

Code completion is widely and frequently employed for
several reasons. First, code completion lightens the amount
of memory work required of developers [4]. Second, power-
ful and accurate code completion tools encourage developers
to choose longer and more descriptive identifier names
because with code completion tools developers do not have
to type in all characters of such names [5]. Third, it helps to
reduce the number of characters that should be typed in
manually [6]. The benefit of the reduction in manually typed
characters is twofold. On one side, it speeds up coding. On

the other side, it reduces misspelling. When developers type
in source code, especially long identifiers, it is likely that
typos are introduced. Because code completion tools greatly
reduce the number of characters that should be typed in
manually, the likelihood of introducing typos is reduced sig-
nificantly as well.

In this paper, we focus on a common type of code com-
pletion: method invocation and field access completion
(other forms of code completion include word comple-
tion [7], expression completion [8], method argument com-
pletion [9] and statement completion [10]). To improve the
accuracy of code completion, a number of powerful code
completion approaches have been proposed. The first cate-
gory of such approaches is based on usage pattern mining
algorithms [11], e.g., frequent item mining [2], [12], [13], fre-
quent subsequence mining [14] and frequent subgraph min-
ing [15]. These approaches discover code patterns from
source code repositories and make code suggestions by
matching the given source code against such patterns.

The second category of code completion approaches is
based on statistical language models [16]. Such approaches
take the assumption that programming languages are some-
what similar to natural languages, and thus the widely used
natural language models could be applied to programming
languages as well [7]. The most commonly employed lan-
guage models include N-gram models [17], [18] and deep
neural network based language models [19], [20]. An advan-
tage of such language-model based approaches is that
they are generic, and thus they can predict all kinds of
tokens (e.g., the next character, identifier, member access
or statement).
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Although such advanced code completion approaches
have greatly improved the accuracy of code completion in
modern IDEs [12], [21], it remains challenging to predict
project-specific API method invocations and project-specific
API field accesses [22]. In this paper, we call methods and
fields defined within the project under development as
project-specific API methods and project-specific API fields,
respectively. We also call method invocations and field
accesses as member accesses for short in the rest of this
paper. According to our empirical study on ninewell-known
open-source Java applications (as introduced in Table 1),
public API member accesses account for less than half
(39%=339,866/861,618) of the member accesses in source
code, and the majority (more than 60 percent) is project-
specific API member accesses. An empirical study conducted
recently [22], however, suggests that existing approaches are
often significantly less accurate in predicting project-specific
APImethod accesses (what they call intra-project API comple-
tions) than public API member accesses. Our evaluation in
Section 4 also confirms their conclusion: the accuracy of
such approaches in predicting project-specific API member
accesses deserves significant improvement.

To this end, in this paper we propose HeeNAMA, a heu-
ristic and neural network based approach to predict project-
specific API member accesses. It is challenging to predict
project-specific API member accesses in general because lit-
tle knowledge about such elements could be learned in
advance. Consequently, in this paper we focus on a specific
but common case of code completion: suggesting the follow-
ing method call or field access whenever a project-specific
API instance is followed by a dot (.) on the right hand side of
an assignment (we call them member access on RHS for
short). For example, once the developer types in “String name
= person.”, HeeNAMA would suggest “getName()” as the
next token. We reuse nine open-source Java applications
from previous code completion research [7], [18], [23], [24] to
conduct our empirical study. They cover various domains
such as software build, database management, and search
engine. The size (LOC) of subject applications varies from
91,760 to 1,591,582. According to the empirical study, such
cases of code completion (i.e., project-specific API member
access on RHS) are common, and on average a single project
contains 11,522 such cases. By focusing on such a specific
case, HeeNAMA can take full advantages of the context of
the code completion, including the type of the left hand side
expression of the assignment, the identifier on the left hand
side, the type of the base instance, and similar assignments

typed in before. All such information together enables highly
accurate code completion.

Given an incomplete assignment, HeeNAMA works as
follows to predict the next member access. First, it generates
the initial candidate set according to the type of the base
instance. Mandelin et al. [10] and Gvero et al. [8] have proved
that such type information is helpful in code completion.
Second, it looks for highly similar assignments within the
project under development. If successful, it wouldmake sug-
gestions based on the retrieved samples. Third, it filters out
candidates that are type incompatible with the left hand side
expression of the assignment. After that, it ranks candidates
in descending order according to their lexical similarity with
the identifier on the left hand side of the assignment. Finally,
it leverages a deep neural network to decide whether the top
one on the candidate list should be recommended. The eval-
uation results on nine well-known open-source Java applica-
tions suggest that HeeNAMA is more accurate than the
state-of-the-art approach as well as the state-of-the-practice
tool.

The paper makes the following contributions:

� First, we propose an approach called HeeNAMA to
recommending project-specific API member accesses
on RHS. HeeNAMA takes full advantages of the con-
text, i.e., the type of the left hand side expression of
the assignment, the identifier on the left hand side,
the type of the base instance, and similar assignments
typed in before. It also leverages a neural network
based filter to exclude risky predictions, which signif-
icantly improves the precision of HeeNAMA. The
combination of heuristics and neural network makes
for a neat way of learning to avoid precisely the kinds
of mistakes that heuristics make. To the best of our
knowledge, HeeNAMA is the first one that is spe-
cially designed to predict project-specific API mem-
ber accesses on RHS.

� Second, we implement HeeNAMA, and evaluate it
on nine open-source Java applications. The evalua-
tion results show that HeeNAMA is accurate.

The remainder of this paper is structured as follows.
Section 2 presents a short overview of related research. Sec-
tion 3 proposes our code completion approach. Section 4
presents an evaluation of the proposed approach on nine
open-source applications. Section 5 provides conclusions
and potential future work.

2 RELATED WORK

2.1 Language Model Based Code Completion

N-gram models are well known in the natural language
processing community. They were applied to source code
for the first time byHindle et al. [7] when they find the repeti-
tiveness and predictability of source code. Based on N-gram,
they estimate the occurrence probabilities for code sequences
(at the granularity of token) in code corpus, and predict the
next token according to the corresponding occurrence proba-
bilities. Allamanis et al. [17] build a giga-token corpus of Java
source code from awide variety of domains to train a n-gram
model. The resulting model can successfully deal with token
prediction across different project domains. They also find

TABLE 1
Subject Applications

Applications Domain Version LOC

Ant Software Build 1.10.1 270,028
Batik SVG Toolkit 1.9 361,429
Cassandra Database Management 3.11.1 592,595
Log4J Log Management 2.10.0 236,825
Lucene-solr Search Engine 7.2.0 1,591,582
Maven2 Software Build 2.2.1 91,760
Maven3 Software Build 3.5.2 169,988
Xalan-J XSLT Processing 2.7.2 352,787
Xerces XML parser 2.11.0 216,907
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that employing a large corpus in model training can increase
the predictive capability of models. SLAMC [18] strengths
n-grams with semantic information to present token sequen-
ces. Such semantic information includes the token roles, data
types, scopes, and structural and data dependencies. It also
combines the local context with the global technical
concerns/functionality into a n-gram based topicmodel.

Tu et al. [23] find that source code has high repetitiveness
not only in the global scope but also in the local scope.
Based on this finding, they propose a cache language model
by enhancing the conventional n-gram model with an effi-
cient caching mechanism that captures the local repetitive-
ness of source code. They compute the probability of a
sequence of tokens based on a global n-gram model (trained
with public corpus) and a local n-gram model (trained with
source files in the enclosing folder). Based on this cache lan-
guage model [23], Franks et al. develop an Eclipse plug-in
CACHECA [21]. It combines the native suggestions made
by Eclipse IDE with suggestions made by the cache lan-
guage model. The evaluation results suggest that the combi-
nation leads to higher accuracy.

The latest advance in N-gram based code completion
was achieved by Hellendoorn et al. [20]. Based on cached
language models, they proposed a nested and cached
N-gram model to capture the local repetition within a given
scope, and to apply it to the nested sub-scopes. The evalua-
tion results suggest that their approach significantly outper-
forms existing approaches (both statistical language model
based approaches and deep learning based approaches).

Advanced neural networks, e.g., RNN [25] and LSTM
[26], have been successfully employed to model source code
as well. Raychev et al. [19] employ RNN for code completion.
They first extract sequences of method calls from large code
bases, and learn their probabilities with statistical language
models, i.e., RNN, N-gram, or a combination of them. Once
given a programwith holes, they leverage learned probabili-
ties to synthesize sequences of calls for holes. White et al. [27]
also apply the RNN language model to source code and
show its high effectiveness in predicting sequential software
tokens.

To address the enormous vocabulary problem in model-
ing source code with deep neural networks, Karampatsis
and Sutton [28] present a new open-vocabulary neural lan-
guage model for code that is not limited to a fixed vocabu-
lary of identifier names. They employ a segmentation into
subword units, i.e., subsequences of tokens chosen based on
a compression criterion. Including all single characters as
subword units will allow the model to predict all possible
tokens, so there is no need for special out-of-vocabulary
handling.

Graph-based statistical language models are successfully
employed in code completion as well. Nguyen et al. [29]
introduce GraLan, a graph-based statistical language model
to statistically learn API usage (sub)graphs [30] from a
source code corpus. Given an observed (sub)graphs that
representing the context of code completion, GraLan recom-
mends the next API by computing the appearance probabil-
ities of new usage graphs. SALAD [30], [31] also employs
the graph-based model to represent API usage patterns.
Given bytecode and source code, SALAD generates a
graph-based model for extracting API sequences from such

model. Such API sequences are in turn employed to train a
Hidden Markov Model [32] (called HAPI). According to
their evaluation, the resulting HAPI is accurate in predict-
ing the next method call.

2.2 Pattern Mining Based Code Completion

It is quite often that a group of related API methods are
invoked in some order to accomplish a specific task. By min-
ing code repositories, we may discover such patterns, i.e.,
the API methods in order [14], [33]. Such patterns, in turn,
are employed to recommend the next API method invoca-
tion whenever the preceding API method invocations are
typed in.

Bruch et al. [2] propose three similar intelligent code com-
pletion systems that learn API patterns from existing code
repositories in different ways. The first system, called
FreqCCS, counts API method invocations in code reposito-
ries, and recommends the most commonly invoked method
as the next API method invocation. The second one, called
ArCCS, mines association rules among API method invoca-
tions. An example of association rule is “If a new instance of
Text is created, recommend setText()”. ArCCS makes code
completions based on such association rules. The last and
most advanced system, called BMNCCS, adapts the K-
Nearest-Neighbor (KNN) [34] machine learning algorithm to
manageAPI patterns. First, it extracts and encodes the context
information (including methods invoked on the same base
instance) for each API method invocation in the repository as
a binary feature vector.With these feature vectors, it computes
the distances between the current context and the API exam-
ple contexts based on Hamming distance. For API methods
associated with the resulting nearest contexts, the approach
sorts them according to their frequency in repositories, and
themost frequently used one is recommended.

CSCC [12], [35] is another powerful pattern mining based
code completion system. The major difference between
BMNCCS and CSCC is that the latter takes more context
information into usage patterns, i.e., all method calls, Java
keywords and type names that appear within the four lines
prior to the completion location. To speed up the search for
patterns, CSCC employs two distance measures to compute
the similarities between the current context and the usage
contexts mined from repositories. PBN [13] further extends
BMNCCS to tackle the issue of significantly increased
model sizes. Unlike BMNCCS that uses a table of binary val-
ues to represent usages of different framework types, PBN
encodes the same information as a Bayesian network. A key
consequence is that PBN allows to merge different patterns
and to denote probabilities (instead of boolean existence)
for all context information.

MAPO [14] combines frequent sequence mining with clus-
tering to summarize API usage patterns from source files. It
mines API usage patterns from open source repositories auto-
matically, and recommends the mined patterns and their
associated samples on programmer’s requests. MAPO also
provides a recommender that integrates with Eclipse IDE.

GraPacc [15] extends the mining of API usage patterns
successfully to higher-order patterns. It represents each pat-
tern as a graph-based model [30] that captures the usage of
multiple variables, method calls, control structures, and
their data/control dependencies. The context features of
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API methods from code repositories are extracted and used
to search for the best-matched pattern concerning the cur-
rent context.

As a conclusion, such pattern mining based approaches
are highly accurate in recommending public API member
accesses. However, they rely heavily on the rich invocation
histories of the method to be recommended. Consequently,
such approaches are often confined to popular public APIs
only because there are rich invocation examples of such
public API methods in open-source applications whereas it
is challenging to collect large numbers of invocation exam-
ples of project-specific API methods.

2.3 Type Based Code Completion

Except for pattern mining and statistical language model
based approaches, there are also type based approaches
that complete code by searching for valid expressions of
given data types.

Mandelin et al. [10] propose PROSPECTOR to synthesize
jungloid code fragments automatically in response to user
queries. Jungloids are the chain of method calls that receives
a given input object and returns a desired output object.
They first construct a jungloid graph frommethod signatures
with every expression corresponding to a path in the graph.
Examples of downcasts are then extracted fromprogram cor-
pus as jungloids, converted to paths and added to the graph.
Finally, PROSPECTOR searches for the shortest path from
the given type to the desired type in the graph and synthe-
size a complete code fragment with the path. HeeNAMAdif-
fers from PROSPECTOR in that PROSPECTOR constructs a
code fragment that might consist of multiple statements
whereas HeeNAMA recommends a member access only.
Another difference is that they leverage different informa-
tion for code completion: PROSPECTOR leverages type
information and examples of downcasts to synthesize code
fragments whereas HeeNAMA leverages type information,
examples of member accesses, and lexical similarity.

Gvero et al. [8] presents a general code completion
approach inspired by complete implementation of type
inhabitation for typed lambda calculus. Their approach con-
structs an expression and inserts it at the given location so
that the whole program type checks. They introduce a suc-
cinct representation for type judgments that merges types
into equivalence classes to reduce the search space. They
rank potential solutions by preferring closer declarations to
the program point and more frequently occurring declara-
tions from a corpus of code. The approach is complete com-
pletion [8] because each synthesized expression is complete
in that method calls have all of their arguments synthesized.
HeeNAMA differes from their approach in that their
approach makes the program type check by inserting a com-
plete expression whereas HeeNAMA recommends a single
member access.

2.4 Lexical Similarity Between Identifiers

Identifier names chosen by developers convey rich informa-
tion, and thus they play an important role in program com-
prehension and source code analysis [36], [37], [38]. As
suggested by Lawrie et al. [39], there are two main sources
of domain information: identifier names and comments.

However, many developers do not write comments, so
identifier names are critical for program comprehension.

A number of approaches have been proposed to exploit
lexical similarity between semantically similar software enti-
ties. Liu et al. [9] present an empirical study of the lexical sim-
ilarity between arguments and parameters of methods, and
find that many arguments are more similar to the corre-
sponding parameter than any alternative argument. Pradel
and Gross [40], [41] exploit the lexical similarity between
arguments and parameters to identify incorrect arguments.
HeeNAMA also exploits the lexical similarity between
semantically similar software entities. It differs from existing
approaches in that it exploits the lexical similarity in code
completion whereas exiting approaches [40], [41] exploits it
in bug detection.

Cohen et al. [42] compare different string metrics, i.e., edit
distance (also called Levenshtein distance) and cosine simi-
larity, for matching names and records. The edit distance is
used in our approach because it is simple and efficient.

3 APPROACH

3.1 Overview

In this section, we propose a heuristic and neural network
based approach (HeeNAMA) for code completion. As
stated in Section 1, HeeNAMA is confined to project-specific
API member accesses that are defined as follows.

Definition 1 (Project-SpecificAPIMemberAccess). A project-
specific API member access is a method call or a field access via a
base instance whose class type is declared and implemented within
the project where themember access appears.

The base instance for a member access is the instance
(object) whose member is accessed. For example, in the
member access a.b.c.d, the base instance is c. For member
access a.b.c, however, the base instance is b. For an incom-
plete assignment like “x=a:b:”, HeeNAMA makes predic-
tion only if the type of the base instance (b for the example)
is declared and implemented within the project where the
incomplete assignment is typed in. In the rest of this paper,
member access, if not especially specified, refers specifically
to project-specific API member access.

An overview of HeeNAMA is presented in Fig. 1. Hee-
NAMA is composed of two parts: a sequence of heuristics
(notated as H1, H2, H3, respectively) and a neural network
based filter. The first part predicts the next member access
based on a sequence of heuristics. Whereas the second part
decides whether the prediction is accurate enough to be pre-
sented to developers.

Given an incomplete assignment (e.g., “String name =
person.”), HeeNAMA works as follows to predict the next
member access:

1) First, it parses the incomplete assignment, and decides
whether the base instance (person for the illustrating
example) is a project-specific API instance. If yes (i.e.,
the declaration and implementation of the data type of
the based instance are foundwithin the enclosing proj-
ect), it goes to the next step for code completion. Other-
wise, HeeNAMA suggests invoking API specific code
completion algorithms.

1252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



2) Second, it generates the initial candidates according
to the type of the base instance as well as the location
of the incomplete assignment. For the example
“String name = person.”, the initial candidates include
all members of the base instance person that are
accessible on the location where the assignment is
typed in.

3) Third, it looks for highly similar assignments within
the project under development. If successful, it
would predict the next member access based on the
retrieved examples and the initial candidates. The
prediction is forward to the neural network based fil-
tering (Step 6). If failed, however, it would go to the
next step to make prediction with other heuristics.

4) It removes the candidates that are type incompatible
with the left hand side expression of the assignment
according to our type compatibility assumption, i.e., the
next member access should be type compatible with
the left-hand side expression. For the given example
of “String name = person.”, candidates that are not
type compatible with String are removed from the
candidate set.

5) It ranks the resulting candidates in descending order
according to their lexical similarity with the identi-
fier on the left hand side of the assignment (“name”
for the illustrating example). The one on the top is
taken as the most-likely member access.

6) Finally, it leverages a neural network to decide
whether themost-likelymember access should be rec-
ommended. Notably, the most-likely member access
is potentially type incompatible with the left-hand
side expression if it is predicted by Step 3.

According to the base instance on the right hand side of
the incomplete assignment, HeeNAMA decides whether
the member completion request is a project-specific API
member access. Intuitively, HeeNAMA can make also such
decisions according to the type of the left hand side expres-
sion as well: If the data type of the left hand side is defined
within the project, the right hand side member completion
request is a project-specific API member access. However,
the decisions made in such a way could be inaccurate. Take
“String name = person.getName()” as an illustrating example.
The type of the right hand side base instance (i.e., Person) is
project-specific, and thus the member completion request
for “String name = person.” is project-specific and thus falls
in the scope of HeeNAMA. However, the type of the left
hand side expression (i.e., String) is not project-specific.

Details of the key steps are presented in the following
sections.

3.2 Syntax Based Candidate Generation

First of all, HeeNAMA generates initial candidates based
on Java syntax. Given an incomplete assignment, we extract
its sketch that presents the key information our approach
exploits for code completion

sketch ¼ < lType; lName; baseIns; lct > ;

where lType is the type of left hand side expression, lName
is the identifier name of left hand side, baseIns is the base
instance, and lct is the location of the assignment.

For the incomplete assignment “String name = person.”,
we have

lType ¼ 00 String00
lName ¼ 00 name00

baseIns ¼ 00 person00:

If the assignment is outside the package where the type of
person (i.e., Person) is defined, the sketch of the assignment is

sketch ¼ < String; name; person; outside > :

lct indicates the relative location of the incomplete
assignment with respect to the type of baseIns, i.e., nested
(nested in the type of baseIns), inherited (inherited from the
type of baseIns), inside (inside the package of the type of
baseIns) or outside (outside the package of the type of
baseIns). Consequently, lct can decide what kind of mem-
bers of the base instance are available at the location. Based
on the sketch, we generate the initial candidates cdtSet in
two steps. First, we collect all members of the base instance
baseIns. Second, we remove those members that are not
accessible at the location (lct) of the assignment.

For the given example, if “String name = person.” is out-
side the package of class Person, the initial candidates are
the public members of Person. However, if the assignment is
within class Person, private and protected members of Per-
son are taken as initial candidates as well.

3.3 Heuristic 1: Example Based Prediction

Repetitiveness is an important property of source code [7],
[43]. Consequently, it is likely that we can predict the next
member access based on highly similar member accesses.
Algorithm 1 illustrates how HeeNAMA predicts the next
member access based on sample assignments within the
enclosing project.

First, given an incomplete assignment, HeeNAMA
extracts its sketch (noted as sketch) that includes the type of
its left hand side expression, the identifier name of its left
hand side, the base instance, and its location (Line 2). Sec-
ond, HeeNAMA retrieves sample assignments from the
project under development (Line 4). The retrieving process
is presented in Algorithm 2. We employ the Java parser pro-
vided by Java Development Tools (JDT) to parse source
code of the project into Abstract Syntax Trees (ASTs). From
such ASTs, we retrieve all AST nodes that represent assign-
ments (Line 3 in Algorithm 2). For an assignment in the
application, there may exist multiple scenarios where Hee-
NAMA can make predictions. For example, for assignment
“String name = this.person.getName()”, HeeNAMAmay make

Fig. 1. Overview of HeeNAMA.
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prediction when incomplete assignment “String name =
this.” or “String name = this.person.” is typed in. Each of such
incomplete assignments and its following member access
are presented as a sample:

smp ¼< icpAsgn;memb > ;

where icpAsgn is the incomplete assignment andmemb is the
member access that follows the incomplete assignment
icpAsgn. Line 6 in Algorithm 2 extracts all such samples from
a given assignment asgn.

Algorithm 1. Example Based Member Access Prediction

Input: icpAsgn //incomplete assignment to be completed
cdtSet //initial candidate set
proj //project under development

Output:member
1: //construct a sketch of the incomplete assignment
2: sketch constructSketch(icpAsgn)
3: //extract sample assignments from the project
4: smpSet extractSampleAssignments(proj)
5: for each smp in smpSet do
6: //construct a sketch of the incomplete assignment in

sample
7: skch constructSketch(smp:icpAsgn)
8: if skch:lType = sketch:lType and
9: skch:lName = sketch:lName and
10: skch:baseIns = sketch:baseIns then
11: for each cdt in cdtSet do
12: if cdt = smp:memb then
13: cdt:frequencyþþ
14: end if
15: end for
16: end if
17: end for
18: //sort candidates by frequency in descending order
19: sort(cdtSet)
20: if cdtSet½0�:frequency > 0 then
21: member cdtSet½0�
22: else
23: member null
24: end if
25: returnmember

Algorithm 2. Extraction of Sample Assignments

Input:proj //project under development
Output:smpSet //the set of samples
1: smpSet ;
2: //retrieve all assignments from the project
3: asgns retrieveAsgns(proj)
4: for each asgn in asgns do
5: //extract all samples from the assignment
6: smps extractSamples(asgn)
7: smpSet.add(smps)
8: end for
9: return smpSet

Third, HeeNAMA enumerates samples in the set smpSet,
and extracts their sketches (Line 7). Lines 8-10 select sam-
ples that are highly similar to the incomplete assignment
(icpAsgn, the first input of the algorithm) by comparing

their sketches. A sample is regarded as highly similar to the
incomplete assignment when the types of their left hand
side expressions, the identifier names of their left hand side
expressions and their base instances are the same, respec-
tively. Lines 11-13 count the frequency of the candidate
members in the resulting highly similar samples. Based on
the frequency, HeeNAMA sorts the candidate set (cdtSet) in
descending order (Line 19). If the top one in cdtSet has a fre-
quency greater than zero, it is regarded as the most-likely
member to be accessed (Lines 20-25).

Taking the incomplete assignment (icpAsgn) “String
name = person.” as an illustrating example, HeeNAMA first
extracts its sketch

sketch ¼ < String; name; person; outside > ;

where outside means the assignment is typed in outside the
package of class Person, and then it retrieves all sample
assignments from the project under development. Suppose
that it retrieves four sample assignments

asgn1 : String name ¼ this:person:getNameðÞ
asgn2 : String name ¼ student:name

asgn3 : String name ¼ person:getNameðÞ
asgn4 : String name ¼ this:person:name:

From these sample assignments, the approach extracts six
samples

smp11 ¼ < skch11; person >

skch11 ¼ < String; name; this; outside >

smp12 ¼ < skch12; getNameðÞ >
skch12 ¼ < String; name; person; outside >

smp2 ¼ < skch2 ; name >

skch2 ¼ < String; name; student; outside >

smp3 ¼ < skch3 ; getNameðÞ >
skch3 ¼ < String; name; person; outside >

smp41 ¼ < skch41; person >

skch41 ¼ < String; name; this; outside >

smp42 ¼ < skch42; name >

skch42 ¼ < String; name; person; outside > :

Among these samples, smp12, smp3 and smp42 share the same
lType, lName, and baseIns in their sketches with the given
incomplete assignment icpAsgn, and thus they are taken as
highly similar samples. HeeNAMAcounts the occurrence fre-
quency of members in the resulting highly similar samples.
Because getName() has the highest frequency,HeeNAMAsug-
gests to complete the incomplete assignment icpAsgn with
getName().

3.4 Heuristic 2: Type Based Reduction
of Candidate Set

If the first heuristicH1 fails, HeeNAMAwould generate rec-
ommendations with the other heuristics, i.e., the second heu-
ristic H2 and the third heuristic H3. To make an assignment
syntactically correct, the right-hand side expression of the
assignment should be type compatible with the left-hand
side expression. Consequently, the predicted member access
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(for a given incomplete assignment) should be type compati-
ble with the left-hand side expression of the assignment if
the member access is the final token of the assignment. How-
ever, if the member access is not the final token of the assign-
ment, it is not necessarily type compatible with the left-hand
side. When an incomplete assignment is typed in, code com-
pletion tools do not know whether the next token is the final
token or not. Consequently, in theory code completion tools
(including the proposed one) could not assume that the next
member access is type compatible with the left-hand side of
the assignment.

However, to simplify the prediction, HeeNAMA makes
the assumption that the next member access is type compat-
ible with the left-hand side expression (called type compati-
bility assumption). Although the type of the left-hand side
expression is not by definition compatible with the next
member access, we find that this is the case in more than
80 percent of member accesses (see Section 4.3.2 for details).

Based on the type compatibility assumption, HeeNAMA
reduces the size of the initial candidate set by removing
those elements that are not type compatible with the left-
hand side expression of the enclosing assignment. If the
resulting candidate set is empty, i.e., no candidate is type
compatible with the left-hand side, HeeNAMA refuses to
make any prediction.

3.5 Heuristic 3: Similarity Based Prediction

Identifiers chosen by developers convey rich information
about the semantics of the software entities [39]. An empiri-
cal study also suggests that semantically related software
entities, e.g., arguments and their corresponding parameters,
often have lexically similar identifiers (entity names) [9]. The
right-hand side of an assignment is semantically related to its
left-hand side, and thus it is likely that they are lexically simi-
lar. Consequently, in this section we propose the third heu-
ristic (H3) to predict the next member access based on the
similarity between the candidates and the left hand side vari-
able of the assignment. Given an incomplete assignment
(whose sketch is sketch ¼ < lType; lName; baseIns; lct > )
and its candidate set (cdtSet) generated by Heuristic 2, Hee-
NAMAworks as follows to predict the next member access:

� First, for each candidate cdt in cdtSet, HeeNAMA
calculates the Levenshtein distance (notated as
Levðcdt; lNameÞ) between the identifier of cdt and
that of lName.

� Second, based on the resulting Levenshtein distance,
HeeNAMA calculates the lexical similarity between
cdt and lName as follows:

sim ¼ 1� Levðcdt; lNameÞ
maxðlenðcdtÞ; lenðlNameÞÞ ;

where lenðcdtÞ is the length of cdt (in characters),
lenðlNameÞ is the length of lName, and Levðcdt;
lNameÞ is th Levenshtein distance.

� Third, HeeNAMA sorts candidates in cdtSet in
descending order according to their similarities, and
suggests to use the the top one as the next member
access.

For the given example “String name = person.”, suppose
that the candidate set cdtSet contains four candidates: name,
getName(), age and getAge(). HeeNAMA calculates their lexi-
cal similarity with the left-hand side variable “name”. The
resulting similarities are 1.00, 0.57, 0.50, and 0.33, respec-
tively. Since the first candidate name has the greatest simi-
larity, HeeNAMA recommends name as the next token.

3.6 Neural Network Based Filtering

In the preceding sections, we present a sequence of heuris-
tics to predict the next member access according to a given
incomplete assignment. In this section, we present a neural
network based filtering to filter out risky predictions that
are likely incorrect.

The overall structure of the filter is presented in Fig. 2. On
the left side is a LSTM [26] layer. Its input is a sequence of
identifiers < lType; lName; baseIns;memb > where lType is
the type of left hand side expression, lName is the identifier
name of left hand side, baseIns is the base instance on which
the member is accessed, and memb is the member predicted
by heuristics (H1,H2, orH3). To feed such identifiers into the
neural network, we take the following measures. First, we
tokenize such identifiers (i.e., lType, lName, baseIns and
memb) into sequences of tokens according to the camel
case naming convention, notated as stðlTypeÞ, stðlNameÞ,
stðbaseInsÞ, and stðmembÞ, respectively. For the example of
< String; name; person; getName > , we tokenize them into
four sequences of < String > , < name > , < person > and
< get;Name > . Second, we lowercase all the tokens and
concatenate such sequences as well as separators (notated as
sep) into one sequence, noted as cst

cst ¼ < stðlTypeÞ; sep; stðlNameÞ; sep; stðbaseInsÞ;
sep; stðmembÞ >

¼ < t1; t2; . . . ; tn > ;

where n is the total number of tokens in lType, lName,
baseIns, memb and separators. Consequently, the resulted
sequence for the given example is < string; sep; name; sep;
person; sep; get; name > .

Given the sequence cst ¼< t1; t2; . . . ; tn > , we map the
ith token ti into a D-dimensional vector ei ¼W � oðtiÞ,
where W 2 RD�V is an embedding matrix pre-trained with
word2vec model [44] on identifiers that could be collected
from sample assignments, and oðtiÞ is a one-hot encoder
converting ti into a vector of V dimensions. We embed such

Fig. 2. Structure of the neural network based filter.
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tokens into numeric vectors with the well-known word2vec
because of the following reasons. First, each of the identifiers
are finally tokenized into a sequence of words that is essen-
tially a short English phrase, and word2vec has been proved
effective in vectoring short English phrases. Second, word2vec
has been successfully employed by Nguyen et al. [45] to vec-
torize identifiers in source code. We pass such vectors into a
recurrent neural network with long short-termmemory units
(LSTM) and compute the hidden vector at the ith time step as

hi ¼ fLSTMðhi�1; eiÞ; i ¼ 1; . . . ; n; (1)

where hi 2 RD and fLSTM is the LSTM function. Then we
take the final hidden state hn as the output of LSTM layer.
We employ LSTM because of two reasons. First, LSTM has
been proved effective and efficient in natural language proc-
essing. In our case, all of the involved identifiers (i.e., IType,
lName, baseIns and memb) are essentially natural language
descriptions. Second, LSTM accepts variable-length input.
In our case, the length of the input depends on how many
words the given identifiers contain, and it may change dra-
matically from assignment to assignment. Consequently,
LSTM fits well for our case.

Algorithm 3. Training Process of the Filter

Input: projs //sample projects
filter //filter (neural network) to be trained

Output:filter //updated filter
1: smpSet ;
2: for each proj in projs do
3: //extract sample assignments from the project
4: set extractSampleAssignments(proj)
5: smpSet smpSetþ set
6: end for
7: //generate a training set with sample assignments
8: trainSet generateTrainingSet(smpSet)
9: //train filter with the training set
10: filter filter.train(trainingSet)
11: returnfilter
12:
13: function generateTrainingSet(smpSet)
14: trainingSet ;
15: for each smp in smpSet do
16: //make prediction by heuristics
17: memb0; hurs; sim; cNum 
18: predict(smp:icpAsgn)
19: skch constructSketch(smp:icpAsgn)
20: input < skch:lType; skch:lName;
21: skch:baseIns;memb0; hurs; sim; cNum >
22: ifmemb0 = smp:memb then
23: output 1
24: else
25: output 0
26: end if
27: item < input; output >
28: trainingSet.add(item)
29: end for
30: return trainingSet
31: end function

On the right side is a normalization layer that normalizes
hurs, sim, and cNum. hurs indicates which heuristic (H1 or

H3) makes the prediction. sim is the lexical similarity
between memb and lName. cNum is the number of candi-
dates in the initial candidate set generated according to Java
syntax (as introduced in Section 3.2). The three numerical
values are concatenated into a three-dimensional vector and
fed into the Dense layer which converts them into a
D-dimensional vector. The normalization layer used here is
a learned layer-normalization. We normalize these data
because some of them (e.g., cNum) are usually much larger
than others (e.g., sim). The output of the LSTM layer and
the normalization layer is merged by concatenation and fed
into dense layers whose output is either one (suggesting
that the prediction is safe) or zero (suggesting that the pre-
diction is risky).

The neural network based filter could be trained in advance
with examples from open-source applications. Algorithm 3
presents the training process. The training process consists of
three steps, i.e., extracting sample assignments from sample
projects (Lines 1-5), generating the training set (Line 8), and
training filterwith the training set (Line 10).

On the first step, we extract sample assignments from cor-
pus (Line 4) in the same way as we did in Section 3.3. Based
on the resulting samples (noted as smpSet), we generate a
training set (noted as traingSet) on Line 8. The generation pro-
cess is explained as follows. For each sample smp, we employ
the heuristics (H1, H2 and H3) to make prediction for the
incomplete assignment (smp:icpAsgn) on Lines 17-18. The
output of the prediction includes the predictedmember access
(notated asmemb0), the number of initial candidates (noted as
cNum), the heuristic that makes the prediction (noted as
hurs), and the lexical similarity between memb0 and
smp:icpAsgn:lName (noted as sim). With the output and the
constructed sketch skch (Line 19), we construct an input
(Lines 20-21) for the filter as

input ¼ < lType; lName; baseIns;memb0;
hurs; sim; cNum > :

If the predictedmember access (memb0) is exactly the same as
that in sample (smp:memb), i.e., memb0 ¼ smp:memb, the
expected output of the network (notated as output) is one
(Lines 22-23). Otherwise, output is zero (Lines 24-25). The
resulting training item item ¼< input; output > is added to
the training set that is in turn used to train the neural net-
work (Lines 27-28). If the prediction fails, i.e., no member
access is recommended, we ignore the sample smp. No train-
ing items are generated based on this sample.

4 EVALUATION

In this section, we evaluate HeeNAMA on open-source
applications.

4.1 Research Questions

The evaluation investigates the following research questions:

� RQ1: How often do project-specific API member
accesses appear in the right hand side of assign-
ments? How often are they stacked or unstacked?

� RQ2: How often are project-specific API members in
the right hand side of assignments type compatible
with the left hand side?
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� RQ3: Does HeeNAMA outperform the state-of-
the-art approach or the state-of-the-practice tool? If
yes, to what extent?

� RQ4: How do the heuristics and the LSTM based fil-
ter influence the performance of HeeNAMA?

� RQ5: Can HeeNAMA be extended to recommend
project-specific API member accesses nested in
method invocations?

� RQ6: How well do API-specific approaches work in
suggesting project-specific API member accesses if
they are trained on within-project code?

� RQ7: How well does HeeNAMA work if trained
with all API member accesses (considering both proj-
ect-specific and public ones)?

� RQ8: Howwell does HeeNAMA perform on recently
created applications?

HeeNAMA is based on the assumption that there are a
large number of project-specific API member accesses on the
right hand side of assignments (called member accesses on
RHS for short). If the assumption does not hold, HeeNAMA
will not be employed frequently, and thus it may be useless.
Answering the research question RQ1 helps to validate the
assumption. Notably member accesses are further divided
into stacked and unstacked. For example, member access c in
assignment x=a.b.c is unstackedwhereas b is stacked because
b is followed immediately by another member access.
Although HeeNAMA makes predictions for both stacked
and unstacked member accesses, it is more challenging to
predict stacked ones because the type based reduction of
candidate sets (as introduced in Section 3.4) may not work
for stacked ones. For example, while predicting b in assign-
ment x=a.b.c, HeeNAMA filters candidates based on the
assumption that the member access to be predicted (b in
the example) is type compatible with the left hand side of the
assignment (x in the example). However, it is not necessarily
true for stacked member accesses: assignment x=a.b.c
requires c (instead of b) to be type compatible with x. Investi-
gating how often member accesses are stacked or unstacked
may help to reveal how often the assumption taken by
HeeNAMAholds.

H2 in Section 3.4 is based on the assumption that the next
project-specific API member access in the right hand side of
assignment is often type compatible with the left-hand side
expression (type compatibility assumption). Answering the
research question RQ2 helps to validate the assumption.

RQ3 concerns the performance of HeeNAMA against the
state-of-the-art approach and the state-of-the-practice tool.
To answer RQ3, we compare HeeNAMA against SLP-Core
and Eclipse. SLP-Core is the implementation of the state-of-
the-art approach proposed by Hellendoorn et al. [20]. Eclipse
is a well-known and widely used IDE. SLP-Core and Eclipse
are selected for comparison because of the following reasons.
First, SLP-Core is the state-of-the-art approach whereas
Eclipse is the state-of-the-practice IDE. Second, both SLP-
Core and Eclipse can predict project-specific API member
accesses. Third, both SLP-Core and Eclipse are publicly
available online, which facilitates readers to repeat the evalu-
ation. Although some advanced approaches are reported
highly accurate [18], [19], [46], [47], they are not selected for
comparison because we fail to get their replication packages
or the packages could not be easily adapted to Java. Both

SLP-Core and Eclipse are generic, and they can predict all
kinds of tokens or elements whereas HeeNAMA is confined
to project-specific API member accesses on RHS. The pur-
pose of the comparison is to investigate whether HeeNAMA
can improve the performance of code completion by focus-
ing on special cases and by taking specific and fine grained
context of such cases.

As specified in Section 3, HeeNAMA is composed of a
sequence of heuristics and a neural network based filter.
Answering research question RQ4 helps to reveal how such
heuristics and filter influence the performance (e.g., preci-
sion and recall) of HeeNAMA.We also conducted an experi-
ment to explore how different learning algorithms influence
the performance of the filter and HeeNAMA. The results can
be found in the online appendix.1 Answering the research
question RQ4 also helps to explain why HeeNAMA works
(or not works).

As specified in Section 1, HeeNAMA focuses on a specific
but common case of code completion: suggesting the follow-
ing member access whenever a project-specific API instance
is followed by a dot on the right hand side of an assignment.
Notably, there is a similar case where HeeNAMA could be
applied: suggesting the following member access when a
project-specific API instance is nested in a method invoca-
tion, e.g., suggesting the member b in the example of m(a.b).
We call such project-specific API member accesses nested in
method invocations as nested member accesses for short.
RQ5 investigates the possibility of extending HeeNAMA
to recommend nested member accesses. Answering the
research question RQ5 helps to validate the practical useful-
ness of HeeNAMA.

Research question RQ6 concerns the performance of Hee-
NAMA against API-specific approaches that are trained on
within-project code. API-specific approaches are often
highly accurate in recommending API member accesses
because they can discover frequent patterns in training cor-
pus. If we simply train API-specific prediction models on
within-project code, however, they might discover project-
specific patterns as well, and thus the resultingmodelsmight
suggest project-specific member accesses as HeeNAMA
does. Assuming that a model is requested to recommend a
member of class C in method M, if the model is continually
updated with the code in the project, it would have the
knowledge of all the code in the project with the exception of
methodM. Thus, if there are usage patterns of class C in the
project, the model would be able to make a good recommen-
dation. That is the rationale for the investigation of RQ6. To
answer RQ6, we compare HeeNAMA against an API-
specific approachCSCC [35] (trained onwithin-project code) in
suggesting project-specific API member accesses. CSCC [35] is
the latest pattern mining based API-specific approach. In the
evaluation, CSCC is incrementally trained with the code in the
test project.

Research question RQ7 concerns the performance of Hee-
NAMA when trained with all project-specific and public
API member accesses. Although HeeNAMA is proposed
for prediction of project-specific API member access, it can
be applied to train on public API member access as well. To

1. https://github.com/CC-CG/HeeNAMA/tree/master/appendix
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answer RQ7, we train HeeNAMA with all API member
accesses on RHS in subject applications and then evaluate
its performance on project-specific and public API member
accesses on RHS separately.

Research question RQ8 concerns the performance of Hee-
NAMA on recently created applications. To answer RQ8,
we collect a new dataset of nine open-source Java applica-
tions which are created in recent years (i.e., since January 1,
2015). With the new dataset, we evaluate the performance
of HeeNAMA against SLP-Core, Eclipse and CSCC again.
The comparison helps to reveal the impact of replacing eval-
uation applications on the performance of HeeNAMA.

4.2 Setup

4.2.1 Subject Applications

We conduct the evaluation on nine open-source applications
as shown in Table 1. We select such applications because
they have been employed to evaluate code completion
approaches successfully [7], [18], [23], [24]. An overview of
the subject applications is presented in Table 1. They cover
various domains such as software build, database manage-
ment, and search engine. The size (LOC) of subject applica-
tions varies from 91,760 to 1,591,582. In all nine applications,
there are 861,618 API member accesses in total, and 521,752
of them are project-specific API member accesses. In 521,752
project-specific API member accesses, 103,695 members are
accessed on the right hand side of assignments. Notably, our
evaluation is only conducted on project-specific APImember
accesses on the right hand side of assignments, i.e., evaluated
approaches are requested for code completion on the 103,695
member accesses on RHS in subject applications.

4.2.2 Process

On the nine open-source applications presented in Table 1,
we carry out a k-fold (k = 9) cross-validation. On each fold, a
single application is used as testing data set (noted as testSet)
whereas the others (eight applications) are used as training
data (noted as trainingSet). Each of the subject applications is
used as testing data set for once.

Each fold of the evaluation follows the following process:

1) SLP-Core and the filter in HeeNAMA are trained
with trainingSet independently.

2) For each project-specific API member access on RHS
in the testSet, we remove source code after the dot of
member access (including the member) in the enclos-
ing file. The resulting incomplete assignment is used
as a query to HeeNAMA, SLP-Core and Eclipse.
This step simulates the scenarios where source code
in each file is typed in from the top to the bottom.

3) For each query, each code completion system is
asked to return a prediction of the missing member
access. A prediction is correct if and only if the pre-
dicted member access is exactly the same as that in
the original source code. After prediction, the origi-
nal member access is used to train SLP-Core and the
first heuristic in HeeNAMA in a incremental way.

4) Based on such predictions, we calculate the perfor-
mance (precision and recall) for these code comple-
tion approaches.

4.2.3 Configuration

We empirically set the embedding dimension (100) for
word2vec and the dimension (10) for the intermediate Dense
layers. We also empirically set the activation function
(ELU [48]) for dense layers, and their optimizer (Nadam [49]).
Other settings of the evaluation could be found in the imple-
mentation of HeeNAMA that is publicly available at
https://github.com/CC-CG/HeeNAMA [50]. For compari-
son with SLP-Core, we employ the nested cache n-gram
model in the dynamic setting which is reported best-in-
class [20]. During evaluation, SLP-Core is incrementally
trained with each member access in the test project once
the member access has been recommended, i.e., we employ
the dynamic setting as in [20]. For a given completion, those
member accesses that have been recommended before are
left in their usual place and thus can be learned by
the nested cache n-gram model of SLP-Core. Concerning
Eclipse, for each member access in the test project, we
programmatically invoke the default code recommender in
Eclipse (version 4.5).

4.2.4 Metrics

To answer research questions RQ3 to RQ8, we calculate the
precision of top k recommendation for various approaches
in recommending member accesses as follows:

Precision@k ¼ Naccepted@k

Nrecommended
; (2)

where Naccepted@k is the number of the cases where one of
items within the top k recommendation list is accepted, and
Nrecommended is the number of cases the evaluated approach
tries. The recall of top k recommendation is calculated as
follows:

Recall@k ¼ Naccepted@k

Ntested
; (3)

where Ntested is the number of tested member accesses. To
answer RQ3 and RQ6, the value of k is set to 1, 3 and 5.
While for the other research questions, we only present the
precision and recall of top 1 recommendation. We also com-
pute the F-measure to summarize the precision and recall
values of top 1 recommendation as follows:

Fb ¼ ðb2 þ 1Þ � Precision@1 �Recall@1

b2 � Precision@1þRecall@1
; (4)

where b 2 R is a harmonic coefficient.In this paper, we set b to
0.5, 1 and 2 to get evaluating metrics F0:5-measure, F1-mea-
sure and F2-measure, respectively [51]. F1-measure integrates
precision and recall values by the same weight. F2-measure
assigns a larger weight to the precision value whereas
F0:5-measure assigns a larger weight to the recall value. That
is to say, F2-measure focuses more on the improvement of
the recall value whereas F0:5-measure focuses more on the
improvement of the precision value. The three metrics evalu-
ate the integrated performance of the approach from different
aspects.
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4.3 Results and Analysis

4.3.1 RQ1: Project-Specific APIMember Access onRHS

To address RQ1, we count the number of member accesses
in subject applications as well as those on the right-hand
side of assignments (RHS). We also count the number of
unstacked member accesses on the right-hand sides of
assignments. The results are presented in Table 2. The first
column presents the names of subject applications. The sec-
ond column presents the number of member accesses in
subject applications. The third column and the forth column
present the number of member accesses on RHS and the
ratio of member accesses on RHS to all member accesses,
respectively. The number of unstacked member accesses on
RHS is presented in the fifth column. The ratio of them to
member accesses on RHS and the ratio of them to all mem-
ber accesses are presented in the last two columns.

From this table we make the following observations:

� First, the number of member accesses on RHS is quite
large. For the nine subject applications, the total num-
ber is as much as 103,695. Consequently, highly accu-
rate prediction approaches (if there is any) for such
member accesses would be employed frequently, and
thus could be beneficial for developers.

� Second, member accesses on RHS account for a sig-
nificant proportion of member accesses in the source
code. On average, they account for 19.87%=103,695/
521,752 of the member accesses.

� Third, most (83.55 percent) of member accesses on
RHS are unstacked, i.e., where HeeNAMA actually
works. The total number of unstacked member
accesses is as much as 86,635 for nine subject applica-
tions. They account for 16.60%=86,635/521,752 of all
member accesses.

From the analysis in the preceding paragraphs, we con-
clude that there is a large number of member accesses on the
right-hand side of assignments. Consequently, code comple-
tion approaches/tools confined to such member accesses
could be useful as long as they are accurate.

4.3.2 RQ2: Type Compatibility of Project-Specific API

Member Accesses

To address RQ2, we count the number of member accesses on
RHS and the number of those which are type compatible with
the left hand side expression.Wepresent the results in Table 3.
The first column shows the names of subject applications. The

second column presents the number of member accesses on
RHS. The third column presents the number of member
accesses on RHS which are type compatible with the left
hand side expression. The ratio of type compatible member
accesses to those on RHS is presented in the last column.

From Table 3, we observe that the ratio is high. As shown
in the table, the ratio varies from 70.42 to 92.27 percent. On
average, 81.82%=84,842/103,695 of member accesses on
RHS are type compatible with the left hand side.

From the analysis in the preceding paragraph, we con-
clude that in most cases the type compatibility assumption
is correct.

4.3.3 RQ3: Comparison Against Existing Approaches

To address RQ3, we compare HeeNAMA against SLP-Core
[20] and Eclipse IDE on nine open-source applications. The
evaluation results are presented in Table 4 and Fig. 3. In the
table, the first column presents the names of subject applica-
tions. The second to seventh columns present the precision
and recall of HeeNAMA in the top k recommendation list,
respectively. The precision of SLP-Core and Eclipse at top k
is presented in the last six columns, respectively. Different
from HeeNAMA, both SLP-Core and Eclipse always make
recommendationwhenever they are requested, i.e., the num-
ber of cases they try is equal to the number of tested member
accesses. Consequently, for SLP-Core and Eclipse, recall is
always equal to precision, and thus it is omitted from the
table. Fig. 3 presents evaluation results at the top 1 recom-
mendation with bean-plot. Each bean in Fig. 3 presents the
resulting precision (sub-graph on the left) or recall (sub-
graph on the right) of an evaluated approach on subjection

TABLE 2
Popularity of Project-Specific API Member Accesses on RHS

Applications All Accesses (Nall) Accesses on RHS (NRHS)
NRHS
Nall

Unstacked Accesses on RHS (Nunstacked)
Nunstacked
NRHS

Nunstacked
Nall

Ant 23,702 3,400 14.34% 3,064 90.12% 12.93%
Batik 24,031 5,158 21.46% 4,773 92.54% 19.86%
Cassandra 100,575 17,724 17.62% 13,786 77.78% 13.71%
Log4J 31,927 7,137 22.35% 4,963 69.54% 15.54%
Lucene-solr 266,040 56,623 21.28% 47,373 83.66% 17.81%
Maven2 10,070 1,411 14.01% 1,209 85.68% 12.01%
Maven3 18,067 2,351 13.01% 2,037 86.64% 11.27%
Xalan-J 22,621 4,154 18.36% 3,946 94.99% 17.44%
Xerces 24,719 5,737 23.21% 5,484 95.59% 22.19%
Total 521,752 103,695 19.87% 86,635 83.55% 16.60%

TABLE 3
Type Compatibility of Project-Specific API Member Accesses

Applications Accesses on
RHS (NRHS)

Type Compatible
Accesses (NTC)

NTC
NRHS

Ant 3,400 3,042 89.47%
Batik 5,158 4,567 88.54%
Cassandra 17,724 13,357 75.36%
Log4J 7,137 5,026 70.42%
Lucene-solr 56,623 46,554 82.22%
Maven2 1,411 1,204 85.33%
Maven3 2,351 2,045 86.98%
Xalan-J 4,154 3,833 92.27%
Xerces 5,737 5,214 90.88%
Total 103,695 84,842 81.82%

JIANG ET AL.: HEURISTIC AND NEURAL NETWORK BASED PREDICTION OF PROJECT-SPECIFIC API MEMBER ACCESS 1259



applications. The white small lines represent the precision or
recall on a single subject application, and the shape of the
beans represents the distribution of the performance. The
black lines crossing beans represent the average precision (or
recall) of the evaluated approaches.

From Table 4 and Fig. 3, we make the following
observations:

� First, HeeNAMA is precise. The precision at top 1 rec-
ommendation varies from 73.89 to 87.03 percent, and
the average precision is as much as 83.36 percent. In
other words, in most cases (more than 83 percent)
the approach suggests the member access exactly the
same as developers want.

� Second, HeeNAMA is significantly more precise than
SLP-Core and Eclipse. On each of the subject applica-
tions, the precision of HeeNAMA at top k is always
greater than that of SLP-Core and Eclipse. We also
compare their precision at top 1 in Fig. 3a where the
distance between different approaches is obvious. On
average, HeeNAMA improves precision at top 1 sig-
nificantly by 70.68%=(83.36%-48.84%)/48.84%.

� Third, HeeNAMA improves recall at top 1 recom-
mendation significantly. Although its recall varies
dramatically from 47.90 to 67.31 percent, it is always
greater than that of SLP-Core and Eclipse. The bean
plot in Fig. 3b visually illustrates the distance among

such approaches. On average, it improves recall at
top 1 by 25.23%=(61.16%-48.84%)/48.84%.

Notably, SLP-Core and Eclipse work well on challenging
project-specific API member accesses, achieving a preci-
sion/recall of 48.84 and 47.74 percent, respectively. One pos-
sible reason for the success of SLP-Core is that it leverages
examples of member accesses in the test project (i.e., within-
project code) because its nested cache n-gram model is con-
tinually updated while recommendation [20]. Eclipse suc-
ceeds frequently because it recommends member accesses
according to type information of the left hand side which is
also leveraged byHeeNAMAand thus it makes some correct
recommendations.

HeeNAMA refuses to make recommendations when it
lacks of confidence. We present the frequency of HeeNAMA
refusing to make recommendations in Table 5. From this
table, we observe that on more than a quarter (26.62 percent)
cases HeeNAMA refuses to make recommendations. Com-
paring Table 4 against Table 5, we observe that the recall is
influenced by the frequency of refusal. The results are reason-
able in that if HeeNAMA makes fewer recommendations, it
has smaller chance to make correct recommendations (and
thus lower recall).

As suggested by Table 2, project-specific API member
accesses could be further divided into stacked and unstacked
ones. To this end, we further investigate how well Hee-
NAMAworks at top 1 recommendation on such subsets. On

TABLE 4
Comparison Against Existing Approaches

Applications

HeeNAMA SLP-Core Eclipse

Precision Recall Precision Precision

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5 Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

Ant 80.82% 85.17% 85.92% 63.59% 69.91% 71.44% 42.38% 51.12% 54.65% 48.44% 67.85% 78.15%
Batik 75.46% 83.53% 85.90% 60.86% 68.94% 71.56% 42.83% 51.01% 53.06% 42.48% 67.78% 76.93%
Cassandra 81.00% 84.96% 84.63% 59.00% 62.97% 63.48% 41.32% 48.10% 51.30% 44.81% 68.60% 79.87%
Log4J 84.00% 87.32% 88.02% 67.31% 79.04% 79.99% 49.15% 54.32% 56.79% 37.12% 59.41% 65.28%
Lucene-solr 86.00% 88.05% 87.94% 62.60% 67.05% 67.94% 52.38% 60.63% 63.61% 53.64% 75.64% 83.23%
Maven2 87.03% 91.92% 92.51% 67.04% 74.20% 75.27% 58.11% 65.27% 67.90% 45.57% 72.43% 82.99%
Maven3 73.89% 85.12% 85.46% 64.53% 72.27% 73.50% 45.98% 53.00% 57.38% 27.35% 64.99% 73.63%
Xalan-J 79.77% 79.57% 80.02% 53.06% 66.18% 67.96% 46.44% 53.71% 56.69% 42.18% 67.21% 75.83%
Xerces 78.47% 80.72% 80.69% 47.90% 59.32% 60.31% 46.59% 59.28% 62.40% 29.07% 47.25% 59.12%
Average 83.36% 86.39% 86.51% 61.16% 67.12% 68.11% 48.84% 56.80% 59.79% 47.74% 70.48% 79.09%

Fig. 3. Comparison against existing approaches.
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the stacked ones, HeeNAMA achieves a precision of
74.86 percent and a recall of 45.84 percent whereas the preci-
sion (and recall) of SLP-Core and Eclipse IDE is 48.12 and
7.11 percent, respectively. On the unstacked ones, Hee-
NAMA achieves a precision of 84.71 percent and a recall of
64.18 percent whereas the precision (and recall) of SLP-Core
and Eclipse IDE is 48.98 and 55.75 percent, respectively. The
results suggest that HeeNAMA works much better on
unstacked ones than on stacked ones. Stacking does not
affect SLP-core because SLP-core is completely based on
token sequences captured by n-gram models. However,
stacking does affect Eclipse negatively because Eclipse lever-
ages the type information of the left hand side to make rec-
ommendations and stacking makes such type information
useless (or even misleading). However, the results also sug-
gest that even on the stacked ones, HeeNAMA outperforms
SLP-Core and Eclipse IDE as well.

From the analysis in the preceding paragraphs, we con-
clude that HeeNAMA is precise, and it significantly outper-
forms both the state-of-the-art approach and the state-of-
the-practice tool in suggesting the next member access for
assignments.

4.3.4 RQ4: Impacts of Heuristics and Filter

As introduced in Section 3, HeeNAMA is composed of three
heuristics and neural network based filter. The evaluation in
the preceding sections suggests that HeeNAMA as a whole
is accurate. To investigate how the heuristics and filter influ-
ence the performance of HeeNAMA, we repeat the evalua-
tion (including both the training and testing phase) for four
times. On the first three times, we disable the heuristics (i.e.,
H1, H2, H3), respectively. Finally, we disable the neural net-
work based filter, and repeat the evaluation for the last
time. For example, when disablingH1, the filter is presented
with only type-compatible member accesses that are ranked
first byH3 according to lexical similarity.

The evaluation results are presented in Fig. 4 and Table 6.
From Fig. 4 and Table 6, wemake the following observations:

� First, disabling any of the three heuristics leads to
significant reduction in recall. The reduction is as
much as 14.60%=(61.16%-52.23%)/61.16%, 36.35%=
(61.16%-38.93%)/61.16%, and 27.11%=(61.16%-
44.58%)/61.16%, respectively. The evaluation results
suggest that all of the heuristics are critical for Hee-
NAMA to achieve high recall.

� Second, disabling neural network based filter improves
recall at the cost of reduced precision. Precision is
reduced by 10.64%=(83.36%-74.49%)/83.36% whereas
recall is improved by 13.73%=(69.56%-61.16%)/
61.16%. Although disabling the filter results in more
balanced precision and recall, the filter is beneficial
because of the following reasons. First, although the
filter reduces F2 (that biases for recall) from 70 to 65
percent, F1 keeps stable and F0:5 (that biases for preci-
sion) increases from 73 to 78 percent. Second, for code
completion, high precision (and thus few uncorrect
recommendations) is critical because incorrect rec-
ommendations are often misleading and even worse
than no recommendation at all. Code complete tools
that frequently make incorrect recommendations
would lose trust of developers, andwill be finally dis-
carded by developers. To this end, we introduce the
filter to improve precision (at the cost of moderate
reduction in recall) by removing risky recommenda-
tions. The evaluation results suggest that the filter
works as expected.

� Third, disabling H1 and H3 has little influence on the
precision of HeeNAMA. One possible reason is that
the neural network based filter (working at the final
phase of HeeNAMA) can filter out most of the risky
predictions, and thus guarantees the final precision.

We also present in Table 7 the frequency of HeeNAMA
refusing to make recommendations when one of the heuris-
tics or the filter is disabled. From the table, we observe that
disabling any of the three heuristics improves the frequency
of refusal while disabling the filter reduces the frequency,
which is consistent with the observation from Table 6.
When disabling heuristics, HeeNAMA refuses to make rec-
ommendations more frequently and thus it achieves lower
recall. However, when disabling the filter, the frequency of
HeeNAMA refusing to make recommendations reduces
greatly so its recall improves.

We investigate the impact of the features leveraged by
the filter and present the evaluation results in Table 8. From
the table, we conclude that each of the features is useful. We
also investigate the impact of reducing one or two hidden
layers used by the filter. The results suggest that reducing
one or two hidden layers would result in reduction (1.56
and 2.99 percent, respectively) in F1.

To further investigate the contribution of heuristics, we
evaluate the performance of pair-wise disabling (i.e., activat-
ing each heuristic on subject applications). The evaluation

TABLE 5
Frequency of HeeNAMA Refusing to Make Recommendations

Applications Accesses on RHS
(NRHS)

Refused Accesses
(NRef )

NRef

NRHS

Ant 3,400 725 21.32%
Batik 5,158 998 19.35%
Cassandra 17,724 4,814 27.16%
Log4J 7,137 1,418 19.87%
Lucene-solr 56,623 15,405 27.21%
Maven2 1,411 324 22.96%
Maven3 2,351 298 12.68%
Xalan-J 4,154 1,391 33.49%
Xerces 5,737 2,235 38.96%
Total 103,695 27,608 26.62% Fig. 4. Impacts of heuristics and filter.
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results are presented in Table 9. The table does not present
the option of activating the filter alone because the filter can-
not work without the candidate items generated by heuris-
tics. From the table, we observe that single activation results
in significant reduction in performance. For example, acti-
vating H1 only increases precision slightly by 1.36%=
(84.51%-83.36%)/83.36% but reduces recall significantly by
23.09%=(61.16%-47.04%)/61.16%. Single activation for H2 or
H3 significantly reduces both precision and recall.

We conclude from the preceding analysis that the pro-
posed heuristics and the filter are useful.

4.3.5 RQ5: Performance on Nested Member Accesses

To address RQ5, we evaluate HeeNAMA on nested member
accesses from nine open-source applications. We also com-
pare the performance of HeeNAMA against SLP-Core and
Eclipse IDE. The evaluation results are presented in
Table 10. In the table, the first column presents the names of

subject applications. The second column presents the num-
ber of member accesses in subject applications. The third
column and the forth column present the number of nested
member accesses and the ratio of nested member accesses
to all member accesses, respectively. The fifth column and
the sixth column present the precision and recall of Hee-
NAMA, respectively. The precision of SLP-Core and Eclipse
is presented in the last two columns. For SLP-Core and
Eclipse, recall is always equal to precision, and thus it is
omitted from the table.

From Table 10, we make the following observations:

� First, nested member accesses are popular. On aver-
age, nested member accesses account for a significant
proportion (25.89 percent) of all member accesses.
Consequently, applying HeeNAMA to such member
accesses would make it more general and therefore
alsomuch stronger.

� Second, HeeNAMA is precise in suggesting
nested member accesses. It achieves a precision of
71.64 percent, which is much higher than SLP-Core
and Eclipse.

� Third, the recall of HeeNAMA is higher than that of
Eclipse but lower than that of SLP-Core. One possi-
ble reason is that the filter of HeeNAMA improves
precision at the cost of reduced recall.

From the analysis in the preceding paragraph, we con-
clude that HeeNAMAcan be extended to recommend nested
member accesses, which improves the practical usefulness of
HeeNAMA.

TABLE 7
Frequency of HeeNAMA Refusing to Make Recommendations

Applications Accesses on RHS Default DisablingH1 DisablingH2 DisablingH3 Disabling Filter

Ant 3,400 21.32% 41.85% 43.05% 60.44% 4.88%
Batik 5,158 19.35% 37.81% 42.32% 54.32% 5.25%
Cassandra 17,724 27.16% 35.43% 51.47% 54.04% 8.55%
Log4J 7,137 19.87% 29.02% 39.36% 39.50% 7.21%
Lucene-solr 56,623 27.21% 37.57% 47.44% 45.41% 7.03%
Maven2 1,411 22.96% 39.41% 32.73% 63.71% 7.44%
Maven3 2,351 12.68% 33.90% 31.47% 60.53% 5.57%
Xalan-J 4,154 33.49% 45.21% 50.21% 58.11% 2.14%
Xerces 5,737 38.96% 40.47% 63.66% 54.49% 1.72%
Total 103,695 26.62% 37.18% 47.62% 49.02% 6.62%

TABLE 8
Impact of the Features Leveraged by the Filter

Settings Performance of HeeNAMA

Precision Recall

Default 83.36% 61.16%
Disabling hurs 75.16% 59.06%
Disabling sim 73.34% 56.05%
Disabling cNum 80.95% 60.86%
Disabling all 69.97% 51.28%

TABLE 6
Impacts of Heuristics and Filter

Applications Default DisablingH1 DisablingH2 DisablingH3 Disabling Filter

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Ant 80.82% 63.59% 82.75% 48.12% 77.53% 44.15% 89.00% 35.21% 71.27% 67.79%
Batik 75.46% 60.86% 77.34% 48.10% 61.04% 35.21% 85.27% 38.95% 68.59% 64.99%
Cassandra 81.00% 59.00% 80.28% 51.84% 81.05% 39.33% 85.61% 39.35% 73.07% 66.82%
Log4J 84.00% 67.31% 84.64% 60.08% 69.57% 42.19% 87.82% 53.13% 78.97% 73.28%
Lucene-solr 86.00% 62.60% 85.63% 53.46% 73.84% 38.81% 89.12% 48.65% 77.22% 71.79%
Maven2 87.03% 67.04% 87.49% 53.01% 90.09% 60.60% 91.02% 33.03% 77.87% 72.08%
Maven3 73.89% 64.53% 76.13% 50.32% 85.66% 58.70% 78.77% 31.09% 71.58% 67.59%
Xalan-J 79.77% 53.06% 80.98% 44.37% 65.52% 32.62% 86.21% 36.11% 63.89% 62.52%
Xerces 78.47% 47.90% 73.91% 44.00% 72.04% 26.18% 77.21% 35.14% 62.82% 61.74%
Average 83.36% 61.16% 83.14% 52.23% 74.32% 38.93% 87.45% 44.58% 74.49% 69.56%
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4.3.6 RQ6: Comparison Against API-Specific

Approaches Trained on Within-Project Code

To address RQ6, we compare HeeNAMA against CSCC
on subject applications. Notably, we incrementally train
CSCC with within-project member accesses in the evalu-
ation, i.e., trained with member accesses that have been
recommended before the current one in the test project.
The evaluation results are presented in Table 11. In the
table, the first column presents the names of subject
applications. The second to seventh columns present the
precision and recall of HeeNAMA at the top k recom-
mendation, respectively. The last six columns present the
precision and recall of CSCC at the top k recommenda-
tion, respectively.

From the table, we make the following observations:

� First, CSCC works well on project-specific API
member accesses. It achieves a high precision of
64.40 percent at top 1, 77.01 percent at top 3 and
79.48 percent at top 5 recommendation.

� Second, HeeNAMA is significantly more precise
than CSCC in predicting project-specific API mem-
ber accesses. On each application, its precision at top
k is always higher than the precision of CSCC. For
example, at top 1 recommendation, it improves pre-
cision by 29.44%=(83.36%-64.40%)/64.40%.

� Third, HeeNAMA achieves higher recall than
CSCC. The recall at top 1, 3 and 5 recommendation
is improved by 20.46%=(61.16%-50.77%)/50.77%,
10.58%=(67.12%-60.70%)/60.70% and 8.72%=(68.11%-
62.65%)/62.65%, respectively.

From the analysis in the preceding paragraph, we con-
clude that HeeNAMA significantly outperforms API-
specific approaches in suggesting project-specific API mem-
ber accesses even if they are trained on within-project code.

4.3.7 RQ7: Performance of HeeNAMAWhen Trained

With All API Member Accesses

To answer RQ7, we train HeeNAMA with all API member
accesses and evaluate it on project-specific and non-project-
specific (i.e., public API) member accesses separately. On
project-specific member accesses, the precision and recall
of HeeNAMA are 81.28 and 64.85 percent, respectively. On
non-project-specific member accesses, the precision and
recall of HeeNAMA are 86.00 and 57.67 percent, respec-
tively. The performance of HeeNAMA on non-project-spe-
cific member accesses is comparable to that on project-
specific accesses because HeeNAMA takes non-project-spe-
cific member accesses as project-specific ones in fact. The
performance on non-project-specific member accesses is not
significantly higher than that on project-specific accesses

TABLE 9
Impacts of Heuristics

Applications Default Activating H1 ActivatingH2 ActivatingH3

Precision Recall Precision Recall Precision Recall Precision Recall

Ant 80.82% 63.59% 87.29% 35.97% 42.96% 41.18% 28.48% 28.35%
Batik 75.46% 60.86% 82.48% 39.90% 40.38% 38.52% 25.97% 25.71%
Cassandra 81.00% 59.00% 83.79% 42.60% 45.93% 41.38% 29.25% 29.14%
Log4J 84.00% 67.31% 85.76% 55.11% 51.48% 46.11% 27.76% 27.73%
Lucene-solr 86.00% 62.60% 87.52% 50.67% 52.83% 47.49% 29.56% 29.39%
Maven2 87.03% 67.04% 76.63% 35.08% 53.02% 46.70% 39.65% 38.98%
Maven3 73.89% 64.53% 69.01% 33.35% 56.64% 52.40% 40.82% 40.49%
Xalan-J 79.77% 53.06% 79.68% 38.81% 35.56% 34.95% 26.33% 26.29%
Xerces 78.47% 47.90% 66.86% 42.41% 26.48% 25.83% 32.32% 32.30%
Average 83.36% 61.16% 84.51% 47.04% 48.37% 44.10% 29.58% 29.44%

TABLE 10
Performance on Nested Member Accesses
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because HeeNAMA does not leverage any unique prop-
erties of non-project-specific APIs, e.g., patterns of API
usage.

4.3.8 RQ8: Performance on the New Dataset

To answer RQ8, we evaluate HeeNAMA against SLP-Core,
Eclipse and CSCC on nine open-source Java applications
that are recently created. The evaluation results are pre-
sented in Table 12. In the table, the first column presents the
names of subject applications. The second column presents
the number of all project-specific member accesses in sub-
ject applications. The third column and the forth column
present the number of member accesses on RHS and the
ratio of them to all project-specific member accesses, respec-
tively. The fifth column and the sixth column present the
precision and recall of HeeNAMA, respectively. The preci-
sion of SLP-Core and Eclipse is presented in the seventh
and eighth columns, respectively. The last two columns
present the precision and recall of CSCC. For SLP-Core and
Eclipse, recall is always equal to precision, and thus it is
omitted from the table.

From Table 12, we make the following observations:

� First, the ratio of project-specific member accesses on
RHS in the new dataset is close to that of the original
dataset (19.45 versus 19.87 percent).

� Second, the performance of HeeNAMA on the new
dataset is comparable to its default performance on
the original dataset. The precision and recall of Hee-
NAMA on the new dataset are 80.31 and 56.27 per-
cent, respectively.

� Third, HeeNAMA significantly outperforms SLP-
Core, Eclipse and CSCC on the new dataset. It
improves the precision by 34.93%=(80.31%-59.52%)/
59.52% and the recall by 23.70%=(56.27%-45.49%)/
45.49%, respectively.

4.4 Threats to Validity

A threat to the external validity is that only nine applications
are involved in the evaluation and such applications may be
unrepresentative. Consequently, the evaluation results may
not hold if other subject applications are involved. To reduce
the threat, we reuse the subject applications that have been

TABLE 11
Comparison Against API-Specific Approach

TABLE 12
Performance on Project-Specific Member Accesses in the New Dataset
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successfully employed in related work, and such applica-
tions contain more than one hundred thousand training
items that have been used to evaluate HeeNAMA. Another
threat to the external validity is that HeeNAMA is only eval-
uated on Java applications. Conclusions on Java applications
may not hold for applications written in other languages,
e.g., C++.

A threat to construct validity is that the evaluation is
based on the assumption: the involved assignments in the
subject applications are correct. We evaluate the suggested
member access against that chosen by the original develop-
ers (i.e., the member access in the downloaded source
code). If they are identical, we say the prediction is correct.
Otherwise, it is declared incorrect. However, it is likely that
the original developers may have chosen incorrect member
access (and thus caused a bug), which makes the evaluation
potentially incorrect. To reduce the threat, we select mature
and well-known applications for evaluation because such
applications are likely to contain fewer bugs.

A threat to internal validity is that the simulated code
completion scenarios may be different from real scenarios. In
the evaluation, we simulate the scenarios where source code
in each document is typed in from the top to the bottom.
In other words, context for code completion is the source
code before the current cursor (where the suggested token
will be inserted). However, in real world, especially in soft-
ware maintenance and bug fixing phases, there may exist
source code after the current cursor, and such code could be
exploited for code completion as well. Another threat to
internal validity is that in the simulated scenarios Java source
code files (�.java) are created in the alphabetical order of the
file names whichmay not be the real case. The creation order
may influence the performance of code completion because
it exploits existing code within the enclosing project. We take
such an order because we fail to find their creation time from
thewebwhere the source code is downloaded.

5 CONCLUSIONS AND FUTURE WORK

In this paper we highlight the necessity of code completion
for project-specific API member access on the right hand
side of assignment. We also propose an automatic and accu-
rate approach to suggesting the next member access when-
ever a project-specific API instance is followed by a dot on
the right hand side of an assignment. The approach is accu-
rate because it takes full advantages of the context of the
code completion, including the type of the left hand side
expression of the assignment, the identifier on the left hand
side, the type of the base instance, and similar assignments
typed in before. It also employs a neural network to filter
out risky prediction, which guarantees high precision of
code completion. HeeNAMA has been evaluated on nine
open-source applications. Our evaluation results suggest
that compared to the state-of-the-art approach and the
state-of-the-practice tool HeeNAMA improves both preci-
sion and recall significantly.

Findings presented in the paper are valuable to the
research community in the following aspects:

� First, we empirically reveal that public API member
accesses are less popular than project-specific API

member accesses (39 versus 61 percent), which is
consistent with the conclusion of a recent empiri-
cal study conducted on C# repositories [22].
Considering that most of the related work (as
introduced in Section 2) focuses on APIs, this find-
ing may help researchers identify better target sce-
narios for their research: focusing on project-
specific API member accesses could be more fruit-
ful and more useful.

� Second, we empirically reveal that applying API spe-
cific approaches to suggest project-specific API mem-
ber accesses without significant adaption often
results in inaccuracy. This finding may serve as an
open call for automatic code completion approaches
on project-specific APIs.

� Third, by focusing on a special case of code completion
(project-specific API member accesses on the right
hand side of assignments), the proposed approach sig-
nificantly outperforms existing generic ones on this
special case. The results may inspire future research
on highly accurate code completion by focusing on
special cases, like suggestion of parameters, recom-
mendation of declarations, and completion of condi-
tional statements.

A limitation of HeeNAMA is that it applies only to a
specific but common case (accounting for 19.87 percent of
project-specific API member accesses): suggesting the fol-
lowing member access whenever a project-specific API
instance is followed by a dot on the right hand side of an
assignment. Although we extend HeeNAMA to recommend
project-specific API member accesses nested in method
invocations (accounting for 25.89 percent of project-specific
API member accesses) in Section 4.3.5, there are still about
52 percent project-specific API member accesses that Hee-
NAMA cannot recommend. Recommendation for such
cases can be more challenging since little context informa-
tion could be leveraged to make predictions. For example,
when the developer types a dot after a base instance at the
first line of a method, we can hardly extract any useful
information within the method body. However, in the
future, considering all kinds of project-specific API member
accesses would make HeeNAMAmuch stronger.

Future work is needed to evaluate HeeNAMA further.
More subject applications should be involved in further
evaluation. Evaluation of HeeNAMA on other program-
ming languages such as C++ and C# should also be
involved in the future work. HeeNAMA should also be
evaluated in real scenarios, and get feedback from develop-
ers. The final target of code completion is to facilitate cod-
ing. Consequently, it is critical for the success of HeeNAMA
that developers are willing to use it in practice. In the future,
HeeNAMA could also be combined with API-specific tech-
niques (e.g., CSCC) to support both public API and project-
specific API member access recommendations.
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Deep Learning Based Program Generation From
Requirements Text: Are We There Yet?

Hui Liu , Mingzhu Shen, Jiaqi Zhu, Nan Niu , Ge Li, and Lu Zhang

Abstract—To release developers from time-consuming software development, many approaches have been proposed to generate

source code automatically according to software requirements. With significant advances in deep learning and natural language

processing, deep learning-based approaches are proposed to generate source code from natural language descriptions. The key insight

is that given a large corpus of software requirements and their corresponding implementations, advanced deep learning techniquesmay

learn how to translate software requirements into source code that fulfill such requirements. Although such approaches are reported to be

highly accurate, they are evaluated on datasets that are rather small, lack of diversity, and significantly different from real-world software

requirements. To this end, we build a large scale dataset that is composed of longer requirements as well as validated implementations.

We evaluate the state-of-the-art approaches on this new dataset, and the results suggest that their performance on our dataset is

significantly lower than that on existing datasets concerning the commonmetrics, i.e., BLEU. Evaluation results also suggest that the

generated programs often contain syntactic and semantical errors, and none of them can pass even a single predefined test case.

Further analysis reveals that the state-of-the-art approaches learn little from software requirements, andmost of the successfully

generated statements are popular statements in the training programs. Based on this finding, we propose a popularity-based approach

that always generates themost popular statements in training programs regardless of the input (software requirements). Evaluation

results suggest that none of the state-of-the-art approaches can outperform this simple statistics-based approach. As a conclusion, deep

learning-based program generation requires significant improvement in the future, and our dataset may serve as a basis for future

research in this direction.

Index Terms—Software requirements, code generation, deep learning, data set

Ç

1 INTRODUCTION

SOFTWARE development is the process of writing andmain-
taining source code according to software require-

ments [1]. The resulting source code is in turn compiled
automatically into executable applications that finally fulfill
the requirements. However, with the increase in software
complexity, software development is often expensive and
error-prone [1] althoughmany engineering approaches have
been proposed to guide the development.

To release human beings from challenging, time-consum-
ing, and error-prone software development (especially cod-
ing), many approaches have been proposed to generate
source code automatically. During the last twenty years of the
twentieth century, researchers proposed mathematics-based
formal methods [2], [3] and tools [4], [5] to generate source
code automatically according to formal specifications [6], [7].
Although formal methods are highly reliable, it remains

challenging to create formal specifications that should be
described in formal languages, e.g., Z [8]. Consequently,
researchers turn to less formal approaches, e.g., Model Driven
Architecture (MDA) [9]. MDA attempts to generate source
code [10] according to models described in modeling lan-
guages, e.g., Unified Modelling Language (UML) [11]. UML
is a graphicalmodelling language, and sharesmost of the con-
cepts with object-oriented programming languages. Conse-
quently, developers are willing to use UML compared to
formal languages. However, because UML models usually
focus on the architecture of the system under development, it
is quite often thatMDAgenerates nothing but sketch (e.g., sig-
natures of methods) of the system. Detailed implementation,
especially the body of methods, still has to be typed in manu-
ally in most cases. Extending UMLwith action semantics [12]
makes it possible to present more detailed semantics in UML
models, and thus we may generate more complete source
code fromUMLmodels. However, they often employ DSMLs
instead of general-purpose languages. It is also challenging
and time-consuming to construct action semantics with the
extendedUML.

With significant advances in deep learning, researchers are
turning to learning-based approaches to generate source code.
The key insight of such approaches is that given a corpus of
software requirements and their corresponding implementa-
tion (source code), advanced deep learning techniques may
learn how to translate software requirements into source code
that fulfill such requirements [13], [14]. Existing approaches
have successfully generated source code from software
requirements in natural language descriptions [15], [16],

� Hui Liu, Mingzhu Shen, and Jiaqi Zhu are with the School of Computer
Science and Technology, Beijing Institute of Technology, Beijing 100081,
China. E-mail: {liuhui08, 3120181025, zhujiaqi}@bit.edu.cn.

� Nan Niu is with the Department of Electrical Engineering and Computer
Science, University of Cincinnati, Cincinnati, OH 45221 USA.
E-mail: nan.niu@uc.edu.

� Ge Li and Lu Zhang are with the Key Laboratory of High Confidence
Software Technologies, Ministry of Education, Peking University, Beijing
100871, China. E-mail: lige@pku.edu.cn, zhanglu@sei.pku.edu.cn.

Manuscript received 27 Apr. 2020; revised 31 July 2020; accepted 18 Aug. 2020.
Date of publication 21 Aug. 2020; date of current version 18 Apr. 2022.
(Corresponding author: Hui Liu.)
Recommended for acceptance by H. Rajan.
Digital Object Identifier no. 10.1109/TSE.2020.3018481

1268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
mailto:liuhui08@bit.edu.cn
mailto:3120181025@bit.edu.cn
mailto:zhujiaqi@bit.edu.cn
mailto:nan.niu@uc.edu
mailto:lige@pku.edu.cn
mailto:zhanglu@sei.pku.edu.cn


images of Graphical User Interface (GUI) [17], [18], and input-
output examples [19], [20]. In this paper, we focus on natural
language requirements (requirements text) because in most
cases software requirements in the industry are described in
natural languages [21]. Deep learning-based code generation
approaches have been reported to be highly accurate. For
example, the syntactic neural model (SNM) proposed by Yin
and Neubig [22] reaches a high Bilingual Evaluation Under-
study (BLEU) [23] (0.845) in translating natural language
descriptions into Python programs. In contrast, Google neural
machine translation (GNMT), the widely used state-of-the-
practice language translator, results in much smaller BLEU
(0.4) in translating English into French [24]. For example, if the
reference translation is “I know tomorrow is another day” and the
generated translation is “I know tomorrow is a new day”, the
resulting BLEU is 0.42.

However, such deep learning-based code generation
approaches have not yet been extensively evaluated, which
prevents us from knowing the state of the art. The reported
evaluation of such approaches is often conducted on datasets
that are rather small, lack of diversity, and significantly dif-
ferent from real-world software requirements. For example,
the widely used dataset HS [14] is composed of source code
(and the associated ‘requirements’) from a single software
project, which results in poor diversity. The average length
of the source code in dataset Django [25] is 33 characters
only, suggesting that the software programs in the dataset
have very limited complexity. Natural language descriptions
in dataset CoNaLa [16] are how-to questions automatically
extracted from Stack Overflow, instead of real-world software
requirements. As a result, evaluating existing approaches on
such datasets may fail to reveal the state of the art.

To this end, in this paper,we build a large scale dataset and
evaluate deep learning-based code generation approaches on
it. Compared to existing datasets, our dataset is composed of
longer and more comprehensive software requirements
accompanied by their validated implementations (source
code). We also develop an assisting tool to assess comprehen-
sively the quality of the generated source code instead of sim-
ply counting the lexical similarity between the generated
source code and reference implementations. The benefits of
this dataset and its assisting tool are twofold. On one side, we
can reassess the state of the art of deep learning-based code
generation with the resulting dataset and assisting tool. On
the other side, the resulting data set may serve as a publicly
available training/testing dataset for future research in code
generation. Lacking of large scale and high-quality datasets is
preventing deep learning-based code generation approaches
from reaching their maximal potential. The resulting dataset
is an initial attempt to solve this problem.

We reassess the state of the art in code generationwith our
new dataset. Evaluation results suggest that the performance
of the state-of-the-art approaches on our dataset is signifi-
cantly lower than that on existing datasets. The programs
generated by such approaches are significantly different
from reference implementations, often contain syntactic and
semantical errors, and fail to pass even a single predefined
test case. We replace the input (requirements) with random
noise, and the performance of the evaluated approaches is
still comparable to that before the replacement. It may sug-
gest that the evaluated approaches learn little from software

requirements. Further analysis of the generated source code
suggests that most of the successfully generated statements
are popular statements in the training programs. Based on
this finding, we propose a popularity-based approach that
always generates themost popular statements in the training
programs regardless of the input (software requirements).
Evaluation results suggest that none of the state-of-the-art
approaches can outperform this simple statistics-based
approach.

The paper makes the following contributions:

� A large scale dataset for learning-based code genera-
tion. Compared to existing ones, it is larger and has
improved diversity as well as validated programs.
Besides that, the requirements in the dataset are lon-
ger than those in existing datasets.

� An assisting tool kit to assess the quality of gener-
ated programs. Unlike existing approaches that
heavily rely on lexical similarity, the tool kit employs
static syntactic checking, dynamic cross-validation,
and lexical comparison to comprehensively assess
the quality of generated source code.

� A comprehensive reassessment of the state of the art
of deep learning-based code generation. Based on
the new dataset and associated tool kit, we evaluate
the state-of-the-art approaches. Evaluation results
suggest that the generated programs are significantly
different from references, and none of them can pass
even a single test case associated with the dataset. It
may suggest that deep learning-based program gen-
eration requires significant improvement in the
future. Our dataset, as well as the assisting tool, may
serve as a basis for future research in this direction.

The rest of the paper is structured as follows. Section 2
introduces related research. Section 3 introduces how we
construct a new dataset. Section 4 specifies how we assess
the state-of-the-art approaches on the resulting dataset
whereas Section 5 presents the results. Section 6 discusses
related issues. Section 7 makes conclusions.

2 RELATED WORK

2.1 Generating Source Code From
Requirements Text

As introduced in the preceding section, automatic genera-
tion of source code from requirements text has recently
been a hot topic in both software engineering and artificial
intelligence communities. To reduce the complexity of code
generation, researchers try to limit the complexity of pro-
gramming languages. As a result, many code generation
approaches employ domain-specific languages (DSLs) to
describe the generated source code [26], [27], [28], [29].
DSLs are much simpler than general-purpose programming
languages, and thus DSL-based approaches often result in
high accuracy in generating source code. However, DSLs
are specific to predefined domains, and it is challenging to
apply them to other domains [14].

Compared to DSLs, generating source code in general-
purpose programming languages is more challenging.
However, employing such languages results in a number of
significant advantages [14]. First, such languages, e.g., Java,
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are well-known and widely used by developers, and thus
developers can read and modify the generated source code
expediently. Second, such languages are broadly applicable
across domains. Third, such programming languages have
better expression ability than DSLs, and thus could describe
complex applications. Because of such significant advan-
tages, researchers have proposed a number of approaches to
generating source code in general-purpose programming
languages [14], [22], [29], [30]. Ling et al. [14] propose a latent
predictor network-based approach (called LPN) to generate
source code in Python or Java. Evaluation results on MTG,
HS, and Django suggest that the approach is accurate and
the average BLEU is up to 0.776. To the best of our knowl-
edge, it is the first one that generates source code in general-
purpose programming languages. Yin and Neubig [22] pro-
pose a syntactic neural model (SNM), which for the first time
leverages the syntax of target language as prior knowledge.
Later, they propose TRANX that generalizes SNM from
Python to other languages [31]. Rabinovich et al. [29] propose
an abstract syntax network-based approach (called ASN). To
the best of our knowledge, they are the first to employ multi-
ple decoders in code generation, where different types of ele-
ments in abstract syntax trees are generated by different
decoders. Stehnii [30] proposes a tree-to-tree model for code
generation. The key insight of the approach is that require-
ments in English could be parsed into trees as well, and the
parsing can help neural networks to better understand the
requirements. Dong and Lapata [32] propose a structure-
aware neural architecture (called Coarse-to-Fine) for code
generation. They are the first to divide the decoding process
of code generation into two stages: generating a sketch on
the first stage, and generating other information (e.g., varia-
bles and parameters) on the second stage. Hayati et al. [33]
propose an approach called ReCode. For the first time, they
leverage the nearest neighbors for code generation. The key
insight of the approach is that two highly similar require-
ments are likely to result in highly similar implementations.
GrammerCNN [34] proposed by Sun et al. is the first to
employ CNN-based decoders in code generation. Their eval-
uation results suggest that their approach improves the state
of the art by five percentage.

Text-based code generation is also a hot topic in the soft-
ware engineering community. Gvero and Kuncak [35] pro-
pose an approach, called anyCode, to synthesize Java
expressions from free-form queries containing a mixture of
English and Java. The purpose of anyCode is to help develop-
ers, especially new developers, to achieve a task of interest
by leveraging related APIs. For example, the developer may
type in “copy file fname to bname” where fname and fname are
given file names. AnyCode would return Java expressions
like “FileUtils.copyFile(new File(fname), new File(bname))”. For
a given query, anyCode selects a set of most likely API decla-
rations according to the query and unigram models. After
that, anyCode leverages probabilistic context free grammar
and unigram model to unfold the declaration arguments of
the selected APIs. Raghothaman et al. [36] propose another
approach, called SWIM, to generate code snippets for given
API-related natural language queries such as “generate md5
hash code”. Different from anyCode that generates a single
expression, SWIM can generate a code snippet containing a
few statements. SWIM maps textual query into a set of APIs

by leveraging a statistical model. To construct code snippets
from the suggested APIs, SWIM collects structural call
sequences for eachAPI data type in projects on Github. From
such pre-extracted call sequences, SWIM retrieves the one
that is most similar to the suggested APIs based on cosine
similarity. T2API proposed by Nguyen et al. [37] is also a sta-
tistics-based approach to synthesize API code snippets from
textual queries. It differs from SWIM in the following
aspects. First, it conducts context expansion to expand the
related APIs. For example, if Socket.open() is in the initial set
of APIs associated with the given query, T2API will add
Socket.close() as related APIs as well because it frequently fol-
lows Socket.open(). Second, T2API presents code snippets as
graphs, and generates code graphs instead of retrieving
graphs/code snippets from a given library. Consequently, it
may generate new API usages. Yan et al. [38] build a dataset
and its associated tools for fair and convenient comparison
among different query-based code search methods. Such
approaches differ from the evaluated approaches in that
they are often confined to APIs [35], [36], [37] and generate
short code snippets (or even a single expression) only. As a
result, they are not suitable for our scenario and thus they
are not involved in the evaluation in Section 4.

2.2 Datasets for Code Generation From
Requirements Text

It is well recognized that high-quality datasets are critical
for learning-based code generation [14]. Consequently,
researchers have built a number of datasets that contain tex-
tual description (requirements) as well as their implementa-
tions (source code). Table 1 presents an overview of existing
datasets. The first column presents the names of the data-
sets. The second column presents a short explanation. The
third column presents the program languages employed to
describe the programs. The fourth and fifth columns present
the numbers of software requirements and software pro-
grams, respectively. The last two columns present the aver-
age length of requirements and programs, respectively.
Sample items (both requirements and their corresponding
implementations) are presented in Table 2.

According to the programming languages involved in the
datasets, existing datasets could be classified into two catego-
ries. The first category of datasets (i.e., ATIS, GEO, JOBS, and
IFTTT) describes source code in domain-specific languages.
ATIS [13] was initially built to evaluate air travel information
systems. It is composed of database queries in English and the
source code to accomplish the queries. Later, it is employed as
a dataset for code generation [28] where the queries are taken
as software requirements and the Lambda style source code is
taken as reference implementation. GEO [39] and JOBS [15]
are similar to ATIS [13] in that all of them are composed of
database queries and their accomplishing source code in
DSLs. IFTTT [40] is another DSL-based dataset. Source code
(applets) within IFTTT follows a predefined pattern: IF this
THEN that, and it is the reason why the dataset is called
IFTTT. Such kind of applets arewidely used to control devices
(e.g., watches, smart phone, and lights). These DSL-based
datasets together have significantly advanced research in
code generation [28]. However, such datasets are domain-spe-
cific, and thus models trained on such datasets may not work
in other domains.
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The second category of datasets (i.e., Django, MTG, HS,
StaQC, and CoNaLa) describes source code in general-pur-
pose programming languages, e.g., Java and Python. Oda
et al. [25] propose an automatic approach to generating
pseudo-code from source code. They collect source code
(Python statements) of a Python web framework called
Django (available at https://www.djangoproject.com/),
and generate pseudo-code automatically for each of the
downloaded Python statements. Such Python statements
accompanied by corresponding pseudo-code are later
employed as code generation dataset [14], [22], [30], [30].
Different from Django that is a byproduct of a pseudo-code
generation approach, MTG and HS are intentionally built
for code generation [14]. MTG is built on a trading card
game called Magic the Gathering [41]. Each item in MTG is
composed of two parts: Textual description of a card (in
English) and the source code associated with the card. HS is
highly similar to MTG. The only difference is that HS is
based on another card game called Hearthstone [42]. MTG
and HS are frequently used in code generation tasks [14],
[22], [29], [30]. Different from MTG and HS that are built on
a given software project, StaQC [43] and CoNaLa [16] are
created by mining QA forums (e.g., Stack Overflow [44]), i.e.,
extracting how-to questions and their code fragments in
accepted answers.

Although such datasets employ general-purpose program-
ming languages, they still have the following limitations:

� First, software requirements included in such datasets
are essentially different from real ones in the industry.
The ‘requirements’ in Django are pseudo-code that is
highly similar to the associated source code. Such
pseudo-code is significantly different from require-
ments text. Translating requirements text into source
code is much more challenging than the translation
frompseudo-code to source code.Although programs
in MTG are longer than those in our dataset, the
‘requirements’ in MTG (and HS as well) are rather spe-
cial: all of the ‘requirements’ in the dataset together

constitute the real complete requirements for a single
application (Magic the Gathering). Consequently,
models trained on MTG can generate only additional
source code (i.e., expansion) for the given program. It
is unlikely for them to generate programs that are
irrelevant to the given program (Magic the Gather-
ing). The ‘requirements’ in StaQC and CoNaLa are
automatically extracted how-to questions that are sig-
nificantly different from common requirements text.

� Second, the requirements and their associated source
code may not match exactly. For example, the source
code extracted automatically from QA forums may
not exactly fulfill the how-to questions in StaQC and
CoNaLa.

� Finally, as shown in Table 1, programs within such
datasets are rather short. It may suggest that pro-
grams in such datasets are of limited complexity.

As a result of the limitations, models trained on such
datasets may fail to generate complex implementation for
real-world software requirements. Assessing the state of the
art on such datasets also suffers from significant threats to
external validity.

2.3 Code Generation Based On Examples and
Contexts

Code complete is to generate code expressions or short code
snippets based on contexts, e.g., the source code preceding
the locations where the suggested code should be inserted.
Type-based code complete is widely supported by IDEs.
For example, while developers type in “System.”, IDEs like
Eclipse would suggest a list of members (fields and meth-
ods) that could be accessed via System. More advanced
approaches, like statistical language models, have been pro-
posed to improve the accuracy of code complete [45], [46].
Such approaches are based on the assumption that source
code, like natural languages, is likely to be repetitive and
predictable [47]. To this end, the statistical language models,
like n-gram, are employed to predict the next token or the
next expression in code complete. Besides such generic

TABLE 1
Existing Datasets for Requirements Text-Based Code Generation

*REQs: Requirements.
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code complete approaches, some task-specific approaches
have been proposed successfully to suggest specific tokens,
like method names [48], [49] and arguments [50]

Code generation is also closely related to program syn-
thesis that generates programs automatically according to
input/output examples [51], called programming by exam-
ples [52]. For example, researchers have successfully synthe-
sized string editing programs according to input/output
examples [53], [54]. Feng et al. [55] propose a component-
based approach to synthesis scripts from examples for table
consolidation and transformation tasks. Feng et al. [56] pro-
pose a conflict-driven program synthesis technique that
learns from past mistakes. Lee et al. [57] accelerate search-

based program synthesis using learned probabilistic mod-
els. A systematic review of search-based program synthesis
is available at [52]. Neural network-based program synthe-
sis is one of the most promising directions in program
synthesis [51], [58]. Balog et al. [59], however, propose Deep-
Coder that combines neural network-based program synthe-
sis and search-based program synthesis. Their evaluation
results suggest that the combination leads to an order of
magnitude speedup over the Recurrent Neural Network
approaches. The performance of such learning-based pro-
gram synthesis approaches depends heavily on the perfor-
mance of training data [58]. To improve the quality of
training data, Shin et al. [58] propose an automatic approach

TABLE 2
Sample Requirements and Implementations From Existing Datasets
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to generate a high-quality dataset so that models trained on
the resulting dataset could learn the full semantics of the
selected DSL.

Representation of source code is also closely related to
code generation [60]. The intuitive and straightforward
representation of source code is to take it as natural lan-
guage text (tokens) [47]. However, such plain text-based
representation ignores the semantics of programs and the
structures of source code. To this end, new approaches have
been proposed to represent source code based on abstract
syntax trees (AST) [60]. More advanced approaches can
event leverage the paths within the AST trees [61], [62] and
dependency among different source code elements [63].

3 NEW DATASET

As introduced in Section 2.2, existing datasets are prevent-
ing deep learning-based code generation approaches from
reaching their maximal potential. To this end, in this sec-
tion, we build a new dataset, as well as an assisting tool kit,
for learning-based code generation.

3.1 Overview

Fig. 1 presents an overview on howwe create the dataset for
code generation. First, we extract task descriptions (software
requirements) and their associated submissions from pro-
gramming contest platforms. Second, we detect and remove
duplicate tasks and duplicate implementations from the
resulting dataset. Third, we compile the downloaded source
code to make sure that the remaining source code is compil-
able. Third, we apply cross-validation to exclude incorrect
implementations. Details of the creation are presented in the
following sections.

3.2 Data Collection

We collect data from two programming contest platforms,
i.e., Codeforces [64] and HackerEarth [65] because of the
following reasons:

� First, the contests (software requirements) and their
corresponding submissions (source code) on such
platforms are publicly available;

� Second, the contests cover different topics instead of
being confined to a specific domain, which may
increase the diversity of the resulting dataset;

� Third, such platforms have manually designed test
cases for each of the contests to ensure the correct-
ness of the submissions, which may reduce the likeli-
hood to include incorrect implementations in the
resulting dataset;

� Finally, the contests are moderately challenging for
automatic code generation. On one side, they are

muchmore complex thanmost of the existing datasets
whose implementation is often composed of only a
couple of lines. Consequently, compared against exist-
ing datasets, the resulting dataset ismore complex. On
the other side, such contests are intentionally designed
for beginners, and thus the complexity is limited. The
limited complexity makes it potentially practical for
deep learning techniques to generate the source code
automatically.

With a Python-based crawler, we collect programming
tasks (in English) from the selected platforms.We also collect
their submissions (implementations) that have passed all of
the associated test cases. The submissions are described in
different programming languages, e.g., Java, Python, and C/
C++. Comments within the source code are removed auto-
matically because we focus only on code generation in our
current work. Notably, for a single contest, there are often a
large number (hundreds) of submissions.We only download
its firstN submissions for each programming language. This
number (empirically set to ten) is a result of the balance
between the diversity of implementations and the size of the
resulting dataset. We manually check the diversity of imple-
mentations (i.e., differences in algorithms, program struc-
tures, and identifiers) and find that the diversity increases
significantly when N increases from 1 to 10 whereas the
diversity increases slightly when N increases from 10. Con-
sequently, we empirically set N to 10. Notably, the diversity
of dataset is not to increase the challenges in code generation,
but to prevent overfitting of machine learningmodels.

An illustrating example task1 is presented as follows:

You are given array consisting of n integers. Your task is
to find the maximum length of an increasing subarray of
the given array. A subarray is the sequence of consecutive
elements of the array. Subarray is called increasing if each
element of this subarray strictly greater than previous.
Input: The first line contains single positive integer n —
the number of integers. The second line contains n posi-
tive integers a1, a2; . . . ; an (1 � ai � 109).
Output: Print the maximum length of an increasing sub-
array of the given array.

3.3 Removing Duplication

First, we detect and remove duplicate or nearly duplicate
tasks from the resulting dataset. To avoid the pairwise com-
parison among thousands of tasks, we employ the well-
known fingerprint algorithm SimHash [66] to transform tex-
tual description of each task into a fixed-length hash value
(called fingerprint). The algorithm guarantees that finger-
prints of nearly duplicate texts differ from each other in a
small number of bit positions [66]. For each pair of the highly
similar fingerprints, we manually check the corresponding
tasks to exclude duplicate tasks only. Manual checking is
conducted because two different tasksmay happen to be lex-
ically similar to each other, but the functionality of the
intended software applications are essentially different. Con-
sequently, the first two authors manually check the highly
similar tasks. Two tasks ts1 and ts2 are duplicate if applica-
tions conforming to ts1 conform to ts2 aswell, and vice versa.

Fig. 1. Dataset creation.

1. http://codeforces.com/problemset/problem/702/A
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Second, we detect and remove duplicate implementations.
For each of the tasks, we compare each pair of its submissions
to exclude duplicate or nearly duplicate submissions. The
comparison is based on the well-known edit distance [67]
between two source code fragments:2 if the distance is small,
i.e., changing a few characters in one fragment can turn it into
the other fragment, they are reported as potentially redundant
implementations. Before removing such potentially duplicate
implementations, the first two authors also manually check
them to exclude false positives: two implementations of the
same task are duplicate if and only if they are identical except
for the difference in format (e.g., blank lines) and/or code
comments.

3.4 Static Checking

Both of the websites have a long history, and thus some of
the old submissions to the websites may be out of date and
cannot be compiled with the up to date compilers. Assum-
ing that up-to-date code generation approaches may target
up-to-date compilers only, we filter out such outdated sub-
missions by compiling them with the up-to-date compilers.

By compiling the submissions, we also remove low-quality
submissions that result in warnings. Such submissions could
be compiled and thus may be executed. However, warnings
(e.g., dead code) reported by compilers suggest that such sub-
missions deserve improvement. Consequently, to guarantee
high-quality of the resulting dataset, we exclude such submis-
sions that result in compiler’s warnings. The exclusion, in
turn, may improve the quality of code generation models
trained on the resulting dataset (i.e., fewer compiler’s warn-
ings on the generated source code).

3.5 Cross-Validation by Software Testing

One of the biggest challenges in building code generation
datasets is to guarantee that the included programs act
exactly the same as what their associated software require-
ments specify. In other words, such programs should be
accepted as correct implementations by users who propose
the requirements. In our case, all submissions are specifi-
cally designed for the given tasks, and the websites have
run some manually predefined test cases to guarantee that
the submissions satisfy the requirements in the most com-
mon scenarios. This helps to improve the reliability of the
resulting dataset. However, the number of such manually
designed test cases is rather small, and thus it is likely that
some buggy submissions can still pass such test cases.

To further improve the reliability, we carry out cross-val-
idation by software testing. For each of the task t, the cross-
validation is conducted as follows:

� First, according to the requirements we manually
create a template to specify the input parameters,
including their data types and value ranges.

� Second, based on the template, we automatically cre-
ate test cases with fuzz testing, i.e., create random
data as inputs to the programs under test.

� Third, for each test case, we automatically run each
of the submissions (to the given task t) with the
inputs in the test case. If the submissions result in
different outputs, we manually check the results and
remove the buggy submissions.

Notably, we do not employ popular test case generation
tools like EvoSuite. The downloaded programs often receive
input from console with statements like ‘input()’ (Python)
and ‘scanf’ (C/C++). However, existing test case generation
tools like EvoSuite generate test cases (more specially, input
of the programs) according to parameters instead of console
input. As a result, applying such tools to the downloaded
programs results in few test cases. To this end, we manually
create a template for each task to explicitly specify its input
(including those from console), and generate test cases auto-
matically based on the template.

3.6 Resulting Dataset

We call the resulting dataset large scale dataset for Require-
ments text based Code generation (ReCa). Details of the dataset
is presented in Table 3. By comparing Table 3 against exist-
ing datasets in Table 1 (especially MTG, HS, Django, StaQC,
and CoNala that describe implementations in general-pur-
pose programming languages), we observe that our dataset
has the following advantages:

� First, ReCa is composed of longer requirements of
independent software applications. The average
length of requirements in our dataset is significantly
longer than that of existing datasets. As analyzed in
the preceding sections, the textual descriptions in
MTG, HS, Django, StaQC, or CoNala are not real-
world software requirements. Instead, they are incre-
mental features of a single software project (MTG
and HS), pseudo-code (Django), or how-to questions
(StaQC and CoNala). In contrast, each of the textual
descriptions in our dataset represents a requirement
of an independent software application. Software
engineers have developed the intended applications
successfully according to such textual descriptions.

TABLE 3
Resulting Dataset

2. More advanced tools like MOSS (http://theory.stanford.edu/
aiken/moss/) may ease the work.
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� Second, ReCa contains more programs. Our dataset
contains more than one hundred thousand software
programs, much larger than existing datasets.

� Third, ReCa has longer programs. For example, the
average length of Java programs in our dataset is
63.8 (LOC), much longer (at least twice) than that of
existing datasets. Notably, however, such programs
are still significantly smaller than real-world soft-
ware applications in the industry. These real-world
applications may contain millions of lines of source
code, which makes them extremely challenging (if
not impossible) to be generated automatically by up-
to-date deep learning models.

� Fourth, the implementations in ReCa are in multiple
general-purpose programming languages. For most
of the requirements in our dataset, we provide corre-
sponding implementations in different programming
languages at the same time, e.g., Java and Python. It
may facilitate the research on cross language code
generation, as well as research on the impact of pro-
gramming languages on code generation.

� Fifth, the implementations in ReCa are validated.
Each of the implementations in our dataset has been
validated by static checking as well as dynamic soft-
ware testing to guarantee that they satisfy the
declared requirements and they are of high quality.

� Sixth, ReCa provides multiple implementations for
the same requirements. A single requirement has up
to ten independent implementations in the same lan-
guage (e.g., Java). Trained on such a dataset, learn-
ing-based code generation algorithms may learn
equivalence among different code fragments, and
thusmay be smarter in appreciating the context while
generating the next code token. Multiple reference
implementations also facilitate more reasonable and
more comprehensive quality assessment on gener-
ated programs by comparing them against diverse
references. Existing approaches often assess the qual-
ity of a generated program by computing its lexical
similarity (e.g., BLEU)with a single reference because
existing datasets often provide a single reference
only. The assessment is risky because two semanti-
cally equivalent programs may happen to be signifi-
cantly different in text. Providing a number of
diverse references helps to reduce the risk.

3.7 Quality Assessment and Tool Kit

To facilitate research on code generation, we develop an
assisting tool to comprehensively assess the quality of gen-
erated programs. The tool computes automatically a list of
quality metrics for the generated program against its refer-
ence programs. The first quality metrics are BLEU (bilingual
evaluation understudy) [23] that is widely employed by
existing approaches. BLEU was initially proposed to assess
the quality of machine translation [23]. For code generation,
BLEU scores are calculated by comparing the generated
source code against a set of reference programs. The scores
range between 0 and 1, suggesting how lexically similar the
generated program is to the reference programs. Notably,
BLEU for a generated program p is the maximal similarity
(BLEU) between p and any of its reference programs: If it is

highly similar (or even identical) to any of its reference pro-
grams, the generated program is of high quality even if it is
essentially different from other reference programs.

The second code metrics are the number of errors and
warnings compilers produce on the generated source code.
Existing approaches rarely employ such metrics because
most of the generated source code cannot be compiled suc-
cessfully at all, i.e., they often contain syntactic errors. One of
the reasons for such syntactic errors is that most of the refer-
ence programs (e.g., code fragments from Stack Overflow) in
existing datasets are incomplete and thus cannot be compiled
successfully. Consequently, code generation models trained
on such datasets rarely generate compilable programs.

The third code metrics are the percentage of passed test
cases, i.e., what percentages of the test cases the generate pro-
gramhas passed. In our dataset, we have generated automat-
ically a large number of test cases for each of the tasks
(requirements). Consequently, we can run such test cases on
the generated programs to assess the extent towhich the gen-
erated programs satisfy the functional requirements.

The fourth qualitymetrics are the edit distance-based lexi-
cal similarity. Levenshtein distance is widely employed to
measure the minimum number of single-character edits (i.e.,
insertions, deletions, or substitutions) required to change
one text (the generated source code in our case) into the other
(reference implementation in our case). The edit distance-
based lexical similarity (noted as Sed) turns the Levenshtein
distance (note as dis) into a similarity varying from zero to
one: Sedðgc; refÞ ¼ 1�dis(gc,ref)=maxðjgcj; jref jÞ where gc
is the generated source code and ref is a reference
implementation.

BLEU is selected because it is widely employed by exist-
ing approaches to evaluate the quality of code genera-
tion [23]. The number of compiler errors and warnings (the
secondmetrics) is selected because it represents the syntactic
quality of the generated source code. The percentage of
passed test cases (the thirdmetrics) is selected because it rep-
resents the functional quality of the generated source code.
The edit distance is selected because it is widely used tomea-
sure the similarity between source code. BLEU and edit dis-
tance concern the lexical similarity between generated
programs and references whereas the number of compiler
errors and the percentages of passed test cases concerns the
syntactics and functionality of the generated programs,
respectively. Consequently, employing such diverse metrics
facilitates comprehensive assessment of the generated pro-
grams. To facilitate more comprehensive assessment, how-
ever, the tool kit also provides additional metrics, i.e., NIST,
WER, and SubtreeMetric [68].

We employ additional quality metrics (as introduced in
preceding paragraphs) besides BLEU for assessing the quality
of generated source code because of the following reasons:

� First, although BLEU is frequently employed to assess
the quality of generated source code, it has significant
limitations [69] for assessing source code. Unlike
nature languages, source code has less tolerance for
noise and poor syntax/semantics. Consequently, pro-
gramswith high BLEU could be syntactically incorrect
and essentially different from reference programs in
semantics.
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� Second, even the implementations for the same task
(requirements) are often diverse in text. Conse-
quently, computing the lexical similarity between
the generated source code and its diverse reference
implementations may fail to reveal the quality of
code generation.

4 EXPERIMENTAL SETUP

As introduced in Section 2, researchers have achieved
great advances recently in deep learning-based code gen-
eration. A number of approaches have been proposed, and
evaluation results on different datasets suggest that they
are highly accurate. For example, the syntactic neural
model proposed by Yin and Neubig achieves a high BLEU
(0.845) on Django dataset [22], which suggests that the gen-
erated source code is very close to the reference implemen-
tation. However, as introduced in the preceding sections,
such datasets employed in the evaluations have significant
limitations and thus good performance on such datasets
may not necessarily lead to good performance in handling
real-world software requirements. To assess the state of
the art, in this section we evaluate such approaches on our
new dataset.

4.1 Validation Questions

The evaluation investigates the following questions:

� Q1: How accurate are the state-of-the-art approaches
on the new dataset?

� Q2: How often do the generated programs pass syn-
tactic checking?

� Q3: How often do the generated programs pass pre-
defined test cases?

� Q4: Is the generated source code useful for
developers?

� Q5: Where and why do state-of-the-art approaches
succeed?

� Q6: To what extent do state-of-the-art approaches
understand software requirements?

� Q7: Can we propose a simple and intuitive approach
whose performance is comparable to (or even better
than) that of the state-of-the-art approaches?

� Q8: Can we improve the performance of the evalu-
ated approaches if we keep only a single solution per
requirement?

� Q9: Can we improve the performance of the evalu-
ated approaches by unifying identifiers in require-
ments and associated source code?

Research question Q1 concerns the performance of the
state-of-the-art approaches on our new dataset. Many of the
state-of-the-art approaches are reported to be highly accu-
rate on existing datasets [22]. Answering this question may
reveal whether the reported high performance is owned to
the limitations of the involved datasets.

Research question Q2 investigates how often the deep
learning-based approaches generate syntactically correct
programs, and how often such programs could be executed
without exceptions. Investigating Q2 would reveal to what
extent such approaches learn automatically the syntax of
target programming languages.

Research question Q3 investigates to what extent the gen-
erated programs are semantically correct, i.e., consistent
with the given software requirements. The investigation
would reveal to what extent the approaches can learn the
semantics of requirements that are described in English,
and turn such semantics into implementations.

Research question Q4 investigates the usefulness of the
generated programs. It is likely that developers cannot use
the generated code as-is. However, if the effort to modify it
to make it work is much smaller than the effort to write the
correct code from scratch, the generated source code (and
the generation approaches) could be considered useful.

Research question Q5 investigates what kind of tokens
could be generated correctly, and potential reasons for the
success. The investigation will reveal the strength of exist-
ing approaches, and the rational for the strength.

Research question Q6 investigates the influence of the
input (textual requirements) on the output (generated source
code). It is challenging for computers to fully understand
natural languages. Consequently, it is likely that the deep
learning-based code generation approaches cannot fully
understand the requirements in English. Answering this
questionmay revealwhether natural language understanding
is themajor obstacle to deep learning-based code generation.

Research question Q7 concerns the substitutability of the
state-of-the-art deep learning-based complex approaches.
Answering this question may reveal whether such deep
learning-based complex approaches are really better (or
much better) than simple and intuitive approaches.

Research question Q8 concerns the effect of removing
redundant implementations for the same requirement.
While answering the preceding research questions, we pro-
vide the evaluated approaches with multiple code snip-
pets/solutions for the same requirement. However, this has
not been done by the authors of the evaluated approaches
and the loss function of the approaches is not prepared for
this. Consequently, such neural networks may fail to learn
anything from such different implementations. To this end,
we repeat the evaluation after removing the redundant
implementations, i.e., we keep only a single solution per
requirement.

Research question Q9 concerns the identifiers in require-
ments and their associated implementation (source code). Such
identifiers do not influence the syntax or semantics of pro-
grams. However, replacing them with unified tokens e.g., var0
and var1, could significantly reduce the size of vocabularies
employedby automated code generation approaches. Research
questionQ9 investigates the effect of the preprocessing.

4.2 Evaluated Approaches

Weselect Seq2Seq [28], SNM [22], Tree2Tree [30], TRANX [31]
and Coasr-to-Fine [32] for the evaluation because of the fol-
lowing reasons.

� First, they could generate source code in general-
purpose programming languages according to soft-
ware requirements in English, which makes it practi-
cal for them to work on our dataset.

� Second, their implementation is publicly available,
which significantly facilitates the evaluation. Some
well-known approaches [14], [29], [34] that could

1276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



generate source code from requirements text are not
selected for evaluation because we either fail to get
their implementations [14], [29] or fail to make them
work on our dataset [34].

� Third, SNM [22], Tree2Tree [30], TRANX [31] and
Coarse-to-Fine [32] were proposed recently, and
represent the state of the art. To the best of our
knowledge, they are the latest approaches that 1)
have publicly available implementations and 2) can
work on our dataset to generate Python programs
according to requirements text.

� Although Seq2Seq [28] was initially proposed for
semantic parsing, it is widely employed as a baseline
in code generation [33]. Consequently, we include it
for the evaluation as well.

4.3 Process

To investigate questions Q1, Q2, Q3, and Q5, we conduct
the first empirical study as follows:

� First, we select all tasks for evaluation from our data-
set that are accompanied by Python source code. To
the best of our knowledge, no publicly available
deep learning-based models/implementations can
transform requirements text into programs in gen-
eral-purpose programming languages other than
Python. Although LPN [14] generates Java pro-
grams, its implementation is unavailable. Conse-
quently, we select only Python programs for the
empirical study. The resulting dataset is noted as
selected dataset. It is composed of 2,740 tasks (require-
ments) and 16,673 Python programs.

� Second, from the selected dataset, we randomly
select 300 tasks as testing dataset, 200 tasks as valida-
tion dataset, and other as training dataset.

� Third, the selected dataset is preprocessed. For the
textual requirements, we leverage NLTK [70], [71] to
replace acronyms (e.g.,“ what’s”) with separated
words (e.g., “what is”), to turn characters into lower-
case, to split the text into a sequence of word by
word segmentation and special characters (e.g., split-
ting “Java.System” according to “.”), to remove stop
words, and to apply lemmatization on the resulting
words. For example, the requirement:

“Some natural number was written on the board.
Its sum of digits was not less than k. But you were
distracted a bit, and someone changed this number
to n, replacing some digits with others. It’s known
that the length of the number didn’t change.You
have to find the minimum number of digits in
which these two numbers can differ.”

is finally turned into:

“some natural number write on board. its sum of
digit not less than k. but you distract bit, someone
change number to n, replace some digit with others.
it know length of number do not change. you have
to find minimum number of digit in which these
two number can differ.”

after the preprocessing. For the selected source code,
we remove comments and copyright declarations, and

format the source code (with Autopep8 [72]). Listing 1
presents an illustrating example of source code pre-
processing: the code before and after preprocessing.

� Fourth, for each of the selected approaches, we train
it on the training and validation datasets, and test it
on the testing dataset.

� Finally, we evaluate the quality of generated source
code with the tool kit introduced in the preceding
sections. The quality metrics generated by the tool kit
are subsequently employed to answer the research
questions.

To maximize the potential of the evaluated approaches,
we perform hyper parameter tuning for each of the evalu-
ated approaches. Basically, we follow the grid-search tuning
approach [73] but pick up grids (i.e., to-be-tested values of
parameters) dynamically and empirically to speed up the
tuning process. Notably, for each of the to-be-tested setting,
we train the selected approach with the given setting on the
given training data (all of the requirements-code pairs
regardless of their topics), and then validate the performance
on the validation set. Based on the validation, we empirically
select the next to-be-tested setting. For a given setting, we
train the associated approach with the setting once and for
all (instead of repeating the training and validation for sev-
eral times) because the training is highly time-consuming:
For each of the evaluated approaches, it takes more than one
week to tune its hyper parameters on a GPU server (OS:
Ubuntu 14.04.5; CPU: 56 * Intel(R) Xeon(R) CPU E5-2683 v3
@ 2.00GHz; GPU: 2* TITAN Xp; RAM: 64GB). The final
parameters are presented in Table 4 where N/A suggests
that the implementation of the given approach does not con-
tain the parameter or the parameter does not deserve tuning.

To investigate question Q4, we randomly select eleven
tasks from the dataset and invite thirty developers to con-
duct a controlled experiment. The participants have rich
experience in Python. They did not know the intent of the
experiment in advance, which helps to reduce potential
bias. The experiment is conducted as follows:

� First, each of the participants is requested to code
from scratch for a selected task (noted as preTest-
Task), and we record the time that developers take to
finish the assigned task. Notably, a task is finished
only if the submitted program has passed all prede-
fined test cases. The top five (who spend the shortest

Listing 1. Example of Source Code Preprocessing
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time in finishing the given task) and the bottom five
(who spent the longest time) are excluded from fur-
ther evaluation. The other twenty participants are
divided into two equally sized groups according to
their coding speed: participants in Group A is faster
than anyone from Group B. The purpose of this step
is to construct two participant groups where partici-
pants within the same group have similar coding
speed. Grouping the participants by coding speed
may reduce the bias introduced by the difference in
participants’ programming ability/speed.

� Second, for each of the selected participants, we
request him/her to code from scratch for five out of
the remaining ten tasks (i.e., all selected tasks except
for preTestTask), and to complete the other five tasks
based on programs generated by SNM. SNM is
selected because it achieves the best performance
among the evaluated approaches (see Section 5.1 and
Table 5 for details). The assignments of the tasks guar-
antee that exactly half of the participants from each
group finish a task from scratch and another half the
participants from the same group finish the same task
bymodifying the generated program.

� Third, we record the time that developers take to fin-
ish the assigned tasks, and analyze the results of the
two groups.

To investigate question Q6, i.e., to what extent the input
(software requirements) is exploited by code generation
approaches, we conduct the third empirical study as follows:

� First, for each of the selected approaches, we train it
on the training and validation datasets, and test it on
the testing dataset (noted as tdata). We compute
their performance, and call it original performance
(noted as Porig). Notably, it is the same as we do in
the previous empirical study.

� Second, for each item (composed of requirements and
their implementations) in the testing dataset tdata, we
replace the requirements with random noise. The

noise is generated automatically by picking tokens
randomly from a large corpus. The length (in tokens)
of the noise is equal to the original requirements. The
resulting testing dataset is noted as tdata0.

� Third, on the revised testing dataset tdata0, we evalu-
ate the resulting models that are trained on the first
step. The resulting performance (noted as Pnoise) is
compared against the original one (i.e., Porig).

If replacing requirements with random noise fails to
reduce the performance significantly, it is likely that the code
generation approaches learn little from the requirements.

To investigate question Q8, i.e., the effect of removing
redundant implements, we conduct the fourth empirical
study as follows:

� First, for each of the tasks in the dataset, we randomly
select and keep one of its implementations. Other
implementations are removed from the dataset. We
call the resulting dataset as nonredundant dataset

� Second, we repeat the first empirical study on the
nonredundant dataset.

� Third, we compare the resulting performance on
nonredundant dataset against that on the original data-
set where multiple implementations for the same
tasks are exploited.

5 RESULTS AND ANALYSIS

5.1 Q1: Significant Reduction in BLEU

To answer question Q1, we evaluate the state-of-the-art code
generation approaches on our new dataset, and evaluation
results are presented in Table 5. The first column presents
the evaluated approaches. The second column presents
BLEU of such approaches on our new dataset. To facilitate
comparison, we also present their BLEU on existing datasets
(i.e., Django and HS) on the third and fourth columns. Col-
umns 5-7 present the syntactical and semantic checking
results of the generated source code (on our dataset).

From the first four columns, we make the following
observations:

TABLE 4
Final Parameters for Evaluated Approaches

Parameters
Embedding Size Hidden Size Epoch Batch Size Decoder Dropout Learning Rate Learning Rate Decay

Approaches

Seq2Seq 200 N/A 120 20 0.4 0.01 0.98
SNM 256 256 100 7 0.4 0.001 N/A
Tree2Tree 300 256 100 8 0.2 0.001 N/A
TRANX 128 256 100 10 0.3 0.001 0.5
Coarse-to-Fine 250 N/A 75 10 0.3 0.002 0.99

TABLE 5
Evaluation Results on Our Dataset

Approaches BLEU on New
Dataset

BLEU on
Django

BLEU on
HS

Syntactically Correct
Programs

Executable
Programs

Functionally Correct
Programs

Seq2Seq 0.138 0.673 0.550 44.7% 6.0% 0%
SNM 0.188 0.845 0.758 93.0% 16.7% 0%
Tree2Tree 0.150 0.825 0.716 83.7% 14.3% 0%
TRANX 0.184 0.856 0.695 81.7% 9.0% 0%
Coarse-to-Fine 0.176 0.854 0.640 10.0% 2.7% 0%
Average 0.167 0.811 0.672 62.6% 9.7% 0%
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� First, BLEU of the evaluated approaches is rather
low. It varies from 0.138 to 0.188, with an average of
0.167. Such a low BLEU suggests that the generated
source code is often significantly different from refer-
ence implementations, i.e., the validated implemen-
tations in the dataset.

� Second, switching from existing datasets to our new
dataset reduces BLEU significantly. The average
BLEU is reduced significantly from 0.811 (on Django)
and 0.646 (on HS) to 0.167. The reduction is up to
79%=(0.811-0.167)/0.811, and 75%=(0.672-0.167)/
0.672, respectively.

To figure out the reason for low BLEU, we employ diff, a
popular and powerful tool, to visualize the difference
between the generated programs and their references. A typ-
ical example is presented in Fig. 2. The right part of the figure
presents the program generated by SNM. The left part
presents a reference implementation that has the greatest
BLEU with the generated one. The common part (i.e., suc-
cessfully generated statements) is shown on white back-
ground. Missing part (i.e., statements that should have been
generated) is shown on red background, added part (i.e.,
statements that should not have been generated) is on green
background, and themodified part is on yellow background.

We randomly sample 100 generated programs for visual
comparison. Based on the comparison, we make the follow-
ing observations:

� First, most statements are not generated successfully.
Around 75 percent of the statements in reference
programs are missing in the generated programs.
For example, in Fig. 2 sixteen out of the nineteen
(84%=16/19) lines of source code in the reference
implementation are on red background, suggesting
that the evaluated approach fails to generate the
majority of the reference implementation.

� Second, most of the generated source code is irrele-
vant, i.e., having no counterparts in the reference
implementations. Around 81 percent of the gener-
ated source code is irrelevant (on green background).
For example, in Fig. 2 three out of the six (50%=3/6)
lines of source code in the generated program are on
green background.

To validate whether the observations could be general-
ized to all generated programs, we compute automatically
how often tokens in reference implementations are missed
(i.e., shown on red or yellow background), and how often

tokens in the generated programs are irrelevant (i.e., shown
on green or yellow background). Results are presented in
Table 6. The first column presents evaluated approaches.
The second column presents the percentages of the tokens
in the reference programs that are missed by the generated
programs. The third column presents the percentages of the
tokens in the generated programs that are irrelevant, i.e.,
having no counterparts in the reference implementations.
From this table, we observe that on average, 76.9 percent of
the tokens in reference implementations are missed, and
82.7 percent of the tokens in generated programs are irrev-
erent. In other words, only 23.1%(=1-76.9%) of the tokens in
the reference implementations are generated successfully,
and only 17.3%=(1-82.7%) of the generated programs tokens
are really useful. The statistics confirm our preceding obser-
vation that the generated programs are often significantly
different from references.

We also employ additional metrics [68] (i.e., NIST, WER,
and Subtree Metric) besides BLEU. Evaluation results are
presented in Table 7. The results confirm the conclusions
drawn on the preceding paragraphs: the performance of the
evaluated approaches is not promising on the new dataset.

One potential cause of the low accuracy could be the
irregularity of the tokens in the dataset. If tokens in the test-
ing dataset are often missing in the training dataset, it is
likely that machine learning model cannot generate tokens
accurately. To this end, we compare the vocabularies of the
training dataset and testing dataset. The comparison results
suggest that 96 percent of the (requirements) text tokens in
the testing dataset are actually observed in the training
dataset whereas 79 percent of the source code tokens are
observed in the training dataset. The results may suggest
that the difference in vocabularies of training data and test-
ing data is not the major reason for low accuracy.

It is quite intuitive that the longer the text and programs
are, the lower the generation accuracywould be. To quantita-
tively verify this, we partition the tasks into four equally
sized groups according to their length of requirements and
length of reference programs, respectively. Notably, for a
single task, we have multiple reference implementations
(programs). Consequently, we classify the task based on the
average length of its reference programs (instead of the
length of a single reference program). Evaluation results are
presented in Tables 8 and 9. On Table 8, we present how the
length of requirements influences the performance (BLEU).
Q1 contains 75=300/4 tasks that have the shortest require-
ments whereas Q4 contains 75 tasks with the longest require-
ments. Each row of the table presents the performance
(BLEU) of an evaluated approach on different groups of
tasks. From this table, wemake the following observations:

Fig. 2. Visual comparison between reference implementation (left) and
generated program (right).

TABLE 6
Mismatch Between Generated Programs and References

Approaches Missing Tokens Irrelevant Tokens

Seq2Seq 81.8% 87.5%
SNM 71.2% 74.8%
Tree2Tree 75.4% 81.0%
TRANX 74.4% 81.5%
Coarse-to-Fine 81.6% 88.5%
Average 76.9% 82.7%
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� First, all of the evaluated approaches result in the low-
est performance on Q4 group that is composed of the
longest requirements. It may suggest that extremely
long requirements (varying from 228 tokens to 391
tokens) have significant negative impact on the per-
formance of code generation.

� Second, all of the evaluated approaches result in the
highest performance onQ2 groupwhere the length of
requirements varies from 125 tokens to 171 tokens. In
contrast, they result in significantly lower perfor-
mance on Q1 that is composed of the shortest require-
ments (varying from 16 tokens to 125 tokens). The
results may suggest that the following assumption is
not necessarily true: the shorter the requirements text
is, the higher the generation accuracywould be.

Table 9 presents the influence of programs’ length where
Q1 contains 75 tasks with the shortest reference programs.
From this table, we observe that the performance decreases
with the increase of programs’ length. The average BLEU
reduces from 0.218 on Q1 (where the length of programs
varies from 6 tokens to 77 tokens) to 0.0726 on Q4 (where
the length of programs varies from 199 to 822 tokens). The
evaluation results may suggest that the length of programs
has a significant negative impact on the performance of
automated code generation.

Based on the preceding analysis, we conclude that con-
cerning the common performance metrics (i.e., BLEU) the
state-of-the-art code generation approaches cannot reach a
high performance on the new dataset as they do on existing
datasets. Concerning other performance metrics like NIST,
WER, STM, and Subtree metrics, the evaluated approaches
also result in poor performance on the new dataset. Most
tokens in reference implementations are missed whereas
most of the generated tokens are irreverent. One possible
reason for the significant reduction in performance is that

the new dataset is more complex and more diverse than
existing ones.

5.2 Q2: Syntactic Checking

To answer question Q2, we conduct syntactic checking on
the generated programs. The checking is composed of two
parts. In the first part, we conduct static syntactic checking
on the generated programs with the state-of-the-practice tool
Pylint [74]. For convenience, we call programs that pass the
static checking as syntactically correct programs. In the second
part, we try to execute the programs (with sample input
specified in the requirements) that pass the static checking
on the first step. If the execution results in any syntactic error
or runtime exception, the programs are non-executable.
Results of the static syntactic checking are presented in the
fifth column of Table 5 whereas the execution results are pre-
sented in the sixth column. From these two columns, we
make the following observations.

The first observation is that most (up to 93.0 percent) of
the programs generated by AST-based approaches (i.e.,
SNM, Tree2Tree, and TRANX) pass the static syntactic
checking whereas programs generated by other approaches
have significantly smaller chance (less than fifty percentage)
to pass the static syntactic checking. The results may suggest
that generating ASTs (and then transferring them into source
code) helps much in avoiding syntactic errors. In contrast,
generating source code (as generic text) directly is much risk-
ier because the state-of-the-art approaches could not yet
automatically recognize the complete syntax of program-
ming languages that is embedded in the training programs.

To figure out what kind of syntax such approaches fail to
learn automatically, we manually analyze the syntactic
errors generated by such approaches. In general, the syntac-
tic checking on generated programs (i.e., to compute how
many of the generated programs are syntactically correct
and how many of them are executable) is completely auto-
mated, and no manual checking is required. Manual check-
ing is only employed to empirically reveal the common
syntax errors in the generated programs. The results of the
manual analysis suggest that undefined-variable is dominat-
ing. Undefined variable refers to usage of variables that
have not yet been defined before the usage. An illustrating
example is presented in Fig. 3 where s on Line 7 is undefined.
Undefined-variable accounts for 59, 78, 70, 53, and 82 percent
of the syntactical errors generated by Seq2Seq, SNM, Tree2-
Tree, TRANX, and Coarse-to-Fine, respectively. On average,
it accounts for 68%(=2003/2965) of the syntactical errors we

TABLE 7
Evaluation Results with Additional Metrics

Metrics
NIST WER Subtree

Approaches

Seq2Seq 1.369 8.089 0.117
SNM 1.453 0.785 0.200
Tree2Tree 1.185 0.866 0.139
TRANX 1.721 1.179 0.160
Coarse-to-Fine 1.988 1.643 0.116
Average 1.543 2.513 0.146

TABLE 8
Impact of Requirements’ Length on BLEU

TABLE 9
Impact of Programs’ Length on BLEU
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encounter during the evaluation. Consequently, to further
improve the state of the art, researchers in the future should
pay more attention to such kind of syntactic errors. For
example, to reduce Undefined-variable errors, we may
request the deep learning models to select from a short list
of variables declared in the generated source code when
variables are expected. In contrast, exiting models always
select tokens from a generic large vocabulary, which often
results in undefined-variables.

The second observation is that only a small part (less than
10 percent) of the generated programs could be executed
without exceptions. Notably, Python is a dynamically typed
programming language, and thusmany type errors could not
be identified by static syntactic checking. As a result, pro-
grams that pass static syntactic checking may still fail to run
successfully. To figure outwhat kind of problems are prevent-
ing such programs from successful execution, we manually
analyze the runtime exceptions that we encounter while exe-
cuting such programs. Notably, we do not execute those who
fail to pass static syntactic checking because they are bound to
fail. The results of our analysis suggest that most of the excep-
tions are ValueError. According to Python documents [75],
ValueError exception is ‘raised when an operation or function
receives an argument that has the right type but an inappro-
priate value, and the situation is not described by a more pre-
cise exception such as IndexError’. An illustrating example is
presented in Fig. 4. The first input statement on Line 1 expects
a string that could be parsed into an integer. However, the
actual input “RYBGRYBGR” fails, and thus a ValueError is
raised. ValueError exceptions account for 72.5%(=578/797) of
the exceptions encountered during the evaluation.

Based on the preceding analysis, we conclude that AST-
based code generation approaches have a great chance to
generate syntactically correct Python programs. However,
such programs are often non-executable because of various
runtime exceptions.

5.3 Q3: Dynamic Validation

To answer question Q3, we run test cases in the dataset on
the generated programs. Results are presented in the last
column of Table 5. From this column, we observe that
none of the generated programs passes any test case in the

dataset. The results may suggest that even if some of the
generated programs are syntactically correct and execut-
able, they fail to fulfill the given requirements. One of the
possible reasons for the failure is that the evaluated
approaches do not really understand the software require-
ments (details are presented in Section 5.6). As a result of
the incomprehension, such approaches cannot generate pro-
grams that fulfill the requirements. An illustrating example
is presented in Fig. 5 where the expected output is a
sequence of ‘+’ and ‘-’. However, the generated program
outputs a single integer (ans on Line 7).

Notably, the requirements in the dataset have explicitly
specified the format of programs’ input and output, and
thus the failure should not be owned to the flexibility in the
design of program interfaces. For the given example in
Fig. 5, developers could figure out the exact format of the
expected output based on the specification: “Output: In a sin-
gle line print the sequence of n characters ‘+’ and ‘-’, where the ith
character is the sign that is placed in front of number ai”

Based on the preceding analysis, we conclude that the
generated programs have little chance to pass the associated
test cases. Consequently, manual interference (especially
code revision and validation) is indispensable even if such
state-of-the-art automatic code generation approaches are
employed.

5.4 Q4: Usefulness of Generated Programs

To answer question Q4, we record the time that developers
take to finish the tasks, with and without generated pro-
grams, respectively. Results are presented as box plots in
Fig. 6 (for Group A) and Fig. 7 (for Group B). The blue boxes
are associated with cases where developers create source
code from scratch. The red ones are associated with cases
where generated programs aremodified tomake themwork.

From the box plots, we fail to observe significant differ-
ence between the two development models (i.e., coding from
scratch or based on generated programs). For Group A, cod-
ing from scratch took 652 minutes in total whereas revision
based on generated programs took 655.5 minutes. For Group
B, coding from scratch took 714.5 minutes whereas revision
based on generated programs took 707.4 minutes. Overall,
the difference between the two coding models is minor. We
also perform a significance test on the resulting data. Results
suggest that there is no significant difference between the
two coding models: the p-value=0.9696 and F=0.0015 for
Group A and p-value=0.9318 and F=0.0074 for Group B. For
both groups, the p-value is significantly greater than 0.05.
We also compute the effect size (Cohen’s d), and results sug-
gest the effect size (-0.0077 for Group A and 0.0173 for Group
B) is small.

Fig. 3. Undefined-variable in generated program.

Fig. 4. VauleError exception thrown by generated program.

Fig. 5. Sample program and failed test case.
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We conclude based on the preceding analysis that the
generated source code cannot significantly reduce the cost
(time) of programming, i.e., modification of the generated
programs is not significantly easier than creating programs
from scratch.

5.5 Q5: Where and Why They Succeed

To answer question Q5, we manually analyze the generated
source code. It is highly challenging and time-consuming to
manually compare all of the 1,500 (=300� 5) generated pro-
grams against 3,000 (=300� 10) reference implementations.
Consequently, we take the following measures to simplify
the manual checking. First, we randomly select 30 (out of
300) software requirements from the testing dataset, and
confine the manual checking to this subset. Second, for each
generated program on this subset, we only compare it
against one of its reference implementations that has the
greatest similarity (BLEU) with it. We employ diff to visual-
ize the difference (and common ground as well) between a
generated program and its reference implementation. A
typical example is presented in Fig. 2.

Based on the manual checking, we observe that the eval-
uated approaches often succeed or partially succeed in gen-
erating input, output, and for statements. As suggested by
Fig. 2, SNM generates the input statement correctly (‘n,m =
map(int, input().split())’), and places it in the right place, i.e.,
the very beginning of the program. It also succeeds in gener-
ating output statement ‘print(val)’ and for statement (Line 3
on the left part of Fig. 2) except for the variable names.
Table 10 presents how often input, output, and for statements

are generated successfully. The first column of Table 10
presents different approaches. The second column presents
how often the evaluated approaches succeed or partially
succeed (inside parentheses) in generating input statements.
If the generated input statement is identical to that in the ref-
erence implementation, we say the generation is correct.
Otherwise, we manually assess whether the generation is
partially correct (with slight difference) or incorrect. The
third and the fourth columns present how often the evalu-
ated approaches succeed or partially succeed in generating
for and output statements, respectively. From this table, we
observe that all of the evaluated approaches are good at
generating such statements. On average, around one fifth of
the input and for statements are generated correctly, and
more than half of them are generated partially successfully.
Although output statements are more difficult to generate
correctly (because of variables involved in the statements),
in most cases (84 percent on average) the evaluated
approaches know that an output statement (i.e., ‘print(*)’)
should be generated and placed at the end of the generated
programs.

One of the possible reasons for the success in generating
input, output, and for statements is that such statements are
highly popular in the training data. The popularity of
related statements is presented in Table 11. The first column
presents the popular statement (or part of a statement). The
second column presents their popularity in training pro-
grams, i.e., how many percentages of the programs in the
training dataset contain such statements. The third column
presents their popularity in testing programs. Columns 4-8

Fig. 6. Usefulness of generated programs (Group A). Fig. 7. Usefulness of generated programs (Group B).

TABLE 10
Well Generated Statements

Approaches Input Statement correct
(partially correct)

For Statement correct
(partially correct)

Output Statement correct
(partially correct)

Seq2Seq 17% (83%) 24% (60%) 3% (90%)
SNM 17% (83%) 26% (67%) 7% (83%)
Tree2Tree 13% (87%) 11% (54%) 7% (83%)
TRANX 30% (70%) 22% (59%) 3% (83%)
Coarse-to-Fine 27% (70%) 26% (70%) 7% (83%)
Average 21% (79%) 22% (62%) 5% (84%)
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present their popularity in programs generated by different
approaches. From the table, we observe that the output state-
ment ”print(*)” (where * is a wildcard character)
appears in almost all of the training and testing programs,
and thus the deep learning-based approaches learn to gen-
erate this statement frequently. For example, SNM and
TRANX include this statement in each of their generated
programs. The same is true for input statement ”input()”
and for statement ”for * in *”

Based on the preceding analysis, we conclude that the
state-of-the-art approaches have the ability to generate highly
popular statements, like input, output, and for statements.

5.6 Q6: Little Learned From Requirements

To investigate to what extent the evaluated approaches
understand software requirements (input of the approaches),
we replace the requirements in the testing data with random
noise, and repeat the evaluation. The random noise is created
as follows. First, we collect all unique tokens from require-
ments in the training data, noted as Stoken. Second, for each
requirement ri in the testing data, we generate an empty noise
noiseðriÞ. Third, we randomly select a token from Stoken, and
append it to noiseðriÞ. This step is repeated until noiseðriÞ and
ri are equally sized.

Evaluation results are presented in Table 12 where the
second and third rows present the BLEU of the evaluated
approaches with normal input and noise input, respectively.
From this table, we observe that replacing normal input with
random noise results in small changes in BLEU of the evalu-
ated approaches. The average BLEU (0.164) with random
noise is comparable to that (0.167) with normal input. We
also notice that the random noise even increases the perfor-
mance of Seq2Seq, improving its BLEU from 0.138 to 0.152.

We also investigate how often the most popular state-
ments (e.g., input, print, and for statements) are generated by
the evaluated approaches when normal input is replaced
with random noise. Results are presented in Table 13. From
this table, we observe that such popular statements are gen-
erated frequently as well. By comparing Table 13 against
Table 11, we conclude that replacing requirements text with
random noise does not prevent the evaluated approaches
from generating the most popular statements.

Based on the preceding analysis, we conclude that the
evaluated approaches learn little from input requirements.

5.7 Q7: Simple Alternative Approach

As suggested by the preceding analysis in Section 5.5, the
evaluated approaches work well in generating popular
statements. Consequently, an intuitive and simple way to
simulate the evaluated approaches is to generate popular
statements only. We call it popularity-based approach.

The approach works as follows. First, it computes the
average length of the programs in training data. In our case,
the average length is 13 lines of source code, noted as n ¼ 13.
Second, for each unique line of source code in the training
data, the approach computes its popularity, i.e., how often it
appears in the training programs. Third, it sorts the unique
lines according to their popularity, and inserts the top n lines
into a new program p. Finally, the approach always returns
this program (p) as the generated program regardless of the
input (requirements). Notably, this approach completely
ignores the input (requirements), and thus it is of little value
in practice. However, it may intuitively reveal the state of the
art by comparing it against the state-of-the-art approaches.

We apply this simple popularity-based approach to our
dataset. Evaluation results suggest it achieves a BLEU of

TABLE 11
Popularity of Well Generated Statements

Statements In Training
Programs

In Testing
Programs

In Generated Programs

Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine

input() 97% 97% 99% 100% 99% 100% 98%
print(*) 99% 99% 86% 86% 95% 89% 91%
for * in * 76% 75% 84% 83% 67% 89% 92%
for i in range 50% 47% 77% 79% 57% 85% 85%

TABLE 12
Change of BLEU When Normal Input Is Replaced with Random Noise

Seq2Seq SNM Tree2Tree TRANX Coarse-to-Fine Average

Normal Input 0.138 0.188 0.150 0.184 0.176 0.167
Random Noise 0.152 0.173 0.147 0.178 0.169 0.164

TABLE 13
Popularity of Well Generated Statements (Random Noise)

Statements Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine

input() 99% 100% 99% 99% 99%
print(*) 97% 90% 95% 90% 97%
for * in * 82% 80% 76% 85% 96%
for i in range 78% 76% 64% 82% 88%
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0.211, significantly higher than any of the evaluated deep
learning-based approaches (as shown in Table 5). The com-
parison intuitively reveals the state of the art: the advanced
deep learning-based code generation approaches cannot
even outperform this intuitive and impractical approach.

Based on the preceding analysis, we conclude that it is
likely for simple and intuitive approaches to outperform the
state-of-the-art deep learning-based approaches concerning
the common performance metrics BLEU.

5.8 Q8: Removing Redundant Implementations
Does Not Help

Evaluation results on the nonredundant dataset are pre-
sented in Table 14. By comparing this table against Table 5
(performance on the original dataset where multiple imple-
mentations for the same tasks are exploited), we make the
following observations:

� First, removing redundant implementations does not
help. For example, all of the evaluated approaches
result in lower BLEU on the nonredundant dataset
than that on the original dataset. It reduces from
0.138 to 0.108 (Seq2Seq), from 0.188 to 0.151 (SNM),
from 0.15 to 0.129 (Tree2Tree), from 0.176 to 0.149
(TRANX), and from 0.167 to 0.155 (CoasetoFine).
The same is true for other performance metrics.

� Second, no functionally correct programs could be
generated even if the evaluated approaches are fed
with the nonredundant dataset.

Based on the preceding analysis, we conclude that remov-
ing redundant implementations from the dataset may not
improve the performance of code generation.

5.9 Q9: Impact of Unifying Identifiers

To investigate the impact of identifier unification, we unify
identifiers in requirements and source code (in the sameway

as TRANXunifies identifiers [31]), and repeat the first empir-
ical study as introduced in Section 4.3. First, we replace con-
stant strings (like “URL is required”) that appear in both
requirements and associated source codewith unified tokens
“stri”. Second, we replace variables that appear in both
requirements and associated source codewith unified tokens
“vari”. The variables are not further divided according to
their types because Python is not a statically typed program-
ming language (like Java). Notably, the same identifier unifi-
cation is conducted on all of the data. Evaluation results of
the identifier unification are presented in Table 15. To facili-
tate the comparison, we also present the performance of the
default setting (i.e., without unifying identifiers). From
Table 15, wemake the following observations:

� First, unifying identifiers hasminor and diverse impact
on the performance of the evaluated approaches. For
example, it improves the BLEU of TRANX and Tree2-
Tree slightly from 0.184 to 0.187 and from 0.15 to 0.177,
respectively. In the same time, however, it also
decreases BLEU of Seq2seq (from 0.138 to 0.135), SNM
(from 0.188 to 0.181), and Coarse-to-Fine (from 0.176 to
0.151). Overall, unifying identifiers slightly reduces the
average BLEU of the evaluated approaches from 0.167
to 0.166. The same is true for other performancemetrics,
e.g., syntactically correct programs.

� Second, no functionally correct programs could be
generated regardless of the application of unifying
identifiers.

6 DISCUSSIONS

6.1 Potential Reasons for Reduced Performance

Evaluation results in Section 5 suggest that switching from
existing datasets to ours significantly reduces the perfor-
mance of existing approaches. Potential reasons are dis-
cussed as follows.

TABLE 14
Evaluation Results on Nonredundant Dataset

Approaches BLEU on
New Dataset

NIST WER Subtree Syntactically
Correct Programs

Executable
Programs

Functionally
Correct Programs

Seq2Seq 0.108 0.667 5.886 0.060 19.7% 4.3% 0%
SNM 0.151 0.738 0.873 0.133 27.3% 10.0% 0%
Tree2Tree 0.129 0.642 0.968 0.133 59.0% 0.3% 0%
TRANX 0.149 0.836 1.292 0.113 41.0% 9.3% 0%
CoasetoFine 0.155 1.006 1.602 0.029 3.0% 1.0% 0%
Average 0.138 0.778 2.124 0.093 30.0% 5.0% 0%

TABLE 15
Effect of Unifying Identifiers

Applications Unifying Identifiers Without Unifying Identifiers (Default Setting)

BLEU Syntactically Executable Functionally BLEU Syntactically Executable Functionally

Seq2Seq 0.135 47.3% 7.7% 0% 0.138 44.7% 6.0% 0%
SNM 0.181 80.0% 16.3% 0% 0.188 93.0% 16.7% 0%
Tree2Tree 0.177 72.3% 12.0% 0% 0.150 83.7% 14.3% 0%
TRANX 0.187 84.3% 4.0% 0% 0.184 81.7% 9.0% 0%
Coarse-to-Fine 0.151 3.3% 0.1% 0% 0.176 10.0% 2.7% 0%
Average 0.166 57.4% 8.0% 0% 0.167 62.6% 9.7% 0%
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First, some special characters in existing datasets facili-
tate learning-based code generation. For example, the
requirements (pseudo-code) in Django are quite similar to
their implementations. On average, 49.4 percent of the
tokens in a program (source code) could be copied from the
requirements associated with the program. As a result,
learning-based approaches may achieve high performance
by copying tokens from requirements to generated pro-
grams. In HS, different programs are highly similar to each
other, which also significantly facilitates code generation.
Because of the similarity, learning-based approaches can
learn the common structures (also known as templates),
and frequently generate source code successfully by ‘filling
learned code templates from training data with arguments copied
from input’ [22].

Second, the requirements in our dataset are much more
complex than the existing ones. As discussed in Section 5.6,
a great challenge in code generation is natural language
understanding (NLU), i.e., to understand requirements. The
longer the requirements are, the harder NLU is. Compared
to existing datasets, our dataset is composed of much longer
and more complex requirements. The average length of
such requirements is 185 tokens compared to 14 and 34 in
Django and HS, respectively.

Third, the diversity of our dataset has a significant nega-
tive impact on the evaluated approaches. Such approaches
have been trained in a specific domain with similar require-
ments. However, our dataset has very diverse requirements
with no common tasks. As a result, except for the generic
programming skills (especially algorithm related program-
ming skills), little could be learned about the implementa-
tion of specific tasks. However, learning the generic
programming skills (i.e., the ability to turn textual require-
ments into source code as a human developer does) is
highly challenging. As a result, the performance of program
generation is significantly reduced.

Fourth, the size of our dataset may have prevented the
evaluated approaches from reaching their maximal poten-
tial. In total, the dataset is composed of 16,673 requirements-
code pairs, making it comparable to other data sets that have
been employed by the authors of the evaluated approaches.
For example, SNM was originally evaluated on JBOS (with
640 items), GEO (with 880 items), ATIS (with 5,373 items),
and IFTTT (with 86,960 items), independently. Our dataset is
significantly bigger than such datasets except for IFTTT.
However, our dataset contains 2,740 unique requirements
only, which makes it smaller than ATIS and IFTTT concern-
ing the number of unique requirements. Besides that, the
increased complexity of the requirements and source code,
together with the limited number of unique requirements,
could prevent the evaluated approaches from reaching their
maximal potential.

Fifth, our tuning of the hyper parameters for the evalu-
ated approaches could be less effective than the tuning con-
ducted by the original authors of the evaluated approaches.
Such approaches have been fine-tuned on given datasets
that were leveraged for evaluation by their authors, which
often results in high performance on the given dataset. The
original tuning is effective because the experts who tuned
the parameters were familiar with the approaches. In con-
trast, we tuned the parameters without deep understanding

of the evaluated approaches, and thus the tuning could be
more time-consuming and less effective. This, in turn, pre-
vents the evaluated approaches from reaching their maxi-
mal potential.

6.2 Experiment on More Datasets

There is a clear need for an empirical study on various data-
sets with the proposed approach and evaluate them by com-
paring it with other approaches. The experiment is conducted
on a single dataset that we create in Section 3,whichmay limit
its validity. As introduced in Section 2.2, existing datasets
have significant limitations, and thus assessing the state of the
art on such datasets may result in severe threats to validity.
To this end, we create a new dataset. With this dataset, we
assess the state of the art in code generation. To reduce threats
to external validity, however, we should conduct similar
experiments on other qualified datasets in the future when
such datasets are available. Notably, we do not compare the
proposed approach (popularity-based code generation)
against other approaches on existing datasets. For example,
each of the reference programs inDjango is composed of a sin-
gle unique statement, which makes it impractical to select the
most popular statements in the dataset. As a result, the popu-
larity-based approach cannotwork onDjango.

Other threats to validity exist as well, e.g., the size of the
involved dataset and the representativeness of the evaluated
approaches. The size of the involved dataset may influence
the performance of the evaluated approaches. It is likely that
increasing the size of the dataset could improve the perfor-
mance.However,we have not yet investigated its exact influ-
ence. Selecting different code generation approaches for the
evaluation may result in different conclusions because their
performance on the same dataset (i.e., our newdataset) could
vary significantly. To reduce the threats to validity, we select
multiple state-of-the-art approaches for the evaluation.

6.3 Limited Diversity of the New Dataset

As specified in Section 3, the new dataset is created based
on programming contest platforms, which may limit its
diversity. Although the programming contest platforms do
not post any explicit limitations on the domain of contests,
most of the contests concern data structures, sorting algo-
rithms, mathematic computation, text processing, or data-
base management. They are rarely related to any specific
application domains, e.g., financial systems, office software,
or image processing. As a result, the diversity of the result-
ing dataset is limited. Approaches trained on such dataset
may fail to generate applications whose creation strongly
depends on domain knowledge.

Besides the limited diversity, the source code within the
dataset could be different from applications in the industry
in the followingways. First, most of the code in the newdata-
set is coded by novice programmers and the skillset levels of
these developers are low when compared with industry
standards. Second, most of the codewritten by programmers
participating in such contests tend to algorithm driven and
end up being implementations of some data structures.
Third, real-world systems have a lot of inter-dependencies
among the task whereas a majority of tasks in programming
contests tend to be orthogonal in nature. Finally, there is lot
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of importance given to certain qualities in programming con-
tests which is not necessarily true in real-world systems.

One future work to strengthen the dataset is to exploit
additional data sources. Extracting additional data will
increase both the size and diversity of the resulting dataset,
and thus may help to facilitate the training of deep learn-
ing-based code generation models. It is also interesting to
include non-English software requirements, and to investi-
gate multiple-language code generation.

Although it is not novel to create dataset by crawling web
pages, creating and publishing the dataset is valuable. On
one side, the resulting dataset has significant advantages
compared to existing ones. On the other side, publishing it
releases other researchers from grueling and time-consum-
ing dataset creation.

6.4 Performance Metrics for the Empirical Study

Besides BLEU, we also employ the number of compilation
errors, the number of compilation warnings, and the number
of failed/passed test cases to assess the quality of generated
programs as presented in Table 5. However, such metrics are
not suitable for existing datasets (e.g., Django and HS)
because the reference programs (code fragments) within
such datasets are incomplete and incompilable. Conse-
quently, it is unfair/unpractical to require models trained on
such datasets to generate complete and compilable/runnable
programs. However, programs in our new dataset are com-
plete and syntactically correct, and thus we compute such
performancemetrics for the evaluation on the newdataset.

6.5 Threats to Validity

Besides the threats (limitations) discussed in the preceding
sections, the evaluation (especially the case study to evaluate
the usefulness of generated programs) is subjected to the fol-
lowing threats to validity. A threat to external validity is that
only ten programming tasks and twenty participants were
involved in the evaluation. Conclusions drawn on such lim-
ited number of subjects may not be generalizable. We failed
to increase the number of programming tasks or participants
because it is time-consuming for participants to finish the
selected programming tasks, and it is challenging for us to
recruit a large number of qualified participants. A threat to
internal validity is that the observations (coding speed) could
be significantly influenced by the characters (e.g., knowledge
in Python and programming skills) besides the investigated
factor (i.e., with or without the generated programs). To
reduce the threat, we recruited thirty participants, excluded
the top and bottom ones (concerning their performance) with
a pretest, and divided the remaining participants into two
independent groups according to their performance in the
pretest. As a result, the participants within the same group
had similar performance in the pretest.

7 CONCLUSION AND FUTURE WORK

Deep learning-based code generation is potentially promis-
ing, and a few approaches have been proposed. Although
existing evaluations suggest that such approaches are
highly accurate, they are evaluated on small datasets where
‘requirements’ are quite different from real-world require-
ments in the industry. To assess the state of the art, in this

paper, we build a large scale dataset. Compared to existing
ones, it is larger and more diverse. Besides the dataset, we
also build an assisting tool to measure the quality of gener-
ated programs. We not only compute the widely used plain
text-based metrics (BLEU), but also employ syntax sensitive
static checking as well as test based dynamic cross-valida-
tion. Based on the resulting dataset and assisting tool, we
reassess the state of the art in natural language-based pro-
gram generation. Evaluation results suggest that the state-
of-the-art approaches successfully learn to generate popular
statements. However, the generated programs are often sig-
nificantly different from their references. Besides that, they
often contain syntactic and semantical errors, and none of
them can pass even a single test case. Further analysis sug-
gests that they learn little from the input (requirements).
Consequently, to further improve the state of the art,
researchers should pay more attention to the encoders of
the neural networks that are in charge of requirements’
interpretation. The resulting dataset, the assisting tool, and
evaluated approaches (all of them are publicly available at
https://github.com/ds4an/CoDas4CG) could serve as a
basis for future research in this direction.

One future work is to design more effective metrics to
assess quality of code generation. It is well-known that
BLEU alone is insufficient for assessing the quality of code
generation [69] because source code has little tolerance for
poor syntax or semantics. To this end, in this paper we pro-
pose additional metrics to assess the syntax and semantics
of generated programs, i.e., the number of compilation
errors, number of compilation warnings, and number of
failed/passed test cases. However, as suggested by the
empirical study in Section 5, most of the programs gener-
ated by the state-of-the-art approaches are not executable,
which significantly prevents the proposed execution-based
metrics from reaching their maximal potential. Conse-
quently, it remains an open question to design effective met-
rics in the future to accurately and quantitatively assess the
quality of programs automatically generated by the state-of-
the-art approaches.

In the future, it is worthwhile to explore larger (not nec-
essarily more complex) datasets to investigate whether the
performance of deep learning-based program generation
could be improved if there are more sample program imple-
mentations available for each task.

It is interesting to change the evaluation setting and
repeat the evaluation in the future. The evaluation setting
is that some task requirement-implementation pairs are
used to train the deep learning models, and use other dif-
ferent task requirements to test if the resulting models
can generate useful code. Such a setting is quite realistic
but highly challenging. However, if we build a smaller
dataset containing similar tasks only, repeating the same
evaluation could result in significantly improved perfor-
mance of the evaluated approaches because in this case
the testing tasks are similar to those leveraged for model
training.

Finally, further investigation into the weakness of the
evaluated approaches could be valuable. In the evaluation,
we analyze where and why the evaluated approaches work.
However, we have no yet investigated where and why such
approaches fail.
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Clustering Crowdsourced Test Reports of Mobile
Applications Using Image Understanding

Di Liu, Yang Feng , Xiaofang Zhang , James A. Jones, and Zhenyu Chen

Abstract—Crowdsourced testing has been widely used to improve software quality as it can detect various bugs and simulate real

usage scenarios. Crowdsourced workers perform tasks on crowdsourcing platforms and present their experiences as test reports,

which naturally generates an overwhelming number of test reports. Therefore, inspecting these reports becomes a time-consuming yet

inevitable task. In recent years, many text-based prioritization and clustering techniques have been proposed to address this challenge.

However, in mobile testing, test reports often consist of only short test descriptions but rich screenshots. Compared with the uncertainty

of textual information, well-defined screenshots can often adequately express the mobile application’s activity views. In this paper, by

employing image-understanding techniques, we propose an approach for clustering crowdsourced test reports of mobile applications

based on both textual and image features to assist the inspection procedure. We employ Spatial Pyramid Matching (SPM) to measure

the similarity of the screenshots and use the natural-language-processing techniques to compute the textual distance of test reports. To

validate our approach, we conducted an experiment on 6 industrial crowdsourced projects that contain more than 1600 test reports and

1400 screenshots. The results show that our approach is capable of outperforming the baselines by up to 37 percent regarding the

APFD metric. Further, we analyze the parameter sensitivity of our approach and discuss the settings for different application scenarios.

Index Terms—Crowdsourced testing, mobile testing, test report processing

Ç

1 INTRODUCTION

CROWDSOURCED testing has received extensive attention
from the industrial practice. By employing a large pop-

ulation of crowd workers in a short period, crowdsourced
testing is capable of simulating the various real usage sce-
narios and providing feedback of real users [1]. These
advantages are particularly suitable for mobile application
testing, which has a rapid development cycle, and also
requires testing on a diverse set of applications, hardware,
and software platforms. Under this situation, several com-
mercial crowdsourced testing platforms, such as uTest,1

Testin,2 Testflight,3 Baidu Crowd Test,4 Alibaba Crowd
Test,5 and TestIO,6 have emerged in recent years.

Typically, in crowdsourced testing, crowd workers per-
form micro-tasks that are posted on the crowdsourcing plat-
forms by the requesters, and are required to provide their
feedback in the form of test reports. Because the crowd-
sourced technique inherently depends on a large workforce,
requesters naturally receive massive amounts of reports,
and thus, inspecting and understanding these test reports
becomes a tedious yet inevitable task.

In the past decades, to mitigate this problem, software
engineering researchers have proposed many techniques to
identify and group similar reports. These works can be
classified into two categories based on information they
employed to measure the similarity between reports. The
first category focuses on natural language information and
leverages text-analysis techniques, such as language model-
ing [2], [3], text mining [4], topic modeling [5], and informa-
tion retrieval [6], [7], to identify similar reports. Many later
works in this direction tried to enhance the accuracy of simi-
lar report detection based on metrics on textual similar-
ity [8], [9], identification strategies [10], [11], [12], or extra
information [13]. On the other hand, as many software
applications, e.g., Microsoft Windows, Firefox, and Internet
Explorer, have provided features to automatically record
execution traces for field bugs and send reports to their pro-
ducers, it is natural to use such execution information to
identify similar reports. Execution traces mainly contain
dynamic behaviors of the program, like stack trace, branch,
or statement coverage. Similar failing traces imply the same
bug [14]. Based on execution traces, researchers have
designed a number of models with supervised or unsuper-
vised learning techniques [15], [16], [17], [18], [19], [20].
These models can identify failure reports with similar
causes, and the classification results can be helpful for diag-
nosing the frequency and severity of these reports.
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Even though these studies have significantly improved
the efficiency of dealing with test reports, they are often dif-
ficult to apply to the specific domain of mobile application
testing. Crowdsourced workers often prefer to take a
screenshot of the problematic activity view, which is rela-
tively easy on most mobile devices, rather than type a long
bug description, which is more difficult using the restricted
small keyboard of most mobile devices. Due to these factors,
the textual information of crowdsourced mobile test reports
often lack sufficient details and accuracy, and execution
traces are also difficult to collect due to the limited process-
ing capability, storage, battery power, and communication
of many mobile devices. While text-analysis-based methods
become less effective because of short and inaccurate text
descriptions, automatically identifying information from
screenshots becomes critical for developers to understand
reports. Images are considered to be one of the most essen-
tial and convenient communication carriers on the mobile
platform [21], [22]. Moreover, in comparison with desktop
applications, screenshots of the mobile application are often
well-defined and describe the activity views. The resolu-
tions, layouts, and even features of these images are limited
in a given scope, unlike desktop applications, where win-
dows can often be reshaped and occluded.

Inspired by these factors, we proposed an approach of
test-report prioritization that utilizes both textual and image
information, which was presented at the 31st IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE’2016) [23]. Yang et al. proposed the basic idea of
clustering test reports by leveraging both textual and image
information [24]. However, their work did not introduce the
method to further process the clustered test reports in prac-
tical scenarios thus failed to provide developers a complete
test report processing technique. Therefore, in this paper,
we extend our conference paper and provide a fully auto-
matic test-report-clustering technique that utilizes image
understanding. In addition, to help users apply this tech-
nique in practice, we not only study the accuracy of cluster-
ing but also consider the practical usefulness and parameter
selection in real scenarios.

To achieve this goal, we capture information from text
descriptions and screenshots, then calculate the distance
between each pair of reports for clustering. For the image
analysis, we employ the Spatial PyramidMatching (SPM) [25]
technique and chi-square metric to measure the similarity
among screenshots. For the text analysis, we use classic natu-
ral-language-processing techniques to measure the similarity
of textual description between reports. Then, we use the bal-
anced formula of the multi-object optimization algorithm to
generate a hybrid distance matrix for all test reports. Finally,
based on the distance matrix, we use hierarchical agglomera-
tive clustering for report aggregation. As a result, each cluster
contains representative information, and requesting testers
can sample from these clusters to quickly obtain unique bugs
and reduce the time of report inspection.

To validate our clustering technique, we conducted
experiments on 6 industrial mobile crowdsourced projects,
which constitute more than 1600 test reports and 1400
screenshots. The experimental results show that our hybrid
technique achieves an average accuracy of more than 80
percent, which is superior to both only-text-based and only-

image-based methods. Based on the result of clustering, we
conducted an empirical study on random sampling, and
employ hybrid test-report prioritization technique [23] as
another baseline. The results also show that our technique is
the closest to the Ideal strategy and achieves the most signif-
icant improvement over Random strategy using the Aver-
age Percentage of Faults Detected (APFD) metric [26].

The main contributions of this paper are as follows:

� We proposed a technique to cluster crowdsourced
test reports of mobile applications based on both the
textual descriptions and screenshots by leveraging
the image understanding techniques.

� We collaborated with six companies and collected
six industrial projects that contain more than 1600
tests reports and 1400 screenshots. We outsourced
this dataset as a benchmark to broaden the research
of this topic.7

� We empirically evaluated our technique based on this
dataset and compare it with the existing methods.
The experimental results show that our technique can
effectively shorten the inspection procedure, and out-
performs existing approaches.

� To help users adapt our technique into practice, we
comprehensively analyze our technique regarding
different parameter settings. Based on the empirical
results, we present guidance and suggestions for
applying our technique under different scenarios.

This paper extends our prior conference publication [23],
new materials in comparison with the conference version
include:

� We present a new image-understanding-based clus-
tering technique to improve the efficiency of inspect-
ing crowdsourced test reports. In contrast to our
prior work [23], which requires developers to inspect
all crowdsourced test report, this new technique ena-
bles crowdsourced requesters to identify a representa-
tive portion out of the whole set.

� We collaborate with six software testing companies
to conduct an empirical study to validate the crowd-
sourced test report clustering technique. Also, we
outsource this dataset to assist researchers in repro-
ducing our technique and further improving it. In
addition, four hypothesis, statistical testings, and
effect size analysis are conducted to measure and
demonstrate the significance of the outperformance
of the new technique.

� New experiments on large-scale crowdsourced test-
ing projects and the corresponding results are pro-
vided. In comparison with our conference paper, we
evaluate the impacts of parameters on the perfor-
mance of our technique. The details are described in
Section 5.

The remainder of this paper is organized as follows: In
Section 2, we introduce the technical background knowledge
and discuss the challenges. In Section 3, we present the
details of our technique framework. In Section 4, we evaluate
our technical framework and introduce the experimental

7. https://bitbucket.org/TSE2020/dataset-of-cst2016
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setup. In Section 5, we discuss the experiment results and
analyze the answers to research questions. In Section 6, we
discuss threats to validity of our technical framework and
validation. In Section 7, we review prior related research on
this topic. In Section 8, we draw conclusions and outline
some directions for future work.

2 CROWDSOURCED TESTING FOR MOBILE

APPLICATION

Crowdsourced testing involves three different related stake-
holders [1]. Fig. 1 shows the practical procedure of crowd-
sourced testing.

Companies and organizations often play the role of
requesters. They release testing tasks and software under
test on the crowdsourced testing platform. Also, they set up
constraints regarding testing resources, environments, and
technical requirements. Based on these constraints, plat-
forms can match proper crowd workers for these tasks, and
conversely, crowd workers can also find tasks of interests. In
recent years, many crowdsourcing platforms have been built
for software testing tasks. Table 1 gives an overview of some
popular industrial crowdsourced software testing platforms.
By inspecting this table, we can observe the testing targets of
these platforms vary widely, including performance testing,
security testing, functional testing and usability testing, and
some of these platforms provide the functionality to facilitate
the testing process and manage the test reports. They not
only enable the communication between requesters and
crowd workers but also significantly improve the efficiency
of each part of the whole process.

Even though these platforms lay the infrastructure for
flourishing crowdsourced software testing, some features of

test reports bring challenges into the inspection procedure.
Crowdsourced testing is widespread in mobile application
testing because it enables developers to evaluate the perfor-
mance of their software products under real usage scenar-
ios, which includes a diverse set of mobile devices and OS
versions. However, in practice, crowd workers are often
required to finish crowdsourcing tasks in a given short
time, and the number of complete tasks influences the
rewards for the crowd workers. As such, crowd workers are
less apt to filter out duplicates actively, and they are incen-
tivized to submit as many reports as possible. These factors
contribute to crowdsourced testing to contain a higher
duplicate ratio than conventional testing [27], [28].

Further, on almost all mobile devices, images have played
a crucial role in sharing, expressing, and exchanging infor-
mation. Zhang et al.’s research [27] finds test reports of
mobile applications contain much shorter text descriptions
and more screenshots in comparison with the test reports of
desktop applications. To illustrate, we present four raw
crowdsourced test reports of three different mobile applica-
tions in Table 2. In this table, we can observe reporters pres-
ent the reports with a brief textual description and several
screenshots to describe the bug. Consider the test report in
the second row: The crowdsourced tester was testing the
course-evaluation view of the application “HJ Normandy.”
She reported that the application crashed after she entered a
large number of emoji characters in the textbox and clicked
send button. Even though the tester briefly describes the situ-
ationwith text in the description section, the critical informa-
tion for reproducing the bug, such as which emoji characters
are used, howmany times theywere used, andwhat the con-
text is, can only be obtained from the screenshots.

For testing mobile applications, testers tend to describe
bugs with a direct screenshot and short descriptions rather
than tedious and complicated text descriptions, mainly due
to the ease of taking screenshots and the relative difficulty in
typing longer descriptions on mobile virtual keyboards [27].
The shortage of the textual description hinders applying
the text-analysis-based test-report-processing techniques for
mobile crowdsourced testing.While the different knowledge
background and software configurations of crowd workers
make it difficult for developers to fully understand the tex-
tual content of test reports, compared with the text descrip-
tion, screenshots can objectively describe the operation steps
andGUI exceptions, whichmakes the test reportsmore read-
able. These screenshots of mobile applications are usually
well-defined application views, and do not suffer as many of
the difficulties of desktop application screenshots, such as
varying resolutions, scaling, occlusion, and window sizes. In

Fig. 1. Procedure of crowdsourced testing.

TABLE 1
Popular Crowdsourcing Platforms

Name Site Testing Domain

uTest utest.com performance testing, security testing, test case management, test case recording
Testin testin.cn functional testing, performance testing, intelligent hardware testing
TestIO test.io functional testing, exploratory testing, wearables testing, IoT testing
Testflight developer.apple.com/testflight/ functional testing, usability testing, performance testing
Bugcrowd bugcrowd.com security testing
Baidu Crowd Test test.baidu.com functional testing, usability testing, performance testing, text&image annotation
Alibaba Crowd Test mqc.aliyun.com performance testing, compatibility testing, test case recording
Tencent Crowd Test task.qq.com functional testing, usability testing, performance testing
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this context, the above issues are ameliorated, and the main
problems are the prompting of the error-message dialogs,
shifting of GUI elements or the fact that some elements are not
displayed at all. These facts motivate us to propose an auto-
mated technique to extract the information from the screen-
shot of crowdsourced test reports of mobile applications to
assist the procedure of test report inspection for developers.

3 APPROACH

This section details the design of our technique. We present
the framework of our technique in Fig. 2. The framework con-
sists of four major phases: (1) text processing, (2) screenshot
processing, (3) balanced distance calculation, and (4) test
report clustering. Each of these major phases contains several
steps.

3.1 Preliminary

In the crowdsourced testing of mobile applications, test
reports may contain various multimedia information, such

as voice messages and video operations. Among this infor-
mation, text descriptions and screenshots are the most
widely used and informative for fault diagnosis and debug-
ging. Therefore, we mainly focus on the analysis of these
two kinds of information. We assume that each test report
only consists of two parts: a text description and a collection
of screenshots. Thus, we can denote the test report set as
R ¼ friðTi; SiÞji ¼ 0 . . .Ng. In a test report ri, Ti denotes the
raw description of bug performance and operation steps, Si

denotes the screenshots capturing the views of bug details.
In practice, each test report often contains more than one
screenshot, i.e., for the screenshot set Si of test report ri, we
have Si ¼ si1; si2; . . . ; sim, in which, sij denotes the jth
screenshot in test report ri.

3.2 Text Processing

Natural-language-processing techniques have been widely
used to assist various tasks in the field of software testing
[2], [13], [17], [29], [30]. In text processing, we focus on
applying existing mature natural-language-processing tools

TABLE 2
Example Test Reports

Fig. 2. Test-report clustering processing.

LIU ET AL.: CLUSTERING CROWDSOURCED TEST REPORTS OF MOBILE APPLICATIONS USING IMAGE UNDERSTANDING 1293



to extract textual features of the bug descriptions from test
reports. This process is composed of two steps: (1) keyword
vector building, and (2) text distance calculation.

3.2.1 Keyword Vector Building

To extract critical information from the textual description,
we model the textual description into keyword vectors. This
modeling procedure consists of segmentation, stop word
removal, and part-of-speech filtering.

In the first step, we employ Jieba,8 a lightweight Python-
based word segmentation system to tokenize the text
description. Jieba uses dynamic programming to find the
most probable combination based on the word frequency,
and tokenize each word with its part-of-speech (POS). After
the word segmentation, the raw words stream still contains
noise, such as spelling mistakes and uncommon words. The
existing studies have shown that this phenomenon can be
ameliorated by extracting only verbs and nouns [31], [32].
Hence, we retain only the verbs and nouns and filter out the
other words. Similarly, we also filter out the stop words
based on the ICTCLAS stop word list9 to obtain keywords.
Then, we can build up the corpus V of test report set R by
applying this method to each text description Ti of ri and
adding the keywords into it. Asumming we have q key-
words in total, then we can denote the frequency of jth key-
word appears in test report ri as vij, and the corresponding
keyword vector can be denoted asKVi ¼ fvijjj ¼ 0 . . . qg.

Because the text analysis of mobile crowdsourcing test
reports is not the focus of this research, we adopt the com-
mon word segmentation and stop word removal steps that
are widely adopted in many research of software engineer-
ing, such as [2], [13], [17], [29], [30]. This method is not lim-
ited to processing Chinese. By applying other NLP tools,
such as the Stanford NLP toolkit 10, NLTK, 11 it can build up
keyword vectors for other kinds of natural languages, such
as French, Arabic or German.

3.2.2 Text Distance Calculation

In computing the distance between these textual descrip-
tions, we employ the TF-IDF to weight keywords. We treat
each KViðvÞ as the document and keywords fvijjj ¼ 0 . . . qg
as the terms. Given this context, we adopt log normalization
to calculate the term-frequency weight (tf). For the jth key-
word of test report ri, the term-frequency weight can be
computed based on

tfij ¼ log ð1þ vijÞ: (1)

Regarding the inverse-document frequency(idf), we adopt
the inverse-document-frequency-smooth weighting scheme.
Similarly, for the jth keyword of test report ri, the inverse-
document frequency can be computed based on Equation (2).
In Equation (2), dfij denotes the number of keyword vector
that contains the term vij and N is the number of keyword
vectors.

idfij ¼ log

 

1þ N

dfij

!

: (2)

Then, the final TF-IDF weight for the jth keyword of test
reportKVi is shown in

wij ¼ tf-idfij ¼ log ð1þ vijÞ � log
 

1þ N

dfij

!

: (3)

In the implementation, for each pair of test reports
ðri; rjÞ, we employ the euclidean distance between their
weighted keyword vectors as the textual distance DT ðri; rjÞ.
Then, we can have Equation (4) to compute the textual dis-
tance between each pair of test reportsDT ðri; rjÞ.

DT ðri; rjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xq

k¼1

ðwik � wjkÞ2
s

: (4)

3.3 Screenshot Processing

Zhang et al. found that one primary feature of mobile testing
is that the test reports for mobile applications contain much
shorter textual description yet plentiful screenshots in com-
parison with conventional desktop applications [27]. Con-
sidering this, we adopt an image-understanding technique
to analyze features within screenshots. For mobile applica-
tions, screenshots of an activity view can reflect the func-
tionality because the functional requirements of mobile
applications are often implemented with one or multiple
activity views. Our approach seeks to assess the similarity
of such screenshots and leverage this information to mea-
sure the distance between test reports. In this paper, the
screenshot processing consists of two fundamental sub-
steps: (1) feature histogram building, and (2) screenshot dis-
tance calculation.

3.3.1 Feature Histogram Building

In crowdsourced testing, the target application can be tested
on different devices and under various software circum-
stance settings. Although developers well design the lay-
outs, widgets, corresponding events, and actions for each
activity view of mobile applications, these activity views
can be shown with various resolutions, color contrast and
customized appearance settings.

However, conventional image recognition techniques,
such as Bag Of Features (BOF) [33], focuses on the distribu-
tion characteristics of global features in the whole image,
while neglecting the position information of global features.
Thus, the feature modeling methods that are designed
merely based on naive RGB values would suffer from noises.
To overcome this challenge, we employ the Spatial Pyramid
Matching (SPM) [25] technique to extract the descriptors of
scale-invariant feature transform (SIFT) from screenshots.

SPM takes a set of reference images as inputs, and it parti-
tions each reference image into a number of sub-regions in a
pyramid fashion. It computes an orderless histogram of low-
level features in each sub-regions of each pyramid level.
With this decomposition, SPM is capable of concatenating
statistics of local features and summarizing this information
into descriptors. The descriptors of SIFT present the local key

8. https://github.com/fxsjy/jieba, Latest access on 1st, Mar, 2020.
9. http://ictclas.nlpir.org, Latest access on 1st, Mar, 2020.
10. http://nlp.stanford.edu/software, Latest access on 1st, Mar, 2020.
11. https://www.nltk.org, Latest access on 1st, Mar, 2020.

1294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

https://github.com/fxsjy/jieba
http://ictclas.nlpir.org
http://nlp.stanford.edu/software
https://www.nltk.org


points of reference images. They are stored into a database
after being extracted and then are used to find candidate
matching feature descriptors from new images. Because the
descriptor of SIFT is invariant against various transforma-
tions, such as uniform scaling, orientation, illumination
changes, and partially invariant to affine distortion, it well
fits for measuring the difference between screenshots of
mobile applications. SIFT features can reflect the GUI struc-
ture information that is often more useful than the RGB dis-
tribution in representing the characteristics of operations.
The spatial pyramid is a simple and computationally effi-
cient extension of the orderless BOF image representation to
include spatial orientation [25].

Histograms are introduced as a practical and reliable
means for image description in computer vision [34]. At each
pyramid level, the technique computes an orderless histo-
gram of low-level features in each sub-region. The histograms
generated by spatial pyramid approach can be regarded as an
alternative formulation of a locally orderless image, which
defines a fixed hierarchy of rectangularwindows.

Note that the SPM algorithm is designed for recognizing
natural scenes. In the original paper [25], its inventors input
a number of images describing the natural scenes as the ref-
erence images. The algorithm then extracts local features
from these images and clusters these local features to group
the features describing the same scene together. For a new
coming image, it can recognize the scene by comparing its
features with each feature cluster. However, our goal is to
group the screenshots. Thus, in our technique, the inputs
for the SPM algorithm are all screenshots of each project. It
can group the screenshots that have similar SIFT features
into the same cluster.

3.3.2 Screenshot Distance Calculation

After obtaining the feature histogram of the screenshots, we
can compute the distance between each pair of screenshots.
SPM can be configured to output equal number of feature sta-
tistics for each screenshot (partially assisted by the resizing
normalization described in Section 3.3.1), and thus these out-
put histograms for each screenshot contains the same number
of bins. As such, we adopt the chi-square distance metric, a
generally used method to compute the distance between two
normalized histograms [35]. In our implementation, the equa-
tion of chi-square distance is as follows:

DS si; sj
� � ¼ x2 Hi;Hj

� �

¼ 1

2

Xn

k¼1

Hi fkð Þ �Hj fkð Þ� �2

Hi fkð Þ þHj fkð Þ :
(5)

In Equation (5), DS si; sj
� �

denotes the distance between
screenshot si and sj, whereHi f1; f2; . . . ; fnð Þ denotes the fea-
ture histogram of screenshot si, and Hi fkð Þ denotes the kth
feature of si.

However, each test report may contain more than one
screenshot. For each pair of test reports ri; rj

� �
, we need to

measure the distance between two sets of screenshots.
Note that even though two screenshots are taken from the

same activity view, the distance between them may not be
zero. This is becausemobile applications are designed for run-
ning on diverse devices. With various resolutions, brightness,

contrast, and user settings, someminor differences could exist
on the screenshot.We set a threshold g to identify screenshots
that are taken from the same activity view. For a pair of
screenshots si; sj

� �
, if DS si; sj

� � � g, we consider they are
taken from the same activity view of the application, and they
would fit in the intersection of two sets of screenshots.
Because the SPM algorithm is designed to capture the local
feature that reflects the layout information, the distance
between screenshots taken from the same view should be
very small. Considering this reason, we recommend the users
to set g into a relatively small value, e.g., 0.1, when applying
our technique in practice. By this means, we can obtain the
intersection between the screenshot sets, and define the union
as the sum of two sets and subtract the intersection.

Given this definition, we can employ Jaccard distance to
measure the distance between two sets of screenshots. The
distance between screenshots of two reports, reports ri and
rj, is defined as following:

DS ri; rj
� � ¼ 1� Si

T
Sj

�� ��

Si

S
Sj

�� �� : (6)

In Equation (6), Si and Sj represent the screenshot sets of
reports ri and rj respectively. A particular case is when
either Si or Sj is an empty set. For this case, we assess
DS ri; rj
� � ¼ 1 to maximize the distance.

3.4 Balance Distance Calculation

Based on the above distance calculations, we combine tex-
tual distance DT and screenshot distance DS to a balanced
distance BD. The balanced distance BD defined in Equa-
tion (7) represents the overall distance between test report ri
and rj.

BDðri; rjÞ ¼

0; if DT ðri; rjÞ ¼ 0

a�DT ðri; rjÞ; if DT ðri; rjÞ 6¼ 0
and DSðri; rjÞ ¼ 0

ð1þ b2Þ DSðri;rjÞ�DT ðri;rjÞ
b2DSðri;rjÞþDT ðri;rjÞ ; if DT ðri; rjÞ 6¼ 0

and DSðri; rjÞ 6¼ 0

8
>>>>>>>><

>>>>>>>>:

:

(7)

The first branch of Equation (7) shows the condition when
DT ri; rj
� �

equals 0, which means the two test reports ri and
rj contain exact same weighted keywords. Given the fact
that inputting textual descriptions on mobile devices often
requires more efforts in comparison with the desktop devi-
ces, these texts are usually short in length yet more meaning-
ful in describing the buggy situation. Thus, if two reports
contain the identical keyword sets, they likely describe the
same bug.We defineBDðri; rjÞ ¼ 0 ifDT ri; rj

� � ¼ 0, no mat-
ter whetherDSðri; rjÞ ¼ 0 or not.

The second branch of Equation (7) shows the condition
when DSðri; rjÞ ¼ 0 and DT ðri; rjÞ 6¼ 0, which means the
two test reports ri and rj contain exact same screenshots but
different keywords. Considering screenshots within a test
report represent the operations contained in the testing,
DSðri; rjÞ ¼ 0 indicates the two reporters have conducted
the same operations in the testing. Thus, we presume the
text in these two reports may describe the same bug, and
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define a factor a to scale the weight of DT ri; rj
� �

in case the
distance becomes a large number when reporters express
their situation in totally different words. However, because
these screenshots are often taken on various devices and
platforms, it is very rare that the screenshot distance equates
zero. This means a maybe not capable of fundamentally
influencing the performance of our technique. Considering
this, we recommend end users to set a into a fixed value,
e.g., 0.8, when applying our technique in practice.

The last branch of Equation (7) is designed for the most
common case, i.e., when DSðri; rjÞ 6¼ 0 and DT ðri; rjÞ 6¼ 0 at
the same time. We introduce the harmonic mean to calculate
the BD based on textual distanceDT and screenshot set dis-
tance DS. Another parameter b is designed to control the
impact of the text and screenshots on the balanced distance.
When b is set to 1, the weight of text distance and image dis-
tance is equal; When b is greater than 1, the image distance
has a greater weight; When b is smaller than 1, the text dis-
tance has a greater weight.

The balanced distance BD quantitatively assesses the dif-
ference between two test reports and takes both text and
image features into consideration. Similar to DT ri; rj

� �
and

DS ri; rj
� �

, the smaller the value of BD ri; rj
� �

is, the more
similar the report ri and rj are.

3.5 Test-Report Clustering and Sampling

Using the previousmethods of obtaining a balanced distance
matrix for all test reports, we can cluster the reports into
groups. Note that the number of both reported bugs and
received test reports is often unpredictable in practice, we
utilize hierarchical agglomerative clustering(HAC) [36],
which does not require the user to specify the number of
clusters, to group these reports. Agglomerative hierarchical
clustering can be considered as a bottom-top process of
establishing a tree diagram of data instances. HAC starts
with grouping each data instance into a cluster. And then, it
agglomerates the closest pair of clusters based on the dis-
tance measurement. The whole aggregation process repeats
until the minimum distance between the clusters reaches the
user-defined threshold ". If the minimal distance between
these pairs is larger than the threshold ", the clustering pro-
cedure terminates; otherwise, the algorithm agglomerates
the two closest clusters.

Besides the threshold " controlling the stop point of cluster-
ing, the linkage type, which defines the method of calculating
the distance between clusters, influences the clustering result.
There are three types of linkage in agglomerative hierarchical
clustering, i.e., single-linkage, complete-linkage, and average-
linkage [37].

The single-linkagemeasures the distance between two clus-
ters as the distance of their closest members. It focuses on the
area where the two clusters lay closest to each other instead of
overall structure. In complete-linkage, the distance between
two clusters is measured based on their farthest members. It
presents the global , and the entire structure of the data set can
influence aggregation procedure. Average-linkage measures
the distance between two clusters based on the average
distance between each member in one cluster to the members
in the other cluster. In our approach, we adopt the average-
linkage type because it properly takes the dissimilarity of all
memberswithin clusters into consideration.

HAC is capable of grouping the test reports describing
similar bugs. Based on the grouped results, the users of
our technique can reach an overview understanding of all
reports by sampling from each cluster and thus save the
cost of processing them. We first sort clusters into a list
based on their size ascendingly. And then we adopt an
iterative sampling strategy to capture representatives from
each cluster. In each iteration, a few reports are randomly
sampled from each cluster within the cluster list. The sam-
ple size is determined by the size of the cluster, and the
user-defined ratio parameter r. In the implementation it is
round up to nearest integer value. After obtained samples,
the users of our technique can conduct a manual inspec-
tion. This operation of sorting clusters enables users to
inspect representative reports from smallest clusters that
report the unique bug, and thus help them to identify as
many bugs as possible early. The whole iteration is termi-
nated until all clusters become empty or resources are
exhausted.

4 EXPERIMENT

To validate our technique, we conduct a comprehensive
experiment on the industrial data. In this section, we first
raise research questions of this experiment, and then we
detail the dataset, baselines, and evaluationmetrics.We eval-
uate our technique through three aspects: effectiveness, use-
fulness, and potential. In addition, we analyze the parameter
sensitivity for helping users to apply our technique in differ-
ent settings. Finally, we introduce the experiment setup,
which includes the parameter settings and the hypotheses
setup to answer research questions.

4.1 Research Questions

Identifying the test reports that describe the same bug or
present similar topics is critical for improving the efficiency
of processing the overwhelming number of crowdsourced
test reports. For our technique, one of the critical steps is to
group these test reports into clusters. Given the fact that
clustering result fundamentally determines the effective-
ness of our technique, we design the RQ1 to investigate
whether our image-understanding-based clustering tech-
nique is effective for grouping the test reports. RQ1 is for-
mulated as follows:

[RQ1. Effectiveness:] To what extent can cluster with
image features accurately group the crowdsourced mobile
test reports?

On the other hand, even though we investigate the
effectiveness of our technique in clustering the test reports
in the RQ1, it is essential for validating its usefulness for
the practical test report inspection task. To understand its
practical usefulness, we compare our technique with the
existing state-of-the-art crowdsourced test report process-
ing techniques. In addition, considering investigating the
potential of our technique could be helpful for engineers
to optimize it in the application and inform the future
research in this field, we design the following two research
questions:
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[RQ2.1 Usefulness:] To what extent can our approach
substantially improve test-report inspection and find
more unique buggy reports earlier?
[RQ2.2 Potential:] How large is the gap between our
clustering method and IDEAL strategies?

Finally, because the performance of our technique is influ-
enced by several key parameters, we analyze the perfor-
mance of our approach under different parameter settings to
present users an extensive understanding of our technique.
Note that, as we discussed in the Section 3, we only focus on
the three parameters, i.e., balanced factor b, clustering
threshold " and sampling percent r, which can have signifi-
cant impacts on the performance of our approach, while set-
ting a ¼ 0:8 and g ¼ 0:1 in the experiment. The RQ3 is
designed as follows:

[RQ3. Parameter Sensitivity:] How does the experimen-
tal parameter influence the performance of our approach?

4.2 Data Collection

To investigate the performance of our technique under real
crowdsourced testing settings, we collaborated with six
industrial companies. Based on the mobile application and
testing requirement provided by these companies, we host a
national software-testing contest12 to simulate the crowd-
sourced testing. In total, more than 100 third-year undergrad-
uates came from 27 prestigious universities to participate in
this contest. The contestants were required to test the subject
applications and report bugs within four hours. They could
write descriptions and/or take screenshots to document their
testing procedures and the behavior of applications. More
than 10 professional testers and developers from our collabo-
rators manually labeled and evaluated the quality of these
reports. The detailed information of the dataset is shown in
Table 3, in which, Rj j denotes the number of reports, Sj j
denotes the number of screenshots, Rsj j denotes the number
of reports that contain at least one screenshot, and Fj j denotes
the number of faults revealed by the reports. Based on this
figure, we can observe that 1119 out of 1604 crowdsourced
test reports of mobile applications contain screenshots, and
these reports detected 119 bugs.

4.3 RQ1. Effectiveness

4.3.1 Baselines

Because RQ1 is designed for evaluating the quality of clus-
tering results, we adopted TXT, which clusters test reports
based on only the text distance, and IMG, which clusters
test reports based on only the image distance to reveal the
performance of image information, and the clustering
method proposed by Yang et al. in DMBD19 [24], as base-
lines. Thus, we have the following four techniques:

� TXT&IMG: The clustering is conducted based on
both textual information and screenshots. In this
method, the distance between the two reports is cal-
culated based on the balanced distance Equation (7).

� TXT: The clustering is conducted based on only the
text distance between test reports, which was pre-
sented asDT in Equation (4).

� IMG: The clustering strategy based on the screenshot
distance between test reports, which was presented
asDS in Equation (6).

� DMBD19: The test reports clustering technique using
multi-source heterogeneous information proposed
by Yang et al. in DMBD19.

4.3.2 Evaluation Metrics

We employ widely-used metrics to analyze the result of clus-
tering, includingHomogeneity, Completeness, V-measure [38],
and Silhouette Coefficient [39].

To ease the explanation, we use the class set C and clus-
ter set K to denote ground truth and clustering results.
Then we define n as the total number of reports, nc and nk

as the number of reports respectively belonging to class c
and cluster k, and nc;k denotes the number of reports from
class c assigned to cluster k. Based on these annotations, we
can formulate these metrics.

Homogeneity. A clustering result satisfies homogeneity if
all of its clusters contain only data points which are mem-
bers of a single class. It reflects the extent to which each clus-
ter contains only members of a single class. Homogeneity
scores are formally given by:

h ¼ 1�H CjKð Þ
H Cð Þ :

where

H CjKð Þ ¼ �
XCj j

c¼1

XKj j

k¼1

nc;k

n
� log nc;k

nk

� �

H Cð Þ ¼ �
XCj j

c¼1

nc

n
� log nc

n

� 	
:

Completeness. A clustering result satisfies completeness if
all the data points that are members of a given class are ele-
ments of the same cluster. It measures the extent to which
all members of a given class are assigned to the same clus-
ter. Completeness scores are formally given by:

c ¼ 1�H KjCð Þ
H Kð Þ ;

TABLE 3
Summary of Experimental Subjects

Name Main Function Rj j Sj j Rsj j Fj j
p1 Wonderland Travel Guidelines 191 116 93 23
p2 Game-2048 Puzzle Game 210 174 154 12
p3 TravelDiary Travel Notes 240 170 142 14
p4 HWHealth Sports & Health 262 274 201 33
p5 HJ Normandy English Education 269 381 241 22
p6 MyListening Listening Training 432 348 288 15

Total 1604 1463 1119 119

12. http://www.mooctest.org/cst2016/index_en.html, Latest access
on 1st, Mar, 2020.
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where

H KjCð Þ ¼ �
XKj j

k¼1

XCj j

c¼1

nc;k

n
� log nc;k

nc

� �

H Kð Þ ¼ �
XKj j

k¼1

nk

n
� log nk

n

� 	
:

V-measure. The V-measure is a harmonic mean between
homogeneity and completeness, which is widely used as a
metric to evaluate the performance of clustering. In our
experiment, a higher V-measure score means better cluster-
ing performance. The V-measure score is calculated as the
following formula:

v ¼ 2 � h � cð Þ
hþ c

: (8)

The value range of all three above metrics is [0,1], and
they are the higher the better.

Silhouette Coefficient. Different from the metrics like H, C,
and V, the Silhouette Coefficient does not require the
ground truth tables. It combines the degree of cohesion and
the degree of separation to evaluate the clustering results.
For each report, the Silhouette Coefficient is calculated
using the mean intra-cluster distance a and the mean near-
est-cluster distance b. To clarify, b is the distance between a
report and the nearest cluster that the report is not a part of.
Then the Silhouette Coefficient is formally given by:

SC ¼ b� a

max a; bð Þ : (9)

The value range of SC scores is ½�1; 1�, and when the
value is closer to 1, it represents a better clustering result.

4.4 RQ2. Usefulness and Potential

4.4.1 Baselines

Note that the method in DMBD19 is designed for clustering
test reports, we can only evaluate its performance based on
the evaluationmetrics of clustering. Thus, we have employed
four techniques, i.e., TXT, IMG, TXT&IMG, DMBD19, for
addressing the RQ1, whereas we keep TXT, IMG, TXT&IMG
as baselines in the study ofRQ2. In addition, we simulate the
ideal inspection process, which can only be achieved theoreti-
cally, to investigate the usefulness and potential of our tech-
nique. Further, our prior work presented the multi-objective
technique to prioritize test reports based on the distance of
both text descriptions and images [23]. We also introduce this
method as one of the baselines. Also,we simulate the situation
that developers have no any ancillary techniques for inspect-
ing the reports. Under that situation, they may randomly
inspect test reports, i.e., in a non-systematic order. Thus, for
RQ2, we have six techniques as follows:

� TXT: The sampled report clusters are derived from
the results of only text-distance-based clustering.

� IMG: The sampled report clusters are derived from the
results of only screenshot-distance-based clustering.

� BDDiv: A multi-objective test-report prioritization
technique proposed in our prior publication (ASE’16
conference paper) [23].

� TXT&IMG: The sampled report clusters are derived
from the results of hybrid-distance-based clustering.

� RANDOM: The randomly inspection strategy, which
is used to simulate the situation without ancillary
techniques.

� IDEAL: The theoretically ideal inspection orders. For
test reports with M faults, all errors can be found by
reviewing onlyM reports.

4.4.2 Evaluation Metrics

We adopted the APFD (Average Percentage of Fault
Detected) [40], a widely-used evaluation metric of the classi-
cal test case prioritization, to measure the performance of
our technique. For each fault, APFD marks the index of first
test report which reveals it. Based on the order of test
reports and fault information they revealed, we can calcu-
late APFD scores to evaluate the usefulness of our technique
for report inspection. We present the formula of computing
the APFD in the following equation:

APFD ¼ 1� Tf1 þ Tf2 þ � � � þ TfM

n�M
þ 1

2� n
: (10)

In Equation (10), n denotes the number of test reports, M
denotes the number of faults revealed by all test reports. Tfi

is the index of the first test report that reveals fault i. In our
experiment, a higher APFD value indicates a better inspec-
tion procedure. That is, the method with higher APFD value
can reveal more faults earlier. In addition, we employ Gap,
which reflects the difference of our technique compared
with the IDEAL strategy, to evaluate the potential of our
technique. In the experiment, the Gap between technique X
and the IDEAL can be calculated as G ¼ Best�Xð Þ=X. This
metric indicates the potential of techniques, which is helpful
for researchers to design and improve crowdsourced test
report processing techniques.

4.5 RQ3. Parameter Sensitivity

In RQ3, we analyze the impact of parameters on the perfor-
mance. We focus on the following parameters: balanced fac-
tor b, which controls the weight of text distance and image
distance; clustering threshold ", which determines the stop
point of hierarchical clustering; and sampling ratio r, which
determines the number of test reports to be sampled from
each cluster.

The parameter b is designed for controlling the process of
clustering, thus, we employ the evaluation metrics of RQ1,
i.e., homogeneity, completeness, and v-measures, to analyze
its impact. Similarly, because of the clustering threshold "
and sampling ratio r influences the practical performance of
our technique, we employ the evaluation metrics of RQ2,
i.e., APFD, to analyze their impacts.

4.6 Experiment Setup

In this section, we detail the parameter settings and the
hypotheses setup for research questions.

4.6.1 Parameter Settings

One of the features of crowdsourced testing is that it can
provide the testing results of diverse devices. Thus, given
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the screenshots submitted by crowd workers are potentially
of different resolutions, in our experiment, we resize all the
screenshots to 480 � 480 pixels. Further, as we discussed in
the Section 3, some fundamental parameters can influence
the performance of our experiment. We set the threshold of
identifying the similar screenshots g ¼ 0:1, the factor of scal-
ing the weight of text similarity a ¼ 0:8, and the threshold of
balanced factor b ¼ 1. Also, in agglomerative hierarchical
clustering, we set the threshold of determining the stop
point of clustering " ¼ 0:8.

In the sampling procedure, we set the sampling ratio
parameter r ¼ 5%. This means, we randomly sample 5 per-
cent reports from clusters in each iteration. Especially, for
the clusters that contain only one test report, we take all sin-
gular test reports in the first round. Note that, except the
experiment of RQ3 that is designed for investigating the
parameter sensitivity, we did not change these settings in
the whole experiment to ensure the consistency of the
results.

4.6.2 Hypotheses Setup

To answer RQ1, we set up the following null hypothesis
H10 and the alternative hypothesisH1A for RQ1:

� H10: The silhouette coefficient of clustering results with
text and image features is not significantly higher than
the baselines (TXT, IMG, DMBD19).

� H1A: The silhouette coefficient of clustering results with
text and image features is significantly higher than the
baselines (TXT, IMG, DMBD19).

To answer questions in RQ2, we set up the null hypothe-
sis H20 and the alternative hypothesis H2A for RQ2 as
follows:

� H20: The APFD scores of our technique (TXT&IMG) is
not significantly higher than the baselines (TXT, IMG,
BDDiv, RANDOM).

� H2A: The APFD scores of our technique (TXT&IMG)
is significantly higher than the baselines (TXT, IMG,
BDDiv, RANDOM).

To comprehensively answer RQ3, we set up two null
hypotheses H30H30 and H40H40 for the two primary parameters "
and r respectively.

� H30: The minimum merging distance threshold " of our
technique (TXT&IMG) cannot significantly influence the
performance.

� H3A: The minimum merging distance threshold " of our
technique (TXT&IMG) can significantly influence the
performance.

� H40: The sampling ratio r of our technique (TXT&IMG)
cannot significantly influence the performance.

� H4A: The sampling ratio r of our technique (TXT&IMG)
can significantly influence the performance.

5 RESULT DISCUSSION

In this section, we present the experimental results to
answer the three research questions.

5.1 Answering Research Question 1: Effectiveness

[RQ1. Effectiveness:] To what extent can cluster with image
features accurately group the crowdsourced mobile test
reports?

We present the homogeneity(H), completeness(C) and
V-Measure(V) results of these four techniques in Table 4.
Regarding the V-Measure score, TXT&IMG, i.e., clustering
based on balanced-distance, achieves 0.643 on average, while
the other three baselines, i.e., TXT, IMG, and DMBD19,
obtain only 0.592, 0.622, and 0.434 respectively. We can
observe that TXT&IMG outperforms the TXT and IMG over
five subject projects, except the p2(Game-2048).

We investigate the p2(Game-2048) to identify the reason for
this distinct result.Wenotice thatwhile the TXT&IMGobtains
a relatively high homogeneity score of more than 0.8 and out-
performs the three baselines on p1; p3; p4; p5; p6, TXT reaches
0.857 when TXT&IMG achieves only 0.514 on p2(Game-2048).
When the completeness scores of these four techniques are
close to each other, the high homogeneity score of TXT natu-
rally leads to a high V-measure score. We further analyze the
raw reports of p2(Game-2048). We found that within the test
reports of p2(Game-2048) almost all screenshots submitted by
crowd workers are the activity views of the game content
panel. Even though these screenshots are used to describe dif-
ferent bugs, they are often similar to each other because all of
them are captured from the same activity view. This effect
misleads the two image-involved techniques, i.e., TXT&IMG

TABLE 4
HCV Scores of Test Report Clustering With Different Distance Metrics

Method p1 p2 p3 p4 p5 p6 avg

H

TXT&IMG 0.900 0.514 0.890 0.914 0.807 0.800 0.804
TXT 0.751 0.857 0.746 0.879 0.800 0.669 0.784
IMG 0.444 0.456 0.884 0.859 0.789 0.791 0.703
DMBD19 0.810 0.486 0.485 0.383 0.363 0.753 0.547

C

TXT&IMG 0.694 0.440 0.537 0.643 0.546 0.390 0.542
TXT 0.660 0.386 0.513 0.592 0.444 0.316 0.485
IMG 0.683 0.393 0.526 0.633 0.533 0.386 0.527
DMBD19 0.488 0.348 0.274 0.441 0.342 0.350 0.374

V

TXT&IMG 0.783 0.474 0.670 0.755 0.651 0.525 0.643
TXT 0.702 0.532 0.608 0.707 0.572 0.429 0.592
IMG 0.778 0.422 0.659 0.728 0.626 0.519 0.622
DMBD19 0.609 0.405 0.350 0.409 0.351 0.477 0.434
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and IMG, to group the test reports that are describing differ-
ent bugs into the same cluster.

In order to evaluate the performance of our clustering
technique in the absence of ground-truth tables, we further
compute the Silhouette Coefficient of each project and pres-
ent the results in Table 5. Similar to results in Table 4,
TXT&IMG outperforms the other three techniques on all
projects except the p2(Game-2048). To investigate whether
TXT&IMG significantly improves the technique which only
based on TXT, IMG, or DMBD19, we conduct Wilcoxon
signed-rank tests between our technique (TXT&IMG) and
the other three techniques. Since HAC algorithm could not
specify the number of clusters during clustering, we slightly
raised and lowered the current clustering threshold by 0.05
with 0.005 as a step, and obtained 20 groups of clustering
results for each method to support our tests.

We present the p-value of tests and their corresponding
effect size (Cohen’s d) in Table 5. The results show that the
null hypothesis H10 will be rejected, expect the test in p2
(Game-2048: TXT&IMG-IMG). On the other hand, the rela-
tively high effect size means the difference of Silhouette
Coefficient between the techniques is distinct.

Summary. The high V-measure scores and SC scores indi-
cate that our image-understanding-based test report clustering
technique is capable of improving the test reports describing
similar bugs together. On the other hand, we found that the
information of screenshots may negatively influence the test
report clustering of these applications that contain limited
number of activity views.

5.2 Answering Research Question 2

To reduce the bias that is introduced by the randomness in
the iterative sampling process, we conducted the experi-
ment 30 times and present the result in Figs. 3 and 4.

Fig. 3 shows boxplots of the APFD results for the six proj-
ects and Fig. 4 presents the average fault detection curves
with the increasing number of inspected reports. In addi-
tion, we present the mean value of APFD of the 30 runs, the
improvement over RANDOM, and the gap between our
technique and IDEAL. Further, we conduct Wilcoxon
signed-rank tests between our technique (TXT&IMG) and
the other four techniques (TXT, IMG, BDDiv, RANDOM)
and present the results in Table 6.

[RQ2.1. Usefulness]: To what extent can our technique
substantially improve test-report inspection and find more
unique buggy reports earlier?

Note that our prioritization technique in the conference
paper [23], which is denoted as BDDiv, is employed as a
baseline. Based on the boxplots of APFD values shown in
Fig. 3 and the third column of Table 6, we observe that, to dif-
ferent extents, all of these clustering techniques outperform
the RANDOM inspection on all projects except p2(Game-
2048). Similarly, the curves in Fig. 4 show that the TXT&IMG
is able to detect all faults earlier on these projects. Especially,
for the BDDivmethod, which also employed the information
of screenshots to analyze the test reports, we observed that
the TXT&IMG technique consistently outperforms it on all
projects except p2(Game-2048).

Further, considering we adopted the ramdom strategy to
sample test reports from the clustering results, we repeat
the experiment 30 times and conduct the Wilcoxon signed-
rank tests based on the APFD scores to analyze the differen-
ces between TXT&IMG and the other four techniques. We
present the test results and the average improvement over
RANDOM in Table 6. Based on Table 6, for all projects
except p2(Game-2048), we can observe that the improvement
of TXT&IMG ranges 21.3-37.17 percent in comparison with
the RANDOM, while TXT improves only 0-26.02 percent.

Given the fact that in our tests all p-values less than 0.01
except p2(Game-2048: TXT&IMG-IMG, TXT&IMG-RANDOM),
which means for other five projects the null hypothesis H20
will be rejected. On the other hand, their corresponding effect
size (Cohen’s d) fluctuates between 0.37 and 0.619, and we can
conclude that the improvements coming from these clustering
techniques are statistically significant.

Also, on all projects, we observe that the lengths of the box-
plots of our clustering-sampling techniques, i.e., TXT&IMG,
TXT, and IMG, are smaller than the boxplot of RANDOM.
Because the box length indicates the data variability, this
observation indicates the performance of these four techni-
ques ismore stable than RANDOM.

[RQ2.2. Potential]: How large is the gap between our clus-
tering method and IDEAL strategies?

The fourth column of Table 6 shows the gap between
our strategies and the theoretical IDEAL. Over the six
subject programs, we found the gap between TXT&IMG
and IDEAL varies from 17.56 to 41.42 percent while the
gap between BDDiv and IDEAL ranges from 29.12 to
64.16 percent. In Fig. 4, which visualizes the growth rate of
APFD value, the curves of IDEAL grow at a fast rate, and
the best situation reached the top while the TXT&IMG
stayed around 35 percent.

TABLE 5
Silhouette Coefficient of Test Report Clustering with Different Distance Metrics

Method p1 p2 p3 p4 p5 p6

SC scores

TXT&IMG 0.344 0.277 0.271 0.313 0.330 0.440
TXT 0.083 0.100 0.104 0.097 0.088 0.147
IMG 0.119 0.306 0.086 0.188 0.284 0.321
DMBD19 0.093 0.069 0.072 0.050 0.053 0.155

p-value
TXT&IMG-TXT < 0:01 < 0:01 < 0:01 < 0:01 < 0:01 < 0:01
TXT&IMG-IMG < 0:01 0.763 < 0:01 < 0:01 < 0:01 < 0:01
TXT&IMG-DMBD19 < 0:01 < 0:01 < 0:01 < 0:01 < 0:01 < 0:01

effect size
TXT&IMG-TXT 0.620 0.605 0.620 0.620 0.604 0.620
TXT&IMG-IMG 0.622 - 0.626 0.622 0.605 0.620
TXT&IMG-DMBD19 0.619 0.621 0.621 0.620 0.620 0.620

1300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



Summary. To answer the RQ2, we conducted Wilcoxon
signed-rank tests over the results of 30 executions. Based on
the test result, we can draw the following summaries: 1. all
of these clustering techniques can improve the efficiency of
the test reports inspection in comparison with the RAN-
DOM method. 2. the image-based approaches distinctly
improved the performance of conventional text-based clus-
tering techniques. 3. on the projects with ample app-specific
views, clustering techniques are more appropriate for report
inspection than the prioritization techniques. Compared
with other strategies, the TXT&IMG shows a smaller gap
for the theoretical IDEAL result. However, there is room for
future work to improve the clustering-sampling techniques
for test report inspection.

5.3 Answering Research Question 3

[RQ3. Parameter Sensitivity]: How does the experimental
parameter influence the performance of our approach?

In this subsection, we further discuss the impact of
parameter settings on the performance. This study is helpful
for users of our approach to set proper parameters for dif-
ferent usage scenarios. We analyze the parameter sensitivity
tests based on three key parameters: balanced factor b,

clustering threshold " and sampling percent r, which influ-
ence the three fundamental steps of the clustering-sampling
process respectively:

� The parameter b controls the balance distance calcu-
lation as a harmonic weight. We analyze the cluster-
ing results when the value of b ranges from 0.5 to 1.5
with the increment of 0.1.

� The parameter " is employed to control the stop
point of hierarchical clustering. The clustering proce-
dure terminates when the distance between the clos-
est cluster pair is larger than the value of ". In this
study, we discuss the APFD scores when the value
of " ranges from 0.5 to 0.9 with the increment of 0.1.

� The parameter r controls the number of reports sam-
pling from each cluster, it influences the efficiency of
test report inspection. We analyze the trends of
APFD scores when the value of r ranges from 5 to
30 percent with the increment of 5 percent.

Fig. 5 shows the sensitivity of clustering results to the
parameter b, given the " ¼ 0:8 and r ¼ 0:1. And we present
the average value of homogeneity, completeness, and v-
measure in the same setting in Table 7 . From the table we

Fig. 3. APFD of experimental subjects (averaged over 30 runs).
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observe that when the value of b reaches 1.0, four projects,
i.e., Wonderland, Game-2048, Travel Diary, and HJ Nor-
mandy, obtain the highest v-measure score. The other two
projects, i.e., HW Health and MyListening, reach the highest
v-measure scorewhileb ¼ 0:9, and the difference of v-measure
between b ¼ 1:0 and b ¼ 0:9 is less than 0.01. This indicates
that setting the weight of the distance of textual description as
well as screenshots closely is helpful for optimizing the bal-
anced-distance-based clustering. Also, we present the average
value and corresponding standard deviation for each of these
projects in the last two columns of the Table 7. We observe that
the standard deviation value of homogeneity, completeness,
and v-measure stays in a range of small number, i.e., from
0.005 to 0.051, which indicates that the clustering result is rela-
tively stable to the change of b.

Similarly, Table 8 shows the average APFD score with the
changes of parameter ", given b ¼ 1:0 and r ¼ 0:1. From the

table we observe that APFD of five projects (p1; p3; p4; p5; p6)
reaches highest values when " ¼ 0:8. In this table we also
present the average value and standard deviation. The
results show that, for all the six subject programs, the stan-
dard deviation of the APFD values is marginal in compari-
son with the average value, which indicates the performance
of our technique is stable under the setting of different "
value. Meanwhile, in order to answer the hypothesis test of
RQ3, we conduct Friedman’s rank tests over APFD scores of
all parameter " on each project, and present the p-value in
the sixth row of Table 8. The test results show that the null
hypothesis H30 will be rejected, the parameter " influences
the APFD scores in our technique (TXT&IMG). However,
considering the change in values of APFD scores, such an
influence is acceptable.

Further, the sample percent r influences the efficiency of
test report inspection. We present the average APFD score

Fig. 4. Average fault detection rates on experimental subjects (averaged over 30 runs).
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with the changes of parameter r in Table 9 and Fig. 6, given
b ¼ 1:0 and " ¼ 0:8. In Table 9, we observe that the APFD
scores of these six subject programs reach the highest value

under different r value. And the p-value in the sixth row
also rejects the null hypothesis H40, which proves the
parameter rwill influence our technique (TXT&IMG). How-
ever, the standard deviation of the APFD value presented in
Table 9 varies in 0.004�0.012, and the curves shown in
Fig. 6 are relatively smooth. This fact proves that our tech-
nique is relatively stable under the different settings of sam-
ple percent r.

Summary. While all three parameters influence the per-
formance of our technique to a different extent, the perfor-
mance of our technique is generally stable to their changes.
Because the experiment result indicates setting the weight
of textual description and screenshots equally can make our
technique perform well, we suggest the users of our tech-
nique adjust to b starts from 1. Similarly, we suggest the
users of our technique to set the default value of " into 0.8
and set the default value of r into 0.1.

6 THREATS TO VALIDITY

Subject Program Selection. Although crowdsourced testing
has covered a wide range of mobile platforms (e.g.,
Android, IOS, WP), the limitations of data sources have
allowed us to experiment with only six Android applica-
tions. We cannot guarantee the similar good results could
generalize beyond the platforms. Nevertheless, this risk
could be reduced because our subject applications vary dif-
ferent categories that diversifies the functionalities includ-
ing health assistant, entertainment, travel assistant, diary
editor, and language learning tools. Thus, we believe these
applications can indicate the effectiveness and applicability
of our methods.

Natural Language Selection. In this experiment, all the
crowdsourced test reports are written in Chinese, which
implies the similar results may not be observed based on
the test reports written in other languages. However, the
natural language processing technique is not the focus of
our research. Instead, it works as the ancillary technique to
generate the intermediate outputs of our techniques. Even
though our technique involves natural language processing,
this part focuses on building the keyword vector models to
compute the text distance between reports. To build key-
word vector models from different languages, many sophis-
ticated methods and NLP tools are available, such as the

TABLE 6
Wilcoxon Signed Rank Tests of APFD Scores

***TXT&IMG-IMG: p� value ¼ 0:245
***TXT&IMG-RANDOM: p� value ¼ 0:111

Fig. 5. The sensitivity of clustering results to the parameter b (" ¼ 0:8 and r ¼ 0:1).
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CoreNLP, WordNet, NLTK. This fact illustrates the trans-
plantable potential of our technique.

Crowd Workers. To collect the experimental data and vali-
date our technique, we collaborated with several mobile
application development companies and hosted a national
contest. In this contest, students play the role of crowdwork-
ers. This compromising choice means that the population of
our crowd workers may be less diverse than the population
from the general populace. In theory, crowdsourcing techni-
ques require workers to come from a large workforce pool.
In this pool, individuals often have no relationship with each
others [1]. Thus, this requirement implies that our result may
be different if the crowdworkers were from the internet with
open calls.

However, according to the study of Salman et al. [41], if a
technique or task is new to both students and professionals,
similar performance can be expected to be observed. In our
experiment, we control that all crowd workers have no
experience in developing or using these subject applica-
tions. All testing tasks are new to these crowd workers.
Thus, We believe this threat may not be a critical problem
for our validation procedure.

7 RELATED WORK

7.1 Crowdsourced Software Testing

Mao et al. provide a comprehensive survey on the crowd-
sourced software engineering [1], in which, they defined the
crowdsourced software engineering as “the act of undertaking
any external software engineering tasks by an undefined, potentially
large group of online workers in an open call format.” Crowd-
sourced software testing has become a reasonably popular
research topic in the software engineering research commu-
nity. In the industry, crowdsourcing technique has been
widely used in testing areas such asQoE testing, usability test-
ing, GUI testing and performance testing [42], [43], [44], [45],
[46], [47], [48], [49]. Chen et al. [42] developed a crowdsourc-
ing platform for QoE assessment in network and multimedia
studies(Quadrant of Euphoria), which features low cost and
participant diversity. Liu et al. [44] discussed both methodo-
logical differences and empirical contrasts between crowd-
sourced usability testing and traditional face-to-face usability
testing. To prove the feasibility of crowdsourced GUI testing,
Komarov et al. [46] conducted an experiment both in a lab

TABLE 7
The Comparison of Clustering Results Over 30 Executions Under Different Settings of b (" ¼ 0:8 and r ¼ 0:1)

Project Metric Balance Factor b avg std

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Wonderland
H 0.872 0.877 0.879 0.897 0.887 0.9 0.865 0.859 0.823 0.794 0.765 0.856 0.042
C 0.676 0.678 0.682 0.682 0.68 0.694 0.681 0.684 0.683 0.677 0.672 0.681 0.005
V 0.761 0.764 0.768 0.775 0.769 0.783 0.762 0.762 0.746 0.731 0.715 0.758 0.019

Game-2048
H 0.444 0.444 0.441 0.447 0.454 0.514 0.491 0.514 0.51 0.504 0.511 0.479 0.031
C 0.439 0.439 0.429 0.433 0.436 0.44 0.43 0.421 0.411 0.409 0.429 0.429 0.01
V 0.441 0.441 0.435 0.440 0.445 0.474 0.458 0.463 0.452 0.452 0.466 0.452 0.012

Travel Diary
H 0.765 0.776 0.817 0.866 0.861 0.89 0.861 0.826 0.783 0.742 0.739 0.811 0.051
C 0.479 0.495 0.524 0.537 0.538 0.537 0.542 0.543 0.535 0.529 0.483 0.522 0.023
V 0.589 0.604 0.638 0.663 0.662 0.67 0.665 0.656 0.635 0.617 0.584 0.635 0.03

HWHealth
H 0.825 0.877 0.907 0.91 0.914 0.908 0.896 0.892 0.891 0.853 0.849 0.884 0.028
C 0.588 0.602 0.64 0.64 0.643 0.641 0.638 0.621 0.618 0.577 0.569 0.616 0.027
V 0.686 0.713 0.75 0.752 0.755 0.752 0.745 0.732 0.729 0.688 0.681 0.726 0.028

HJ Normandy
H 0.664 0.689 0.758 0.799 0.807 0.807 0.805 0.784 0.759 0.715 0.735 0.757 0.048
C 0.478 0.503 0.528 0.541 0.541 0.546 0.532 0.531 0.526 0.518 0.523 0.524 0.019
V 0.555 0.581 0.622 0.645 0.645 0.651 0.64 0.633 0.621 0.6 0.611 0.619 0.029

MyListening
H 0.764 0.774 0.789 0.794 0.8 0.791 0.779 0.783 0.776 0.776 0.751 0.78 0.013
C 0.375 0.372 0.385 0.386 0.39 0.376 0.381 0.385 0.367 0.367 0.372 0.378 0.008
V 0.503 0.502 0.517 0.519 0.525 0.509 0.511 0.516 0.498 0.498 0.497 0.509 0.009

TABLE 8
The Comparison of APFD Mean Value Over 30 Executions

Under Different Settings of " (b ¼ 1:0 and r ¼ 0:1)

" p1 p2 p3 p4 p5 p6

0.5 0.626 0.634 0.684 0.677 0.781 0.808
0.6 0.642 0.675 0.696 0.701 0.802 0.806
0.7 0.649 0.711 0.686 0.681 0.779 0.820
0.8 0.659 0.695 0.769 0.735 0.808 0.831
0.9 0.655 0.701 0.724 0.721 0.661 0.809

p� value < 0:01 < 0:01 < 0:01 < 0:01 < 0:01 < 0:01
avg 0.646 0.683 0.712 0.703 0.766 0.815
std 0.012 0.027 0.032 0.022 0.054 0.009

TABLE 9
The Comparison of APFD Mean Value Over 30 Executions

Under Different Settings of r (b ¼ 1:0 and " ¼ 0:8)

r p1 p2 p3 p4 p5 p6

0.05 0.652 0.704 0.739 0.729 0.793 0.828
0.1 0.659 0.695 0.769 0.735 0.808 0.831
0.15 0.663 0.711 0.769 0.732 0.796 0.831
0.2 0.664 0.687 0.771 0.728 0.806 0.837
0.25 0.659 0.719 0.771 0.735 0.799 0.825
0.3 0.659 0.691 0.774 0.722 0.801 0.824

p� value < 0:01 < 0:01 < 0:01 < 0:01 < 0:01 < 0:01
avg 0.659 0.701 0.766 0.73 0.8 0.829
std 0.004 0.011 0.012 0.004 0.005 0.004

1304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



and online with participants recruited via MTurk, and the
analysis of results did not yield any evidence of significant or
substantial differences. Musson et al. [48] helped software
development teams identify and prioritize application per-
formance issues by collecting performance data in key usage
scenarios from users.

Test case generation is an indispensable part of the soft-
ware testing process. By analyzing and directing the drive-by
commit phenomenon on GitHub, Pham et al. [50] used
crowdsourcing technique to recruit capable users to complete
valuable test cases and maintenance tasks, giving core devel-
opersmore resources towork on themore complicated issues.
In program debugging, the crowd provides better solutions
and more comprehensive explanations for the program
issues. Chen et al. [51] leverage the vastmass of crowd knowl-
edge to help developers debug their code, and even performs
better than the popular static analysis tools. Crowdsourcing is
particularly useful for evaluating complex and variable soft-
ware systems. Sherief et al.’s [52] research proves that rapid
feedback from crowdworkers can enrich andmaintain devel-
opers’ timely awareness of software systems.

There are other studies on optimizing the process of crowd-
sourcing testing. Recruiting quality workers and effective
management is the premise of carrying out crowdsourcing test
tasks. M€antyl€a et al.’s research presents that, proper time pres-
sure and reasonable crowd worker size can achieve higher
defect detection effectiveness [52]. For the decomposition of
testing tasks, Tung et al. [53] defined the collaborative testing
problem in a crowded environment as an NP-Complete job
assignment problem, and solve it as an integer linear program-
ming problem. Some researchers have discussed opportunities
and challenges for crowdsourcing testing, including manage-
ment of crowdsourcedworkers, test processes, and test techni-
ques [54], [55], [56], [57].

All the studiesmentioned above used crowdsourcing tech-
nique to solve problems in traditional software testing activi-
ties. However, in this paper, we focus on processing the
overwhelming number of test reports, which is a newyet criti-
cal research topic in crowdsourcedmobile software testing.

7.2 Bug Report Processing

In the development of modern software applications, rapid
version updates generate a large number of bug reports. In
practice, manually triage these bug reports becomes a labor-
intensive and costly task for developers. To assist triagers in

improving the bug triaging efficiency, many researchers
have focused on automating bug-report triaging, including
bug-report prioritization, checking duplication of bug
reports, and assigning bug reports to proper fixers (i.e., bug
assignment) [58].

1) Bug-report prioritization: Yu et al. [59] employed neu-
ral network techniques to predict the priorities of bug
reports, they also accelerate the training phase by
reusing datasets from similar software systems. Tian
et al. [60] proposed a machine learning framework to
predict the priority levels of bug reports, their classifi-
cation engine considered multiple features including
temporal, textual, author, related-report, severity,
and product. Kanwal et al. [61] developed a recom-
mender based on Naive Bayes and SVM classifiers to
automatically prioritize the new bug reports. Feng
et al. [17] presented a prioritization strategy that com-
bines both the risk assessment and the diversity strat-
egy for crowdsourced test reports. This technique
measured the similarity between crowdsourced test
reports by leveraging natural language processing
techniques. Similarly, Alenezi et al. [62] used different
machine learning algorithms, namely Naive Bayes,
Decision Trees, and Random Forest to predict the pri-
ority of bug reports. Their research also investigated
the influence of different data sets on classification
accuracy.

2) Duplicate Report Detection:Hiew et al. [63] first attempt
to detect duplicate bug reports based on textual fea-
tures. By transforming the textual content in bug
reports intoword vectors, they could calculate the sim-
ilarity between reports, then ranks candidate reports
to a given bug. Besides using natural language proc-
essing techniques, Jalbert et al. [64] proposed a system
that used surface features, textual semantics, and
graph clustering to identify duplicate status. Wang
et al. [13] employed heuristics to combine the natural
language information and execution information to
detect duplicate bug reports.

3) Bug Assignment: Murphy et al. and Anvik et al. used
machine learning techniques such as Naive Bayes
and SVM to recommend bug fixers [65], [66]. Alenezi
et al. [67] investigated the use of five-term selection
methods on the accuracy of bug assignment. They

Fig. 6. The sensitivity of APFD to the parameter r (b ¼ 1:0 and " ¼ 0:8).
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also re-balanced the load between developers based
on their experience. Tamrawi et al. [68] used a fuzzy
set to represent the developerswho are capable/com-
petent in fixing the bugs relevant to each term. Xia
et al. [69] proposed a method for developer recom-
mendation problem, which performed two kinds of
analysis: bug reports based analysis, and developer
based analysis. This method could associate the
developers with the bug reports they resolved before,
andmeasured the distance between them.

4) Bug Report Clustering: As an unsupervised-learning
method, clustering techniques do not depend on the
labeled data, and have been extensively employed to
assist in various software engineering tasks. Jalbert
et al. [64] used surface features, textual semantics,
and graph clustering to predict duplicate status for
the bug tracking system. Besides duplicate detection,
their technique is also able to rank the existing reports
that are more similar to the new one. Mani et al. [70]
presented a noise reduction approach for unsuper-
vised bug report summarization, and compared the
experimental results of several unsupervised techni-
ques including clustering technique. By using bug
estimation and clustering, Nagwani et al. [71] pro-
posed a data mining model to predict software bug
complexity, which helps the development team to
plan future software build and releases. In addition
to the bug reports submitted by the testers, the crash
reports reported by the operating system are equally
important. To facilitate efficient handling of crashed
reports, Dang et al. [15] proposedReBucket, amethod
for clustering crash reports based on call stack match-
ing using the Position Dependent Model (PDM).
Jiang et al. [72] first adopted fuzzy clustering to
aggregate multi-redundant test reports to reduce the
inspecting time for crowdsourced test reports.

However, all of these studies focus on either text descrip-
tions or execution traces. For crowdsourced mobile software
testing, where text description is often insufficient, and exe-
cution traces are difficult to access, it is difficult to apply
these techniques. The technique presented in this paper lev-
erages the rich screenshots and short text descriptions to
group crowdsourced mobile test reports. And we have con-
ducted an experiment based on the industrial datasets to
demonstrate its effectiveness in improving the efficiency of
dealing with the crowdsourced mobile test reports.

7.3 Image Understanding in Software Engineering

Compared with natural language processing techniques,
which have been widely used to assist textual software engi-
neering tasks, image analysis and understanding techniques
are rarely studied in the software engineering domain. In our
investigation, the existing image understanding techniques
mainly focus on web applications, which have clear and sig-
nificant GUI structures. To detect web content structure based
on visual representation, Cai et al. [73] proposed the VIPS
algorithm, an automatic top-down, tag-tree independent
approach. Choudhary et al. [74] proposed a testing tool called
X-PERT to identify cross-browser inconsistencies in web
applications automatically.Michail et al. [75] proposed a static
approach, GUI search, to guide browsing and search of its

source code by using the GUI of applications. Such an
approach would be helpful for software maintenance and
reuse, particularly when the application source is unfamiliar.
Liu et al. [76] proposed a novel technique to assist developers
in understanding test reports by automatically describing the
screenshots. On the other hand, to help users avoid bugs in
GUI applications, Michail and Xie [77] designed a stabilizer
prototype to visually describe application state at a very high
level of abstraction through before/after screenshots.

In our prior work [23], we proposed the first technique to
leverage image features to process test reports. It presented a
multi-objective search method to prioritize the crowdsourced
mobile test reports based on both the text distance and screen-
shot distance. Wang et al. [78] extracted four types of features
to characterize the screenshots and the textual descriptions to
detect the duplicate reports. They measured the similarity
between reports based on both the structural and RBG color
features. Anotherworkpresented byYang et al. [24] proposed
a clustering technique to group the test reports based on
multi-source heterogeneous information and reported the
F-measure score to evaluate their clustering technique. Yang
et al.’s work is the closest research to this paper. Both works
provide an image-understanding-based clustering technique
for test reports. However, in this paper, we provide metrics
for measuring the image distance between reports, as well as
sampling strategies for processing the clustered reports. Fur-
ther, we conduct a comprehensive analysis on the impact of
the parameters to help end-users reach proper settings in the
application scenarios.

8 CONCLUSION

In this paper,weproposed a novel clustering technique to alle-
viate the challenge of inspecting the overwhelming number of
reports in crowdsourced software testing. In our preliminary
investigation, mobile crowdsourced test reports usually con-
tain shorter text descriptions and abundant screenshots. This
fact motivates us to utilized image-understanding techniques
to assist the traditional text-based techniques, and we pro-
posed approaches for clustering test reports based on a hybrid
information source. To the best of our knowledge, this is the
first work to propose using image-understanding techniques
to improve the accuracy and efficiency in test report cluster-
ing. We present the experimental results on six real industrial
mobile crowdsourced projects, and evaluate the results from
the standpoints of effectiveness, usefulness, and potential. We
found that clustering-sampling technique, in almost all cases,
is advantageous as compared to test report inspection with an
orderless strategy. We also found that for most applications
we studied, the practical usefulness which adopts the image-
understanding technique are more promising, even if there is
a minor class of applications may not be as applicable. As
such, in future work, wewill improve our technique to help to
cluster for these classes of applications, and narrow the gap
between our technique and the hypothetical ideal strategy.
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Redundancy, Context, and Preference:
An Empirical Study of Duplicate Pull

Requests in OSS Projects
Zhixing Li , Yue Yu , Minghui Zhou , Tao Wang, Gang Yin, Long Lan, and Huaimin Wang

Abstract—OSS projects are being developed by globally distributed contributors, who often collaborate through the pull-basedmodel

today.While thismodel lowers the barrier to entry for OSS developers by synthesizing, automating and optimizing the contribution process,

coordination among an increasing number of contributors remains as a challenge due to the asynchronous and self-organized nature of

distributed development. In particular, duplicate contributions, wheremultiple different contributors unintentionally submit duplicate pull

requests to achieve the same goal, are an elusive problem that may waste effort in automated testing, code review and software

maintenance.While the issue of duplicate pull requests has been highlighted, to what extent duplicate pull requests affect the development

in OSS communities has not beenwell investigated. In this paper, we conduct amixed-approach study to bridge this gap. Based on a

comprehensive dataset constructed from 26 popular GitHub projects, we obtain the following findings: (a) Duplicate pull requests result in

redundant human and computing resources, exerting a significant impact on the contribution and evaluation process. (b) Contributors’

inappropriate working patterns and the drawbacks of their collaborating environment might result in duplicate pull requests. (c) Compared

to non-duplicate pull requests, duplicate pull requests have significantly different features, e.g., being submitted by inexperienced

contributors, being fixing bugs, touching cold files, and solving tracked issues. (d) Integrators choosing between duplicate pull requests

prefer to accept thosewith early submission time, accurate and high-quality implementation, broad coverage, test code, highmaturity,

deep discussion, and active response. Finally, actionable suggestions and implications are proposed for OSS practitioners.

Index Terms—Duplicate pull requests, pull-based development model, distributed collaboration, social coding

Ç

1 INTRODUCTION

THE success of many community-based Open Source Soft-
ware (OSS) projects relies heavily on a large number of

volunteer developers [35], [64], [84], [86], who are geographi-
cally distributed and collaborate online with others from all
over the world [43], [58]. Compared to the traditional email-
based contribution submission [25], the pull-basedmodel [40]
on modern collaborative coding platforms (e.g., GitHub [9]
and GitLab [10]) supports a more efficient collaboration pro-
cess [115], by coupling code repository with issue tracking,
review discussion and continuous integration, delivery and
deployment [79], [110]. Consequently, an increasing number
of OSS projects are adopting the synthesized pull-based

mechanism,whichhelps them improve their productivity [98]
and attract more contributors [108].

However, while the increased number of contributors in
large-scale software development leads to more innovations
(e.g., unique ideas and inspiring solutions), it also results in
severe coordination challenges [103]. Currently, one of the
typical coordination problems in pull-based development is
duplicate work [85], [114], due to the asynchronous nature
of loosely self-organized collaboration [26], [84] in OSS com-
munities. On the one hand, it is unreasonable for a core
team to arrange and assign external contributors to carry
out every specific task under the open source model [53],
[54] (i.e., external contributors are mainly motivated by
interest and intellectual stimulation derived from writing
code, rather than requirements or assignments). On the
other hand, it is impractical to expect external developers
(especially newcomers and occasional contributors) to
deeply understand the development progress of the OSS
projects [41], [56], [83] before submitting patches. Thus, OSS
developers involved in the pull-based model submit dupli-
cate pull requests (akin to duplicate bug reports [24]), even
though they collaborate on modern social coding platforms
(e.g., GitHub) with relatively transparent [37], [94] and cen-
tralized [40] working environments. The recent study by
Zhou et al. [114] has showed that complete or partial dupli-
cation is pervasive in OSS projects and particularly severe
in some large projects (max 51 percent, mean 3.4 percent).

Notably, a large part of duplicates are not submitted
intentionally to provide different or better solutions. Instead,
contributors submit duplicates unintentionally because of
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misinformation and unawareness of a project’s status [41],
[114]. In practice, duplicate pull requests may cause substan-
tial friction among external contributors and core integrators;
these duplicates are a common reason for direct rejection [41],
[85] without any chance for improvement, which frustrates
contributors and discourages them from contributing fur-
ther. Moreover, redundant work is more likely to increase
costs during the evaluation and maintenance stages assem-
bled with DevOps tools compared to traditional develop-
ment models. For example, continuous integration tools
(e.g., Travis-CI [98], [104]) automatically merge every newly
received pull request into a testing branch, build the project
and run existing test suites, so computing resources are
wasted if integrators do not discover the duplicates and stop
the automation process in time. Therefore, avoiding dupli-
cate pull requests is becoming a realistic demand for OSS
management, e.g., scikit-learn provides a special note in the
contributing guideline “To avoid duplicating work, it is highly
advised that you search through the issue tracker and the PR list. If
in doubt about duplicated work, or if you want to work on a non-
trivial feature, it’s recommended to first open an issue in the issue
tracker to get some feedbacks from core developers.” [5]

Existing work has highlighted the problems of duplicate
pull requests [40], [85], [114] (e.g., inefficiency and redun-
dant development), and proposed ways to detect dupli-
cates [57], [73]. However, the nature of duplicate pull
requests, particularly the fine-grained resources that are
wasted by the duplicates, the context in which duplicates
occur, and the features that distinguish merged duplicates
from their counterparts, have rarely been investigated.
Understanding these questions would help mitigate the
threats brought by duplicate pull requests and improve
software productivity.

Therefore, we bridge the gap on the investigation of
duplicate pull requests in this study. We extend our previ-
ously collected duplicate pull request dataset [106] by add-
ing change details, review history, and integrators’ choice.
Based on the dataset, we analyze the redundancies of dupli-
cate pull requests in the development and evaluation stages,
explore the context in which duplicates occur and examine
the difference between duplicate and non-duplicate pull
requests. We further investigate the reasons why among a
group of duplicates, a pull request is more likely to be
accepted by an integrator. Finally, we propose actionable
suggestions for OSS communities.

The main contributions of this paper are summarized as
follows:

� It presents empirical evidence on the impact of
duplicate pull requests on development effort and
review process. The findings will help software engi-
neering researchers and practitioners better under-
stand the threats of duplicate pull requests.

� It reveals the context of duplicate pull requests,
highlighting the inappropriateness of OSS contrib-
utors’ work patterns and the shortcomings of the cur-
rent OSS collaboration environment. These findings
can guide developers to avoid redundant effort on
the same task.

� It provides quantitative insights into the difference
between duplicate and non-duplicate pull requests,

which can offer useful guidance for automatic dupli-
cate detection.

� It summarizes the characteristics of the accepted pull
requests compared to those of their duplicate coun-
terparts, which will provide actionable suggestions
for inexperienced integrators in duplicate selection.

The rest of the paper is organized as follows: Section 2
introduces the background and research questions. Section 3
presents the dataset used in this study. Sections 4, 5 and 6
report the experimental results and findings. Section 7 pro-
vides further discussion and proposes actionable sugges-
tions and implications for OSS practitioners. Section 8
discusses the threats to the validity of the study. Finally, we
draw conclusions in Section 9.

2 BACKGROUND AND RESEARCH QUESTIONS

2.1 Pull-Based Development

In the global collaboration of OSS projects, a variety of
tools [115], including mailing lists, bug trackers (e.g., Bug-
zilla [3]), and source code version control systems (e.g., SVN
and Git), have been widely used to facilitate collaboration
processes. The pull-based development model is the latest
paradigm [40] for distributed development; it integrates
code base with task management, code review and DevOps
toolset. Compared with the traditional patch-based model,
the pull-basedmodel provides OSS developerswith centrali-
zation of information, integration of tools, and process auto-
mation, thus simplifying the participation process and
lowering the entry barrier for contributors [40], [98]. In addi-
tion, the pull-based model separates the developers into two
teams, i.e., the external contributor team, which does not
have the write access to the repository and submits contribu-
tions via pull requests, and the core integrator team, which is
responsible for assessing and integrating the pull requests
sent from external contributors. This decoupling of effort
stimulates and enhances the parallel and distributed collabo-
ration among OSS developers [115]. As shown in Fig. 1, the
pull-based development workflow [31] includes the follow-
ing steps.

a) Fork: For a contributor (Bob or alice) in GitHub, the
first step to contribute to a project is forking its origi-
nal repository. As a result, the contributor owns a
copy of the repository containing all the source code
and commit histories under her/his GitHub account.
Both the original repository and the forked reposi-
tory are hosted on the servers of GitHub.

b) Clone: Before the contributor engages in actual work,
s/he must clone the forked repository to her/his
local computer and makes code changes based on
the local repository.

c) Edit: The contributor can then fix bugs or add new
features by editing the local repositories. Moreover,
the contributor is recommended to always create a
topic branch separated from the master branch and to
commit local changes to that topic branch.

d) Sync: It is possible that the local repository becomes
out of date compared with the original repository.
To make it easy for project integrators to merge the
local changes cleanly, the contributor is expected
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first to sync the latest commits from the original
repository and handle the possible merge conflicts.

e) Push: The contributor then pushes the local changes
to the forked repository. The forked repository acts
as a transfer station of the local changes from the
local repository to the original repository.

f) Submit: Based on the forked repository, the contribu-
tor issues a pull request to notify the project integra-
tors to merge (i.e., pull) the pushed commits. The
pull request consists of a title and a description,
which are used as a straightforward elaboration of
the contained commits. All pull requests submitted
to a specific project are maintained in a queue (i.e.,
the issue tracker), and each developer can check the
status and review histories of the pull requests.

g) Evaluation: To ensure that the submitted changes do
not contain defects and adhere to project conventions,
the project integrators and other community develop-
ers who are interested in the project discuss the
appropriateness and quality of the pushed changes.
Finally, the integrators reach an agreement on
whether to accept the changes after several rounds of
discussion.

2.2 Evaluation and Decision of OSS Code
Contributions

The evaluation and decision of OSS contributions is a com-
prehensive process [93], [98], [107], in which the code
reviewers would consider various factors. Previous studies
have attempted to use quantitative methods to uncover the
characteristics of accepted contributions or use qualitative
methods to explore the factors that integrators examine
when making decisions. Those studies provide a good guid-
ance on which factors should be considered as controls
when we analyze the characteristics of and integrators’ pref-
erence among duplicate pull requests.

Characteristics of Accepted Contributions. Rigby et al. [76]
analyzed the patches submitted to the Apache server proj-
ect, and found that patches of small size are more likely to
be accepted than large ones in that project. The similar

finding was also reported by Weissgerber et al. [101] in their
study on two other OSS projects. Jiang et al. [47] conducted
a case study on the Linux kernel project, which showed that
patches submitted by experienced developers, patches of
high maturity, and patches changing popular subsystems
are more likely to be accepted. Baysal et al. [20] also found
that developer’s experience has a positive effect on patch
acceptance in the WebKit and Google Blink projects. In the
pull request model specifically, Gousios et al. [40] found
that the hotness of project area is the dominating factor
affecting pull request acceptance. Tsay et al. [93] investi-
gated the effects of both technical and social factors on pull
request acceptance. Their findings showed that stronger
social connection between the pull request author and inte-
grators can increase the likelihood of pull request accep-
tance. Yu et al. [108] investigated pull request evaluation in
the context of continuous integration (CI). They found that
CI testing results significantly influence the outcome of pull
request review and the pull requests failing CI tests have a
high likelihood of rejection. Kononenko et al. [52] studied
the pull requests submitted to a successful commercial proj-
ect. Their analysis results presented that patch size, discus-
sion length, and authors’ experience and affiliation are
important factors affecting pull request acceptance in that
project. A recent study conducted by Zou et al. [116] showed
that pull requests with larger code style inconsistency are
more likely to be rejected.

Factors That Integrators Examine When Making Decisions.
Rigby et al. [77] interviewed with nine core developers from
the Apache server project on why they rejected a patch.
Although technical issue is the dominating reason, the
reported reasons also include project scope and other politi-
cal issues. Pham et al. [68] interviewed with project owners
from GitHub, and found that many factors are considered
by project owners when evaluating contributions, e.g., the
trustworthiness of contributor and the size, type and target
of changes. Tsay et al. [94] analyzed integrators’ comments
and decisions on highly discussed pull requests. They
found that integrators are usually polite to new contributors
for social encouragement, and integrators’ decisions can be

Fig. 1. The workflow of the pull-based development model.
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affected by community support. Gousios et al. [42] surveyed
hundreds of integrators from GitHub on how they decide
whether to accept a pull request. Their survey results
showed that the most frequently mentioned factors are con-
tribution quality, adherence to project norm, and testing
results. Tao et al. [89] analyzed the rejected patches from
Eclipse and Mozilla, and derived a list of reasons for patch
rejection, e.g., compilation errors, test failures, and incom-
plete fix. Kononenko et al. [51] surveyed core developers
from the project Mozilla and asked them about the top fac-
tors affecting the decision of code review. They found that
the experience of developers receives the overwhelming
number of positive answers. In a recent study, Ford et al.
[39] investigated the pull request review process on the
basis of an eye-tracker dataset collected from direct observa-
tion of reviewers’ decision making. Interestingly, they
found that developers reviewing code contributions in
GitHub actually examined the social signals from profile
pages (e.g., avatar image) more than they reported.

2.3 Duplicates in Community-Based Collaboration

Duplicate efforts, including duplicate bug reports, duplicate
questions, and, recently, duplicate pull requests have been
studied in the literature. Studies have mainly focused on
revealing the threats in duplicates, and proposed methods
to detect and remove duplicates.

Duplicate Bug Reports.Many OSS projects incorporate bug
trackers so that developers and users can report the bugs
they have encountered [78], [100]. From Bugzilla to GitHub
issue system [2], bug tracking systems have become more
lightweight, which makes it easier to submit bug reports.
Consequently, popular OSS projects can receive hundreds
of bug reports from the community every day [87]. How-
ever, because the reporting process is uncoordinated, some
bugs might be reported multiple times by different develop-
ers. For example, duplicate issues account for 36 and 24 per-
cent of all reported issues in Gnome and Mozilla [112],
respectively, and consume considerable effort from devel-
opers to confirm. Meanwhile, researchers have proposed
various methods to automatically detect duplicate bug
reports. Most of them used similarity-based methods that
compute the similarity between a given bug report and pre-
viously submitted reports based on various information,

including natural language text [78], [100], execution
trace [100], categorical features of bugs [87]. Other work has
used a machine learning-based classifier [55], [88] and a
topic-based model [65] to improve detection performance. It
is also interesting to observe that duplicates may attract less
attention and consume less effort. For example, Zhou and
Mockus found that the issues resolved with FIXED tend to
have more comments than other issues, and issues with res-
olution DUPLICATE tend to have the least comments [112].

Duplicate Questions. Stack Overflow [13] is currently the
most popular programming Q&A site where developers
ask and answer questions related to software development
and maintenance [91]. In Stack Overflow, developers can
vote on the quality of any question and answer, and they
can gain reputation for valued contributions. Since its
founding in 2008, Stack Overflow has accumulated 20 mil-
lion questions and answers and attracted millions of visitors
each month. Because of the large user base, Stack Overflow
also faces the challenge of receiving duplicate questions
posted by different developers, despite of its explicit sug-
gestion that developers conduct a search first before posting
a question. Prior studies have investigated the detection of
duplicate questions in Stack Overflow. Zhang et al. [111]
computed the similarity between two questions based on
the titles, descriptions and tags of the questions and latent
topic distributions, and they recommended the most similar
questions for a given question. To improve detection accu-
racy, Mizobuchi et al. [62] used word embedding to over-
come the problem of word ambiguities and catch up new
technical words. Zhang et al. [109] leveraged continuous
word vectors, topic model features and frequent phrases
pairs to capture semantic similarities between questions.
Moreover, Mizobuchi et al. [17] investigated why duplicate
questions are submitted and found that not searching for
the questions is the most frequent reason. However, submit-
ting questions is significantly different from submitting pull
requests in both the form and the process.

Duplicate Pull Requests. Fig. 2 shows an example of a pair
of duplicate pull requests, both of which replace function
empty? with any? for better readability. Duplicate pull
requests both go through the normal evaluation process
until their duplicate relation is identified by the reviewers.
Prior studies have reported that duplicate pull requests are

Fig. 2. An example of a pair of duplicate pull requests.
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a pervasive and severe problem that affects development
efficiency [85], [114]. Gousios et al. [40] found that more than
half of sampling pull requests were rejected due to non-tech-
nical reasons and duplication is one of the major problems.
Steinmacher et al. [85] conducted a survey with the quasi-
contributors to obtain their perspectives on reasons for pull
request nonacceptance, and duplication was the most com-
mon reason mentioned by the quasi-contributors. Further-
more, to help reviewers find duplicate pull requests in a
timelymanner, researchers [57], [73] have proposedmethods
to automatically recommend similar pull requests. In addi-
tion, Zhou et al. [114] explored theweak evidence that discus-
sing or claiming an issue before submitting a pull request
correlates with a lower risk of duplicate work. In brief, the
above studies have revealed the threats in duplicate pull
requests and proposed automatic detection methods for
duplicates, but to what extent duplicate pull requests affect
the OSS development, the context in which duplicates occur
and integrators’ choice between duplicates remain unclear.

2.4 Goals and Research Questions

In this study, we aim to better understand the mechanism of
distributed collaboration with pull requests, and to avoid
duplication and redundancy in an actionable and effective
way. In particular, themain goals of the paper are as follows.

Reveal the Impact of Duplicates. We aim to obtain quantita-
tive evidence of the impacts of duplicate pull requests on
the contribution and evaluation process to more clearly
reveal the inefficiency of redundant development.

Guide OSS Practitioners. We hope our study can guide
OSS contributors to improve their work patterns and avoid
unintentional redundant efforts on the same task. Moreover,
we expect to help integrators learn from the practices in
dealing with duplicates and make more informed decisions
about choosing between duplicates.

Inspire Tool Design. We also hope our findings can inspire
the OSS community and researchers and provide some
insight into how to design and develop mechanisms and
tools to assist developers in avoiding, detecting, managing,
and handling duplicate pull requests more effectively and
efficiently.

To achieve our goals, we address the following research
questions.

RQ1: How much effort do duplicate pull requests consume,
and to what extent do they delay the review process?

Motivation: Duplicate pull requests submitted by multi-
ple different developers are usually evaluated through the
same rigorous review process as original ones. As a result,
duplicate pull requests waste resources spent on separate
and redundant programming and evaluation efforts. We
attempt to quantify the redundant effort spent on duplicate
pull requests.

RQ2: What is the context in which duplicate pull requests
occur?

Motivation: As reported in prior studies [40], [98], [115],
the pull-based development model is associated with higher
contribution effectiveness than traditional patch-based
model in terms of activity transparency and information cen-
tralization. Nevertheless, contributors are still at risk of con-
ducting redundant development. Hence, we aim to reveal
the practical factors resulting in duplicate pull requests.

RQ3: Which duplicate pull requests are more likely than their
counterparts to be accepted?

Motivation: Prior research [42], [94] has studied the fac-
tors that should be examined when integrators decide
whether to accept an individual pull request. However, lit-
tle is known about integrators’ preference for what kind of
duplicate pull requests should be accepted. We hope to
determine the characteristics of accepted duplicates com-
pared to those of their counterparts and summarize the
common practices of duplicate selection for integrators.

3 DATASET

In this study, we leverage our previous datasetDupPR [106],
which contains the duplicate relations among pull requests
and the profiles and review comments of pull requests from
26 popular OSS projects hosted on GitHub. We also extend
the dataset by adding complementary data, including code
commits, check statuses of DevOps tools and contribution
histories of developers.

3.1 DupPR Basic Dataset

In our prior work [106], we have built an unique dataset of
more than 2,000 pairs of duplicate pull requests (called
DupPR [7]) by analyzing the review comments from 26 popu-
lar OSS projects hosted on GitHub. Each pair of duplicates in
DupPR is represented in a quaternion as<proj, pr1, pr2,

idn_cmt> (pr1was submitted before pr2). Item proj indi-
cates the project (e.g., rails/rails) that the duplicate pull
requests belong to. Items pr1 and pr2 are the tracking num-
bers of the two pull requests, respectively. Item idn_cmt is a
review comment of either pr1 or pr2, which is used by
reviewers to state the duplicate relation between pr1 and
pr2. The dataset meant to only contain the accidental dupli-
cates ofwhich all the authorswere not aware of the other sim-
ilar pull requests when creating their own. In order to
increase the accuracy of this study, we recheck the dataset
again and filter out the intentional duplicates that were not
found before. Specifically, we omit duplicates from the data-
set when they fit one of the following criteria: i) The authors’
discussion on the associated issue reveals that the duplication
was on purpose. A representative comment indicating inten-
tional duplication is “I saw your PR and there wasn’t any activity
or follow up in that from last 18 days, [so I create a new one.]”1; ii)
The submitter of pr2 has performed actions on pr1, includ-
ing commenting, assigning reviewers and adding labels,
which clearly indicates that s/he was aware of pr1 before
submitting her/his own one; and iii) The author of pr2

immediately (< 1 min) mentioned pr1 after creating pr2,
which means that the author might already know that pull
request before. Overall, we eliminate 330 pairs fromDupPR.

A pull request might be duplicate of more than one pull
request. Therefore, in this study, we organize a group of
duplicate pull requests in a tuple structure < dup1; dup2;
dup3; . . . ; dupn > in which the items are sorted by their sub-
mission time. In total, we have 1,751 tuples of duplicate pull
requests. Table 1 presents the quantitative overview of the

1. The sources of pull requests, issues and comments cited in this
paper can be found online at https://github.com/whystar/DupPR-
cited
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dataset. It lists the main metrics including the number of pull
requests, the number of pull request contributors, the number
of pull request reviewers and their review comments, and the
number of pull request checks (introduced in Section 3.2.2).

3.2 Collecting Complementary Data

3.2.1 Patch Detail

GitHub API (/repos/:owner/:repo/pulls/:pull_-
number/commits) allows us to retrieve the commits on each
pull request. From the returned results, we parse the sha of
each commit and request the API (/repos/:owner/:
repo/commits/:commit_sha) to return detailed informa-
tion about a commit, including author and author_date.
Moreover, the API (/repos/:owner/:repo/pulls/:
pull_number/files) returns the files changed by a pull
request, from which we can pare the filename and changes

(lines of code added and deleted) of each changed file.

3.2.2 Check Statuses

Various DevOps tools are seamlessly integrated and widely
used in GitHub; examples are Travis-CI [14] for continuous
integration and Code-Climate [4] for static analysis. When a
pull request has been submitted or updated, a set of DevOps
tools are automatically launched to check whether the pull
request can be safely merged back to the codebase. GitHub
API (/repos/:owner/:repo/commits/:ref/status)
returns the check statuses for a specific commit. There are
two different levels of statuses in the returned results.
Because multiple DevOps tools can be used to check a com-
mit, each tool is associated with a check status, which we call
the context-level check status. For each context-level check sta-
tus, we can parse the state and context fields. The state
of a check can be designated success, failure, pending, or error.
State success means a check has successfully passed, while
failure indicates that the check has failed. If the check is still
running and no result is returned, its state is pending. State
error indicates a check did not successfully run and produced
an error. Following the guidelines of prior work [22], [81], we
treat the state error as the same as failure, which are both
opposed to success. The context indicates which tool is
used in a specific check. According to the bot classification
defined in prior study [102], the checking tools can be classi-
fied into three categories: CI (report continuous integration
test results, e.g., Travis-ci), CLA (ensure license agree-
ment signing e.g., cla/google), and CR (review source
code e.g., coverage/coveralls and codeclimate).
Based on all context-level check statuses of a commit, the
API also returns a overall check status of that commit [8],
which we call the commit-level check status. The state of a
commit-level check can be one of success, failure and pending.

3.2.3 Timeline Events

GitHub API (/repos/:owner/:repo/issues/:issue_
number/events) returns the events triggered by activities
(e.g., assigning a label and posting a comment) in issues
and pull requests. We request this API for eah pull request.
From the returned result, we can parse who (actor) trig-
gered which event (event) at what time (created_at).
For close events, we can parse which commit (commit_id,
aka SHA) closed the pull request. Events data are mainly
used for rechecking dataset and determining pull request
acceptance.

3.2.4 Contribution Histories

Rather than requesting the GitHub API, we use the GHTor-
rent dataset [40], which makes it easier and more efficient
to obtain the entire contribution history for a specific
developer in GitHub. GHTorrent stores its data in several
tables and we mainly use pull_requests (PR), issues,
pull_request_history (PRH), pull_request_com-

ments (PRC), and issue_comments (ISC). From table PR,
table PRH, and table PRC, we can parse who (PRH.
actor_id) submitted which pull request (PR.pullre-
q_id) to which project (PR.base_repo_id) at what time
(PRH.created_at) and who (PRC.user_id) have com-
mented on that pull request at what time (PRC.create-
d_at). Similarly, from table issues and table ISC, we can
parse who (issues.reporter_id) reported which issue
(issues.issue_id) to which project (issues.repo_id)
at what time (issues.created_at) and who (ISC.
user_id) commented on that issue at what time (ISC.
created_at). Based on this information we can acquire
the whole contribution history for a specific developer.

3.2.5 Poularity and Reputation

GHTorrent also provides tables relating to project popularity
and developer reputation. From table watchers, we can
parsewho (user_id) started to starwhich project (repo_id)
at what time (created_at). From table projects, we can
parse which project (id) was forked from which project
(forked_from) at what time (created_at). From table
followers, we can parse who (followers) started to fol-
lowwhom (user_id) at what time (created_at).

4 THE IMPACT OF DUPLICATE PULL REQUESTS

Although duplicate pull requests can bring certain benefits
(e.g., they could complement each other and be combined
to achieve a better solution), most unintentional duplicate
pull requests are likely to waste resources during the asyn-
chronous development and review process. In this section,
we report a quantitative analysis that helps to better under-
stand the impact of duplicate pull requests on development
efforts and review processes.

4.1 Redundant Effort

Duplicate pull requests are organized as tuple structure in
our dataset, i.e., < dup1; dup2; dup3; . . . ; dupn > . For each
tuple, we identify the first received pull request (i.e., dup1)
as the ‘master’, and the following ones (i.e., dupi; i > 1) as
its ‘duplicates’. Since we want to quantify how much extra

TABLE 1
The Quantitative Overview of the Dataset

Metrics Overall pull requests DupPR

#Pull reqeusts 333,200 3,619
#Contributors 39,776 2,589
#Reviewers 24,071 2,830
#Comments 2,191,836 39,945
#Checks 364,646 4,413
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effort would be costed if the first contribution has been
qualified, we accumulate the effort spent on all duplicates
(i.e., Sn

i¼2dupi) as the redundancy. In this section, we analyze
the redundant effort caused by duplicate pull requests from
three perspectives, i.e., code patch, code review, and
DevOps checking.

Code Patch Redundancy. A group of pull requests being
duplicate means that multiple contributors have spent
unnecessary redundant effort on implementing similar func-
tionalities. Wemeasure contribution effort for the code patch
of a pull request with the number of changed files and LOCs
(i.e., lines of code). The statistics is summarized in Table 2.
We can see that each group of duplicates, on average, result
in redundant contribution effort of changing more than 13
files (median of 2) and 502 LOCs (median of 16).

Code-Review Redundancy. For a group of duplicate pull
requests, each one is reviewed separately until the reviewers
detect the duplicate relation among them. That is, there is a
detection latency of duplicate pull requests, and the review
activities of the duplicates during that latency period are
redundant. We define detection latency as the time period
from the submission time of a pull request to the creation
time of the first comment revealing the duplicate relation
between it and other pull requests. Fig. 3 shows the distribu-
tion of detection latency. We find that almost half of the
duplicates are detected after one day, and nearly 20 percent
of them are detected after more than one week. The later the
duplicate relation is detected, the more redundant review
effort would bewasted.

Next, we compute the redundant review effort wasted
during the detection latency, which is measured with the
number of involved reviewers and the number of comments
they have made. As shown in Table 3, there are, on average,
more than 2 reviewers (median of 2) participating in the
redundant review discussions and making more than 5
review comments (median of 3) before the duplicate relation
is identified. This considerable redundancy cost reaches the
standard number of contemporary peer reviewpractices [74],

[75] (i.e., median of 2 reviewers and 2-5 comments). Consid-
ering that the availability of reviewers has been discussed as
one of the bottlenecks in large OSS projects’ review pro-
cess [107], code review redundancy can be avoided through
automatic detection tools [57], [73] at submission time.

DevOps Redundancy. DevOps techniques, e.g., continuous
integration, are widely used to improve code quality in
GitHub. However, running DevOps services to check pull
requests consumes a certain amount of resources and time.
Moreover, both newly submitted pull requests and updates
on existing pull requests trigger the launch of DevOps serv-
ices. Therefore, duplicate pull requests waste valuable
DevOps resources on redundant checking effort. In this
paper, we measure the DevOps effort on a pull request by
counting the total number of commit-level checks and con-
text-level checks on this pull request. Table 4 lists the statis-
tics for DevOps redundancy related to duplicates. We find
that each group of duplicate pull requests, on average, cause
1.34 redundant commit-level checks and 2.87 redundant
context-level checks. Thus, it is possible to improve DevOps
efficiency by stopping or postponing the unnecessary
checks of duplicates from the scheduling queue.

4.2 Delayed Review Process

The review duration, the number of reviewers and the num-
ber of comments made by these reviewers are important
metrics for the efficiency of the pull request review process.
Based on thesemetrics, we studywhether the review process
of duplicate pull requests differs from that of non-duplicate
pull requests. We classify the duplicate pull requests into
two groups: MST including the ‘master’ in each tuple, DUP
including the ‘duplicates’ in each tuple. For comparison, we
also create theNON group, which includes all non-duplicate
pull requests from the corresponding projects. Figs. 4, 5, and
6 plot the statistics of the review duration, the number of
reviewers and the number of review comments of pull
request in each group, respectively. We observe that MST
has notably longer review duration (median: 291.07 hours),
compared with NON (median: 22.83 hours) and DUP
(median: 21.75 hours). Moreover, compared withNON, both
MST and DUP have more reviewers (medians: 3 versus 2, 3
versus 2) and more review comments (medians: 6 versus 3, 4
versus 3). Furthermore, we use the eT-procedure [50] to com-
pare their distributions pairwise. We opt for eT because it is
robust against unequal population variances and does not

TABLE 2
The Statistics of Code Patch Redundancy

Min 25% Median 75% Max Mean

#Files 0 1 2 3 3824 13.79
LOCs 0 4 16 70 82973 502.68

Fig. 3. Detection latency of duplicate pull requests.

TABLE 3
The Statistics of Code-Review Redundancy

Min 25% Median 75% Max Mean

#Reviewers 1 1 2 3 35 2.30
#Comments 1 2 3 6 148 5.68

TABLE 4
The Statistics of DevOps Redundancy

Min 25% Median 75% Max Mean

#CMT-Check 0 1 1 1 30 1.34
#CTT-Check 0 1 1 3 66 2.87

CMT-Check: commit-level checks; CTT-Check: context-level checks.
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have the drawbacks of two-steps methods [95]. As shown in
Table 5, all distributions are statistically different (p-value<
0.05), except for NON-DUP of review duration. And the
signs of estimators also coincide with the observations from
the figures, e.g., the estimator of NON-MST in terms of
review duration comparison is less than 0 (-0.232) which
indicates that MST has longer review time than NON. This
suggests that the review process of duplicate pull requests is
significantly delayed and involves more reviewers for
extended discussions.

RQ1: Duplicate pull requests result in considerable redun-
dancy in writing code and evaluation. On average, each group
of duplicate pull requests would result in code patch redun-
dancy of more than 13 files and 500 lines of code, code-review
redundancy of more than 5 review comments created by more
than 2 reviewers, and DevOps redundancy of more than 1 com-
mit-level check and more than 2 context-level checks. Moreover,
duplicate pull requests significantly slow down the review pro-
cess, requiring more reviewers for extended discussions.

5 CONTEXT WHERE DUPLICATE PULL REQUESTS

ARE PRODUCED

Despite of the increased activity transparency and informa-
tion centralization in the pull-based development, develop-
ers still submitted duplicates. Thus, we further investigate
the context in which duplicates occur and the factors lead-
ing pull requests to be duplicates.

First, we investigate the context of pull requests when
duplicate occurs, as described in Section 5.1. In particular,

we examine the lifecycle of pull requests and discover three
types of sequential relationship between two duplicate pull
requests. For each relationship, we investigate whether con-
tributors’ work patterns and their collaborating environment
have any flaw that may produce duplicate pull requests.

Second, we investigate the differences between duplicate
and non-duplicate pull requests, as described in Section 5.2.
We identify a set of metrics from prior studies to character-
ize pull requests. We then conduct comparative exploration
and regression analysis to examine the characteristics that
can distinguish duplicate from non-duplicate pull requests.

5.1 The Context of Duplicate Pull Requests

The entire lifecycle of a pull request consists of two stages:
local creation and online evaluation. In the local creation stage,
contributors edit the files and commit changes to their local
repositories. In the online evaluation stage, contributors
submit a pull request to notify the integrators of the original
repository to review the committed changes online. These
two stages are separated by the submission time of a pull
request. For each pair of pull requests, there are only three
types of sequential relationships in logic when comparing
the order in which they enter each stage. We manually ana-
lyze contributors’ work patterns, discussion and the collab-
orating environment to explore the possible context of
duplicates in different relationships. In the following sec-
tions, we first elaborate on the three types of sequential

Fig. 4. The review duration of pull requests.

Fig. 5. The number of pull request reviewers.

Fig. 6. The number of review comments on pull requests.

TABLE 5
Results of Multiple Contrast Test Procedure

for Review Process Measures

Pair Estimator Lower Upper Statistic p-value

Review duration
NON - MST �0.232 �0.246 �0.218 �38.822 0.000 ***
NON - DUP �0.012 �0.028 0.004 �1.771 0.172
MST - DUP 0.220 0.200 0.240 25.400 0.000 ***

Number of reviewers
NON - MST �0.191 �0.206 �0.176 �30.065 0.000 ***
NON - DUP �0.114 �0.127 �0.100 �19.549 0.000 ***
MST - DUP 0.077 0.056 0.098 8.606 0.000 ***

Number of review comments
NON - MST �0.168 �0.182 �0.154 �27.077 0.000 ***
NON - DUP �0.085 �0.098 �0.071 �14.338 0.000 ***
MST - DUP 0.083 0.063 0.104 9.305 0.000 ***

*** p <0.001, ** p <0.01, * p <0.05.
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relationships and then present the identified context of
duplicate pull requests demonstrated by statistics and rep-
resentative cases.

5.1.1 Types of Sequential Relationship

We first introduce two critical time points, T � Creation and
T � Evaluation, in the lifecycle of pull requests; these time
points are defined as follows.

� T � Creation indicates the start of pull request local
creation. It is impossible to know the exact time at
which a developer begins to work since developers
only git commit when their work is finished rather
thanwhen thework is launched.However, we can still
get an approximate start time. We set T � Creation as
the author_date of the first commit packaged in a
pull request, which is the earliest timestamp contained
in the commit history of a pull request.

� T � Evaluation indicates the start of pull request
online evaluation, i.e., the submission time of a pull
request. This value is the created_at value of a
pull request.

For a pair of duplicate pull requests <mst pr; dup pr>
(mst pr is submitted earlier than dup pr), we suppose that
the contributor of mst pr begins to work at T � Creationmst

and submits mst pr at T � Evaluationmst, and the contribu-
tor of dup pr starts to work at T � Creationdup and submits
dup pr at T �Evaluationdup. We discover three possible
sequential relationships between mst pr and dup pr, as
shown in Fig. 7.

� Exclusive. T � Creationmst < T � Evaluationmst <
T � Creationdup < T � Evaluationdup, i.e., the author
of dup pr begins to work after the author of mst pr
has already finished the local work and submitted
the pull request.

� Overlapping. T � Creationmst < T � Creationdup � T�
Evaluationmst < T � Evaluationdup, i.e., the author of
dup pr starts working after the author ofmst pr starts
working and before the author of mst pr finishes
working.

� Inclusive. T � Creationdup � T � Creationmst < T�
Evaluationmst < T �Evaluationdup, i.e., although
the author of dup pr starts to work earlier than the
author of mst pr does, s/he submits the pull request
later.

In the above, we discuss the common cases where devel-
opers first commit changed code and then submit a pull
request. However, we also find rare cases where the
pull request submission time is earlier than the first code-
committing time. This might be due to the permission to
submit ‘empty’ pull requests in the early stage of GitHub as
indicated in its official document [15], or the incomplete
record of developers’ updates to the pull request, e.g., force-
push actions. The aforementioned definition of sequential
relationship between CTS (commit-then-submit) pull
requests does not apply to these STC (submit-then-commit)
pull requests. To demonstrate this kind of situation, we
define T � Exposure to indicate the exposure time of devel-
oper’s ideas for STC pull requests. T � Exposure is also set
to be the created_at of pull requests. Next, we discuss
the sequential relationship between two pull requests, of
which at least one is a STC pull request.

As shown in Table 6, there are three specific cases involv-
ing STC pull requests. In case 1 (T � Creationmst <
T �Evaluationmst < T �Exposuredup) and case 2
(T � Exposuremst < T � Exposuredup), the local work or the
idea of mst pr has been exposed to the community before
dup pr is submitted. Therefore, we treat the sequential rela-
tionship between a pair of pull requests in these two cases
as exclusive. In case 3, there are two possible situations: a)
T �Exposuremst < T � Creationdup < T � Evaluationdup

means that the idea of mst pr has been exposed before the
author of dup pr starts to work and their sequential rela-
tionship can be seen as exclusive. b) T � Creationdup <
T �Exposuremst < T �Evaluationdup means the author of
dup pr starts to work before the idea of mst pr is exposed
and finishes the work after that; therefore, their sequential
relationship can be seen as inclusive.

Finally, to explore the distribution of the three types of
relationships in our dataset, we convert each tuple of dupli-
cate pull requests (< dup1; dup2; dup3; . . . ; dupn > ) to
pairs: (dupi, dupj), where 1 � i; j � n and i < j. Table 7
shows the distribution, and we can see that the majority of
duplicate pull request pairs have an exclusive sequential
relationship (i.e., the duplicate contribution begins to work
after the original pull request has been visible), which sug-
gests that it is still a great challenge of awareness and trans-
parency [37] during collaboration process.

5.1.2 Context of Exclusive Duplicate Pull Requests

Not Searching for Existing Work. For a pair of exclusive dupli-
cate pull requests, there is a time window during which the
author of dup pr had a chance to figure out the existence of
mst pr. However, the author failed to do so and finally sub-
mitted a duplicate pull request. For example, contributors
did not search the existing pull requests for similar work
(e.g., the typical responses in duplicates: “Oh, Sorry I did not

Fig. 7. The sequential relationship between two pull requestsmst pr and
dup pr.

TABLE 6
Three Cases Involving the STC Pull Requests

Case mst_pr dup_pr

1 CTS STC
2 STC STC
3 STC CTS
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search for a previous PR before submitting a PR” and “Ah should
have searched first, thanks”). In some cases, developers’ search
was not complete because they only searched the open pull
requests and missed the closed ones (e.g., “Ah, my bad. I
thought I searched, but I must have only been looking at open”).
The survey conducted by Gousios [41] also showed that 45
percent contributors occasionally or never check whether
similar pull requests already exist before coding.

Diversity of Natural Language Usages. Some developers
tried to search for existing duplicates, but they ultimately
found nothing (e.g., “Sorry, I searched before pushing but did
not find your PR...”). One challenge is the diversity of natural
language usages. For a pair of duplicate pull requests, we
compute the common words ratio based on their titles,
which is calculated by the following formula.

CWRðmst pr; dup prÞ ¼ jWSmst pr \WSdup prj
jWSmst prj : (1)

WSmst pr andWSdup pr represent the set of words extracted
from the titles of mst pr and dup pr, respectively, after nec-
essary preprocessing like tokenizing, stemming [61], and
removing common stop words. Fig. 8 shows the statistics
of common words ratio. Approximately half of them have
a value less than 0.25, which means a pair of duplicates
tend to share a small proportion of common words. That is
to say, a keyword-based query cannot always successfully
detect existing duplicate pull requests due to the differ-
ence in wording for the same concept. For example, the
title of angular/angular.js/#4916 is “Fixed step12 correct file
reference” and the title of angular/angular.js/#4860 is “Changed
from phone-list.html to index.html”. We can see that the two
titles share no common word although the two pull requests
have edited the same file and changed the code in the
same line.

Disappointing Search Functionality in GitHub.Another chal-
lenge that can cause ineffective searching for duplicates is
that GitHub’s search functionality might be disappointing in
retrieving similar pull requests even though they share com-
mon words. For example, the titles of angular/angular.js/
#5063 and angular/angular.js/#7846 are “fix(copy): preserve pro-
totype chain when copying object” and “Use source object proto-
type in object copy”, respectively, which share three common
critical words, i.e., prototype, copy, and object. For testing pur-
pose, we launch a query in GitHub using the keywords proto-
type copy object. We retrieve 9 pages (each page containing

10 items) of issues and pull requests in the search results and
we finally find angular/angular.js/#5063 in the 7th page. It is
unlikely that developers have the willingness and patience
to look through 7 pages of search results to figure out the
existence of duplicates, since people tend to focus on the first
few pages [49]. Perhaps that is exactly what leads the author
of angular/angular.js/#7846 to submit a duplicate, although he
blamed the failed retrieval on himself (“apologies, I did search
before posting (forget the search term I used) but clearly my search
was bad... Thanks for finding the dup”).

Large Searching Space. Developers might manually look
through the issue tracker to search for duplicates rather
than retrieving through a query interface. Sometimes it is
hard to find out the existing duplicates due to large search-
ing space. The statistics of exclusive intervals between
duplicates is listed in Table 8. On average, the local work of
dup pr is started approximately 1,400 hours (i.e., more than
58 days) after mst pr has been submitted. During that long
period, many new pull requests have been submitted in
popular projects. For example, 307 pull requests were sub-
mitted between pandas-dev/pandas/#9350 and pandas-dev/pan-
das/#10074. These pull requests can occupy more than 10
pages in the issue tracker, which makes it rather hard and
ineffective to review historical pull requests page by page,
as a developer stated “...This is a dup of that PR. I should have
looked harder as I didn’t see that one when I created this one...”.

Overlooking Linked Pull Requests.When developers submit
a pull request to solve an exiting GitHub issue, they can
build a link between the pull request and the issue by
referencing the issue in the pull request description. The
cross-reference is also displayed in the discussion timeline
of the issue. Links not only allow pull request reviewers to
find out the issue to be solved by a pull request but also
help developers who are concerned with an issue to dis-
cover which pull requests have been submitted for that
issue. In some cases, contributors did not examine or did
not notice the linked pull requests to an issue (e.g., “Uhm
yeah, didn’t spot the reference in #21967” and “Argh, didn’t see
it in the original issue. Need more coffee I guess”) to make sure
that no work had already been submitted for that issue, and
consequently submitted a duplicate pull request.

Lack of Links. If a developer does not link her/his pull
request to the associated issue, other developers might
asynchronously do the duplicate work to fix the same one.
For example, a developer Dev2 submitted a pull request
facebook/react/#6135 trying to address the issue facebook/react/
#6114. However, Dev2was told that a duplicate pull request
facebook/react/#6121 was already submitted by Dev1 before
him. The conversation between Dev1 and Dev2 (Dev2 said
“I’m glad to hear that. But please link your future PRs to the
issues”, andDev1 replied “Yeah I will, that’s on me!”) revealed
that the lack of the link accounted for the duplication.

Missing Notifications. If developers have watched [37],
[80] a project, they receive notifications about events that

TABLE 7
The Distribution of Different Sequential

Relationships in the Dataset

Exclusive Overlapping Inclusive

Count 1,924 17 81

Fig. 8. The statistics of common words ratio between duplicates.

TABLE 8
The Statistics of Exclusive Intervals (in hour)

Min 25% Median 75% Maxs Mean

Interval 0.004 23.81 212.59 1276.82 29377.12 1397.59
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occur in the project, e.g., new commits and pull requests.
The notifications are displayed in developers’ GitHub dash-
board and, if configured, sent to developers via email. How-
ever, developers might miss the important notifications due
to information overload [36], and eventually submit a dupli-
cate. For example, kubernetes/kubernetes/#43902 was dupli-
cate of kubernetes/kubernetes/#43871 because the author of
kubernetes/kubernetes/#43902 missed the creation notification
of the early one (as the author said “missed the mail for the PR
it seems :-/”).

5.1.3 Context of Overlapping and Inclusive Duplicates

Unawareness of Parallel Work. Developers who encounter a
problem might prefer to fix the problem by themselves and
submit a pull request, instead of reporting the problem in the
issue tracker andwaiting for a fix.When a problem is encoun-
tered by two developers at the same time, regardless ofwhich
developer is the first to work on the problem, the other devel-
oper might also start to work on the problem before the first
developer submits a pull request. In such cases, both devel-
opers are unaware of concurrent activities of each other,
because their local work is conducted offline and is not pub-
licly visible. For example, the authors of emberjs/ember.js/
#4214 and emberjs/ember.js/#4223 individually fixed the same
typos in parallel without being aware of each other, and
finally submitted two duplicate pull requests.

Implementing Without Claiming First. Sometimes, develop-
ers directly start to implement a patch for a GitHub issue
without claiming (e.g., leaving a comment on the corre-
sponding issue like “I’m on it”). This can introduce a risk
that other interested developers might also start to work on
the same issue without awareness of that there is already a
developer working on that issue. For example, although
two developers were both trying to solve the issue facebook/
react/#3948, neither of them claimed the issue before coding
their patch. Finally, they submitted two duplicate pull
requests facebook/react/#3949 and facebook/react/#3950. The
phenomenon that developers are not used to claim issues
was also reported in previous research [114].

Missing Existing Claims. Although a public issue has been
claimed by a developer, other OSS contributors still have a
chance of missing the claim comments among issue discus-
sions. For example, a developer Dev1 first claimed the isssue
scikit-learn/scikit-learn/#8503 by leaving a comment “We are
working on this”. However, another developer Dev2 did
not notice this claim as explained by herself: “Ah, nope. I just

realized someone was also working on it after I committed”. Con-
sequently,Dev2 andDev1 conducted duplicate development
in parallel and submitted two duplicate pull requests scikit-
learn/scikit-learn/#8517 and scikit-learn/scikit-learn/#8518,
respectively.

Overlong Local Work. For overlapping and inclusive
duplicate pull request pairs, we calculate the local duration
of the work started earlier. Specifically, we collect two
groups of pull requests: (a) OVL, which includes mst pr of
each pair of overlapping duplicates, and (b) INC, which
includes dup pr of each pair of inclusive duplicates. Fig. 9
plots the duration statistics of each group together along the
group NON, which includes all non-duplicate pull requests.
We observe that compared with the pull requests in NON,
the pull requests in OVL and INC have longer local dura-
tions regarding median measures. We also test the differ-
ence using the eT-procedure test. As shown in Table 9, the
difference is significant (p-value< 0.05), and the signs of
estimators present consistent difference directions. This
reveals that overlong local work delays the exposure time of
work and thereby hinders late contributors from realizing
in a timely fashion that someone has already done the same
work. As discussed in [41], developers rarely recheck the
existence of similar pull request after they have finished the
local work.

RQ2-1: We identified 11 contexts where duplicate pull requests
occur, which are mainly relating to developers’ behaviors, e.g.,
not checking for existing work, not claiming before coding, not
providing links, and overlong local work, and their collaborat-
ing environment, e.g., unawareness of parallel work, missing
notifications, lack of effective tools for checking for duplicates.

5.2 The Difference Between Duplicate and
Non-Duplicate Pull Requests

Although some specific cases could be effectively avoided if
developers pay attention to their work patterns, duplicates
are difficult to eradicate completely considering the distrib-
uted and spontaneous nature of OSS development. There-
fore, automatic detection of duplicates is still needed to help
reviewers dispose of duplicates faster and in a timely fash-
ion. Given that prior studies have mainly used a similarity-
based method to detect duplicate pull requests [57], [73], we
are interested in exploring the difference between duplicate
and non-duplicate pull requests from a comparative per-
spective, which could offer useful guidance to optimize
detection performance. In particular, we want to observe
what distinguishing characteristics of duplicate pull requests
are leading them to be duplicates. First, we identify metrics
that are used in prior research, as shown in Section 5.2.1.

Fig. 9. Duration of local work in each group.

TABLE 9
Results of Multiple Contrast Test Procedure

for Local Work Durations

Pair Estimator Lower Upper Statistic p-value

OVL - NON 0.256 0.109 0.402 4.188 0.001 ***
NON - INC �0.385 �0.427 �0.344 �22.251 0.000 ***
OVL - INC �0.130 �0.294 0.035 �1.891 0.138

*** p <0.001, ** p <0.01, * p <0.05.
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Then, we compare duplicate and non-duplicate pull requests
in terms of each metric, and check whether significant differ-
ence could be observed between them through statistical test,
as described in Section 5.2.2. Furthermore, in Section 5.2.3, we
apply a regression analysis to model the correlations between
the collected metrics and pull requests’ likelihood of being
duplicates.

5.2.1 Metrics

As the difference between duplicates and non-duplicates
has not been studied in past studies, our study is an explor-
atory analysis. Therefore, we identified highly related met-
rics which have been studied in the previous research in the
area of OSS contribution including traditional patch-based
development [20], [44], [47], [68], [101] and modern pull
request development [27], [40], [52], [71], [93], [95], [96],
[108], [114]. The selected metrics are classified into the fol-
lowing three categories.

A). Project-Level Characteristics.
Maturity. Previous studies [71], [93], [108] used the metric

proj_age, i.e., the period of time from the time the project
was hosted on GitHub to the pull request submission time,
as an indicator of the project maturity.

Workload. Prior studies have characterized project work-
load using two metrics: open_tasks [108] and team_-

size [40], [93], [108], which are the number of open issues
and open pull requests at the pull request submission time
and the number of active core team members during the
last three months, respectively.

Popularity. In measuring project popularity, the metrics
stars and forks, i.e., the total number of stars and the
total number of forks the project has got prior to the pull
request submission, were commonly used in previous stud-
ies [27], [93].

Hotness. This metric is the number of total changes on
files touched by the pull request three months before the
pull request creation time [40], [108].

B). Submitter-Level Characteristics.
Experience.Developers’ experience before they submit the

pull request has been analyzed in prior studies [40], [47].
This measure can be computed from two perspectives: proj-
ect-level experience and community-level experience. The
former measures the number of previous pull requests that
the developer have submitted to a specific project (pre-
v_pullreqs_proj) and their acceptance rate (pre-
v_prs_acc_proj). The latter measures the number of
previous pull requests that the developer have submitted to
GitHub (prev_pullreqs) and their acceptance rate (pre-
v_prs_acc).When calculating acceptance rate, the determi-
nation of whether the pull request was integrated through
other mechanisms than GitHub’s merge button follows the
heuristics defined in previous studies [40], [114]. We also use
two metrics first_pr_proj and first_pr to represent
whether the pull request is the first one submitted by the
developer to a specific project andGitHub, respectively.

Standing.A dichotomous metric core_team, which indi-
cates whether the pull request submitter is the core team
member of the project, was commonly used as a signal of the
developer’s standing within the project [93], [108]. Further-
more, a continuous metric followers, i.e., the number of
GitHub users that are following the pull request submitter,

was used to represent the developers’ standing in the com-
munity [40], [93], [108].

Social Connection. The metric prior_interaction,
which is the total number of events (e.g., such as comment-
ing on issues and pull requests) prior to the pull request
submission that the developer has participated in within
the project, was usually used to measure the social connec-
tion between the developer and the project [93], [108].

C). Patch-Level Characteristics
Patch Size. Prior studies [40], [93], [95] quantified the size

of a patch, i.e., the changes contained in the pull request, in
different granularity. The commonly used metrics are the
number of changed files (files_changed) and the number
of changed lines of code added and deleted (loc).

Textual Length. This metric is computed by counting
the number of characters in the pull request title and
description [108].

Issue Tag. This metric indicates whether the pull request
description contains links to other GitHub issues or pull
requests [40], [108], such as “fix issue #1011”. We determine
this metric by automatically checking the presence of cross-
references in the pull request description based on regular
expression technique.

Type. Prior studies [44], [63] summarized that developers
canmake three primary types of changes: fault repairing (FR),
feature introduction (FI), and general maintenance (GM). The
change type (change_type) of the pull request is identified
by analyzing its title and commit messages based on a set of
manually verified keywords [63]. Prior studies [45], [97] also
identified the types of developer activities on the basis of the
types of changed files. We follow the classification by Hindle
et al. [45], which includes four types: changing source code
files (Code), changing test files (Test), changing build files
(Build), and changing documentation files (Doc). This metric
(activity_type) is determined by checking the names and
extensions of the files changed by the pull request.

5.2.2 Comparative Exploration

In order to explore the difference between duplicate and
non-duplicate pull requests, we compare them in terms of
each of the collected metrics and study to what extent a met-
ric varies across duplicate and non-duplicate pull requests.
Specifically, we formulate a non-directional hypothesis
which can be used when there is insufficient theory basis
for the exact prediction (i.e., we do not predict the exact
direction of the difference). The null hypothesis and the
alternative hypothesis are defined as follows:

H0: duplicate and non-duplicate pull requests exhibit the
same value of metricm.

H1: duplicate and non-duplicate pull requests exhibit dif-
ferent values of metricm.

8m 2 {proj_age, open_tasks, team_size, forks,
stars, hotness, prev_pullreqs, prev_prs_acc,
first_pr, first_pr_proj, prev_pullreqs_porj, pre-
v_prs_acc_proj, core_team, followers, prior_in-
teraction, loc, files_changed, text_len, issue_
tag, change_type, activity_type}

H0 is tested with Mann-Whitney-Wilcoxon test [105] on
continuous metrics and Chi-square test [72] on categorical
metrics. The test results are listed in Table 10 which reports
the p-value and effect size of each test. The p-values are
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adjusted using the Benjamini-Hochberg (BH) method [23] to
control the false discovery rate. To measure the effect size,
we use Cliff’s delta (d) [59] as it is a non-parametric approach
which does not require the normality assumption of a
distribution.

We reject H0 and accept H1when p-value is less than 0.05.
We can see that the null hypothesis is rejected on all metrics
except for open_tasks. This means that duplicate and non-
duplicate pull requests are significantly different in terms of
all metrics except for open_tasks. Following the previous
guidelines [70], [90] on interpreting the effect size (trivial:
jdj � 0:147; small: 0:147 < jdj < 0:33; medium: 0:33 � jdj <
0:474; large: jdj � 0:474), we find that the effect size of differ-
ence is generally small with amaximumof 0.285.

5.2.3 Regression Analysis

The comparative exploration does not consider the correla-
tions between metrics. As a refinement, we apply a regres-
sion analysis to model the effect of the selected metrics on
pull requests’ likelihood of being duplicates.

Regression Modeling. We build a mixed effect logistic
regression model which is fit to capture the relationship
between the explanatory variables, i.e., the metrics dis-
cussed in Section 5.2.1, and a response variable, i.e., is_dup,
which indicates whether a pull request is a duplicate. Since
our dataset is nested in the aspect of project (i.e., the pull
requests collected from 26 different projects), the selected
metrics are modeled as fixed effects, and a new variable
proj_id is modeled as a random effect, to mitigate the
over-represented phenomena present in some of the proj-
ects. Instead of building one model with all metrics at once,
we add one level metrics at a time and build a model, which

can checkwhether the addition of the newmetrics can signif-
icantly improve the model. As a result, we compare the fit of
three models: a) Model 1, which includes only project-level
variables, b) Model 2, which adds the submitter-level varia-
bles, and c)Model 3, which adds patch-level variables. In the
models, all numeric factors are log transformed (plus 0.5 if
necessary) to stabilize variance and reduce heteroscedastic-
ity [60]. We manually check the distributions of all variables,
and conservatively remove not more than 3 percent of values
as outliers with exponential distributions. This reduces
slightly the size of our dataset onto which we build the
regression models, but ensures that our models are robust
against outliers [67]. In addition, we check for the correlation
of coefficients and the Variance Inflation Factors (VIF below
5 as recommended [32]) among variables to overcome the
effect of multicollinearity. Specifically, four metrics (forks,
prev_pullreqs_proj, prev_prs_acc_proj, and
first_pr) are removed due to multicollinearity. This pro-
cess leaves uswith 17 features, which can be seen in Table 11.

Analysis Results. The analysis results are shown in
Table 11. In addition to the coefficient, standard error, and
significance level for each variable, the table reports the area
under the ROC curve (AUC), the marginal R-squared (R2

m)
and conditional R-squared (R2

c ) to quantify the goodness-of-
fit of each model. We can see that the models can explain
more variability in the data when considering both the fixed
and random effects (R2

c > R2
m). Overall, Model 3 performs

better than the other two Models (AUC: 0.729 versus 0.700/
0.719) and they have obtained consistent variable effects (i.e.,
there is no significant effect flipping from positive to nega-
tive and vice versa), therefore we discuss their effects based
onModel 3.

With regard to project-level predictors, open_tasks

and team_size have significant, positive effects. This sug-
gests that the more open tasks (pull requests and issues)
and active core team members at the submission time of a
new coming pull request, the more likely the new pull
request is a duplicate. Especially, open_tasks does not
show a significant difference by making the comparison
with a single hypothesis testing, but exhibits a strong posi-
tive effect when controlled for other confounds. The predic-
tor stars has a strong, negative effect, which means that
the more popular the project becomes the less likely the sub-
mitted pull request is a duplicate. Our explanation is that
the popular projects have well-established codebase, contri-
bution guidelines and collaborating process. Hot files tend
to attract more contributions from the community, but sur-
prisingly, there is a negative effect of the hotness metric.
We assume that pull requests changing hots files are more
likely to be reviewed faster and get accepted in a timely
fashion. A quick review can allow the target issue to be
solved in short time, which prevents others from encounter-
ing the same issue and submitting duplicate pull requests.
We leave a deep investigation in the future work.

As for submitter-level predictors, prev_prs_acc has a
negative effect and first_pr_proj has a positive effect
when its value is TRUE. This suggests that pull requests sub-
mitted by inexperienced developers and newcomers aremore
likely to be duplicates. On the contrary, the predictors pri-
or_interaction and core_team (TRUE) have significant,
negative effects, which indicates that pull requests from core

TABLE 10
Results of Hypothesis Test

Metric Adjusted p-value Effect size

Project-level characteristics
proj_age 4.1e-21 *** 0.091
open_tasks 0.791 0.003
team_size 3.8e-41 *** 0.131
stars 2.1e-46 *** 0.139
forks 8e-61 *** 0.159
hotness 4.5e-36 *** 0.122

Submitter-level characteristics
first_pr 9.9e-33 *** 0.045
prev_pullreqs 7.7e-94 *** 0.199
prev_prs_acc 8.5e-90 *** 0.205
first_pr_proj 6.4e-148 *** 0.148
prev_pullreqs_proj 1.1e-190 *** 0.285
prev_prs_acc_proj 8.5e-52 *** 0.173
core_team 2.5e-116 *** 0.192
followers 1.2e-20 *** 0.090
prior_interaction 5.1e-107 *** 0.212

Patch-level characteristics
files_changed 4.6e-08 *** 0.050
loc 3e-16 *** 0.079
text_len 9.1e-66 *** 0.166
issue_tag 0.001 ** 0.027
change_type 8.5e-26 *** 0.095
activity_type 3.4e-07 *** 0.003

*** p <0.001, ** p <0.01, * p <0.05.

LI ETAL.: REDUNDANCY, CONTEXT, AND PREFERENCE: AN EMPIRICAL STUDYOF DUPLICATE PULL REQUESTS IN OSS... 1321



team members and developers who have a stronger social
connection to the project are less likely to be duplicates. This
highlights that developers equipped with enough experience
and those having a stronger relationship with the project do
better in avoiding duplicatedwork.

For patch-level predictors, two size related predictors
present opposite effects. The predictor loc has a negative
effect, which indicates that pull requests changingmore lines
of code have a less chance of being duplicates. While the pre-
dictor files_changed has a positive effect, suggesting that
pull requests changingmore files are more likely to be dupli-
cates. Generally speaking, the more lines of code a patch has
changed, the more complicated and difficult a task it solves,
which poses a barrier for potential contributors (i.e., decreas-
ing the likelihood of duplication). While holding other varia-
bles constant, if a pull request has touched more files, it
increases the probability of the patch being duplicate (or par-
tial conflict) with others’ code changes. We think this inter-
esting result deserves a future investigation. The predictor
text_len has a positive effect, indicating that pull requests
with complex description are more likely to be duplicates.
Longer descriptionmay indicate higher complexity and thus
longer evaluation [108], which increases the likelihood of the
same issue being encountered by more developers who
might also submit a patch for the issue. The predictor
issue_tag has a positive effect when its value is TRUE, sug-
gesting that pull requests solving already tracked issues have
greater chances of being duplicates. One possible reason is
that tracked issues are already publicly visible, and they are

more likely to attract more interested developers and result
in conflicts. In terms of change types (change_type), we
can see that compared with pull requests of the type FR, pull
requests of the type FI, GM and Other are less likely to be
duplicates. We speculate that fixing bugs are more likely to
produce duplicates because bugs tend to have general effect
on a bigger developer base compared to new feature ormain-
tenance requirements which might be specific to a certain
group of developers. For activity types (activity_type),
we notice that pull requests changing test files (activity
Test) and documentation files (activity Doc) have less
chances of being duplicates, compared with those changing
source code files. OSS projects usually encourage newcomers
to try their first contribution by writing documentation and
test cases [6], [11]. We conjecture that activities changing
source code files might require more effort and time to con-
duct the local work, which are more risky and prone to
duplication.

RQ2-2: Duplicate pull requests are significantly different from
non-duplicate pull requests in terms of project-level characteris-
tics (e.g., changing cold files and submitted when the project has
more active core team members), submitter-level characteristics
(e.g., submitted from newcomers and developers who have
weaker connection to the project), and patch-level characteris-
tics (e.g., solving already tracked issues rather than non-tracked
issues and fixing bugs rather than adding new features or
refactoring).

TABLE 11
Statistical Models for the Likelihood of Duplicate Pull Requests

Model 1 Model 2 Model 3

response: is_dup = 1 response: is_dup = 1 response: is_dup = 1

Coeffs. Errors Signif. Coeffs. Errors Signif. Coeffs. Errors Signif.

log(proj_age) 0.005 0.064 0.127 0.065 * 0.068 0.061
log(open_tasks + 0.5) 0.247 0.043 *** 0.199 0.042 *** 0.192 0.042 ***
log(team_size + 0.5) 0.152 0.080 . 0.209 0.079 ** 0.256 0.080 **
log(stars + 0.5) �0.046 0.013 *** �0.044 0.013 *** �0.049 0.013 ***
log(hotness + 0.5) �0.049 0.013 *** �0.010 0.013 �0.049 0.015 ***

log(prev_pullreqs + 0.5) - - - �0.034 0.014 * �0.020 0.014
log(prev_prs_acc + 0.5) - - - �0.207 0.064 ** �0.221 0.064 ***
first_pr_proj TRUE - - - 0.254 0.055 *** 0.231 0.055 ***
log(followers + 0.5) - - - 0.005 0.013 0.002 0.013
core_team TRUE - - - �0.222 0.056 *** �0.207 0.056 ***
log(prior_interaction + 0.5) - - - �0.035 0.011 ** �0.044 0.011 ***

log(files_changed + 0.5) - - - - - - 0.098 0.030 **
log(loc + 0.5) - - - - - - �0.049 0.015 ***
log(text_len + 0.5) - - - - - - 0.120 0.017 ***
issue_tag TRUE - - - - - - 0.102 0.038 **
change_type FI - - - - - - �0.308 0.043 ***
change_type GM - - - - - - �0.368 0.060 ***
change_type Other - - - - - - �0.291 0.048 ***
activity_type Test - - - - - - �0.285 0.072 ***
activity_type Build - - - - - - 0.020 0.084
activity_type Doc - - - - - - �0.317 0.059 ***
activity_type Other - - - - - - �0.006 0.060

Akaike’s Information Criterion (AIC): 37451.49 37059.59 36861.77
Bayesian’s Information Criteria (BIC): 37526.33 37198.58 37118.37
Area Under the ROC Curve (AUC): 0.700 0.719 0.729
Marginal R-squared (R2

m): 0.03 0.05 0.08
Conditional R-squared (R2

c ): 0.18 0.20 0.25

*** p <0.001, ** p <0.01, * p <0.05.
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6 INTEGRATORS’ PREFERENCE BETWEEN

DUPLICATE PULL REQUESTS

To investigate what kind of duplicate pull requests are more
likely to be accepted than their counterparts,we first construct
a dataset of the integrators’ choice between duplicates, as
described in Section 6.1. Thenwe perform two investigations.

First, as described in Section 6.2, we identify metrics from
prior work in the area of patch evaluation and acceptance,
and apply them in a regression model to analyze their effects
on the response variable accept, which indicates whether a
duplicate pull request has been accepted or rejected.

Second, we want to learn what exactly integrators exam-
ine when they accept a duplicate pull request rather than its
counterparts. We thus manually inspect 150 randomly
selected duplicate pairs and use the card sorting method [82]
to analyze the integrators’ explanations of their choice
between duplicates, as described in Section 6.3.

6.1 The Dataset of Integrators’ Choice Between
Duplicate Pull Requests

We convert each duplicate pull request tuple into pairs
(i.e., < mst pr; dup pr > , mst pr is submitted earlier than
dup pr), and collect integrators’ choice on each pair of dupli-
cate pull requests. However, GitHub does not explicitly
label which duplicate has been accepted by the integrators.
Therefore, we decide to determine integrators’ choice based
on pull request status. A pull request in GitHub may occupy
a variety of status, i.e., open, merged, and closed. The status
open means a pull request is still under review and the inte-
grators have not made the final decision, while the status
closed means that the review of the pull request has con-
cluded and should no longer be discussed. If a pull request
is in the status merged, the pull request has been accepted
and the review is over.

The dataset construction consists of two steps: (a) filter-
ing out non-compared duplicate pairs, and (b) comparing
the statuses of duplicates, as elaborated in the following
sections.

6.1.1 Filtering Out Non-Compared Duplicate Pairs

In the study, we focus on the duplicate pairs that integrators
compared after detecting their duplicate relation. First, we
exclude duplicate pairs in which both pull requests remain
open. Then, we exclude duplicate pairs which were closed
but not compared by integrators. Fig. 10 shows the different
cases where the relation identification and decision-making
between duplicates happened at different times. In case A,
mst pr was closed before dup pr was submitted. In case B,
although mst pr was closed after dup pr was submitted,
mst pr (or dup pr) was closed before the duplicate relation
between them was identified. In case C, the relation identifi-
cation and decision-making between mst pr and dup pr
happened after mst pr and dup pr were submitted and
before they were closed. Duplicate pairs of cases A and B
are excluded because integrators did not make a compari-
son between them before making decisions. Moreover, we
also exclude from duplicate pairs of case C those in which
one pull request was closed by its submitter before integra-
tors left any comment. Finally, we exclude 875 non-com-
pared duplicate pairs, and 1,147 duplicate pairs remain.

6.1.2 Comparing the Statuses of Duplicates

For a pair of duplicate pull requests, there are several com-
bination of their statuses (e.g., one is merged and the other
one is closed). In the following, we describe how to deter-
mine integrators’ choice in different situations.

Only One is Merged. If one of the duplicate pull requests is
merged and the other one is closed or open, the merged one
has clearly been accepted by integrators.

Both are Merged. It is possible that both duplicates are
accepted with some necessary coordination. For example,
rust-lang/rust/#20380 was first merged, and rust-lang/rust/
#20437 was then rebased and merged afterwards to provide
an enhancement to the previous solution. In other cases,
project integrators might also merge two duplicate pull
requests to different branches; for example, rails/rails/#28068
and rails/rails/#28399 were merged to branches master and
5-0-stable, respectively.

Both are not Merged. It is somewhat complicated to deter-
mine which one has been accepted in a pair of duplicates in
which neither is merged (i.e., (closed, open) or (closed, closed) or
(open, closed)). Unlike the status merged, which always means
that a pull request has been accepted, the status closed can
indicate that a pull request is accepted or rejected, which
depends on themerge strategy of a specific project. InGitHub,
project integrators can click themerge button on theweb page
to accept pull requests. However, integrators can also merge
pull requests outside GitHub via several git commands. After
that, integrators close the original pull requests. This means
that closed pull requests might have been accepted. Prior
research [40], [114] used a set of heuristics to automatically
determine whether a closed pull request has been accepted.
However, the heuristics are not completely reliable as some
accepted pull requests might be mistakenly recognized as
rejected, or vice versa. To avoid this bias, we manually exam-
ine the entire review history of a pair of duplicates to deter-
minewhich one has been accepted. Additionally, it is possible
that both duplicates in a pair are rejected. For example, rails/
rails/#10737 and rails/rails/#10738 were both rejected by inte-
grators because integrators think the change is not necessary.

Fig. 10. Different cases where the relation identification and decision-
making between duplicates happen at different times.
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Finally, as shown in Table 12, we collect a total of 1,082
duplicate pairs in which only one is accepted. Subsequently,
we conduct regression analysis and manual inspection
based on those 1,082 duplicate pairs.

6.2 Regression Analysis

We conduct a regression analysis to investigate what factors
would affect the chance that duplicate pull requests would
be accepted by integrators. In the following sections, we
present the selected predictors, regression models and anal-
ysis results.

6.2.1 Predictors

The predictor selection is based on prior work in the area
of patch acceptance analysis. The selected predictors are
split into three categories: submitter-level, patch-level,
and review-level metrics. Compared with the study in
Section 5.2, this study additionally includes review-level
metrics because many signals in the code review process,
e.g., review discussion length, are available after pull
request submission, and past studies have found that
review-level metrics have significant effects on pull
request acceptance [40], [47], [52], [108]. However, this sec-
tion does not include project-level metrics because two
duplicate pull requests have the same project environment
at the decision-making time. To start with, we discuss our
metrics as follows.

A) Submitter-Level Metrics.
Developer experience is an important factor affecting

patch acceptance. Prior studies [20], [40], [52] have shown
that more experienced developers are more likely to get
their patches accepted. To understand whether developer
experience affects integrators’ choice between duplicates,
we still use six metrics to operationalize developer experi-
ence, i.e., prev_pullreqs_proj, prev_prs_acc_proj,
prev_pullreqs, prev_prs_acc, first_pr_proj and
first_pr, as discussed in Section 5.2. The previous studies
showed that pull requests submitted by developers with
higher standing are more likely to be accepted [93], [108].
To investigate the influence of developers’ standing on inte-
grators’ choice, we include two metrics core_team and
followers defined in Section 5.2. A developer’s social
relationship and interaction history with others can affect
others’ judgement for the developer’s work [28], [42], [68].
Prior studies have found that pull requests from developers
with a stronger social connection to the project have a
higher chance to be accepted [93], [108]. In addition to the
metric prior_interaction as defined earlier, we include
the metric social_strength, which represents the pro-
portion of decision-making group members that have co-
occurred with the submitter in at least one discussion dur-
ing the last three months, to examine the effects of social
metrics on integrators’ choice.

B) Patch-Level Metrics.
Prior studies [40], [93], [108] have found that large pull

requests are less likely to be accepted. Integrators value
small pull requests as they are easy to assess and inte-
grate [42]. To investigate the effect of patch size on integra-
tors’ choice between duplicates, we include the two size-
related metrics presented in Section 5.2, i.e., file-

s_changed and loc. The study conducted by Yu et al.
[108] showed that pull requests with longer description
have higher chances to be rejected. It also revealed that pull
requests containing links to issues have higher acceptance
rates. For this, we include the metrics text_len and
issue_tag, which are already defined in Section 5.2. From
the prior work [37], [42], we learn that the existence of test-
ing code is treated as a positive signal when integrators
evaluate pull requests. Pull requests with test cases are
more likely to be accepted [40], [93], [108]. To investigate
this, we include a dichotomous metric test_inclusion

to indicate whether the pull request has changed test files.
Finally, in the context of selection between duplicate pull
requests, we conjecture that the order that pull requests
arrive might affect integrators’ choice. The duplicate pull
request submitted early might be more likely to be accepted
than the late one, because people usually consider the recent
one is redundant and should be closed in favor of the old
one [12], [87], [88]. To verify our conjecture, we include a
dichotomous metric early_arrival to indicate whether
the pull request is submitted earlier than its counterpart.

C) Review-Level Metrics.
The participation metrics relating to human reviewers

have been shown to affect the latency and outcome of pull
request review [52], [93], [108]. For example, the study by
Tsay et al. [93] showed that pull requests with a higher
amount of comments are less likely to be accepted. To investi-
gate the effects of human participationmetrics on integrators’
choice, we include two discussion-related metrics, i.e., the
total number of comments on the pull request (comments)
and the number of inline comments pointing to the source
code (comments_inline). In addition, developers might
leave tendentious comments on a pull request, according to
whether they like or dislike a pull request [16], [94]. Follow-
ing the philosophy of social coding [21], it is interesting to
analyze whether the duplicate pull requests received more
positive comments would likely win out, compared to those
with more negative comments. To verify the hypothesis, we
include twometrics: the proportion of the comments express-
ing positive sentiment (comments_pos) and the proportion
of the comments expressing negative sentiment (com-
ments_neg). To analyze the sentiment in pull request com-
ments, we use the state-of-the-art sentiment analysis tool
Senti4SD [30] retrained on the latest GitHub data [66]. Inte-
grators also rely on automated testing tools to check pull
request quality [42]. For example, prior study [108] found
that the presence of CI test failure has a negative effect on
pull request acceptance. To investigate this, we include three
metrics CI, CLA, and CR, to represent the check statuses of
the most recent commit in the pull request, which are
returned by the three kinds of check tools discussed in Sec-
tion 3. Finally, we include a metric revisions, i.e., how
many times the pull request has been updated, to indicate the
maturity of and the efforts that developers put on the pull

TABLE 12
The Statistics of Integrators’ Choice Between Duplicates

Accept_One Accept_Both Reject_Both

Count 1,082 36 29
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request. The prior study [47] showed that patch maturity is
one of themajor factors affecting patch acceptance.

6.2.2 Statistical Analysis

Our goal is to explain the relationship (if any) between the
selected factors and the binary response variable accept,
which indicates whether a duplicate pull request has been
accepted over its counterpart (1 for accepted and 0 for not
accepted). We use conditional logistic regression [33], imple-
mented in themclogit package ofR, to model the likelihood of
duplicate pull requests being accepted based on the matched
pair samples in our dataset (i.e., two paired duplicate pull
requests inwhich one ismerged and the other is rejected).

Similar to the analysis in Section 5.2, we add one level met-
rics at a time and build amodel instead of building onemodel
with allmetrics at once.As a result, we compare the fit of three
models: a) Model 1, which includes only the submitter-level
variables, b) Model 2, which adds patch-level variables, and
c) Model 3, which adds review-level variables. The variable
transformation and multicollinearity control in the model
construction process is similar to those in Section 5.2. Specifi-
cally, we remove three predictors (prev_pullreqs_proj,
prev_prs_acc_proj, and first_pr) due tomulticollinear-
ity, which leaves uswith 20 predictors, as shown in Table 13.

6.2.3 Analysis Results

Overall, as shown in Table 14, both Model 2 and Model 3
have achieved remarkable performance given their high
value of AUC [60]. Since Model 3 performs better than
Model 2 (AUC: 0.890 versus 0.856) and they have obtained
consistent variable effects, we discuss their effects based on
Model 3.

As for the submitter-level predictors, only the predictor
prev_prs_acc has a significant, positive effect. This
means that duplicate pull requests submitted by experi-
enced developers whose previous pull requests have a
higher acceptance rate are more likely to be accepted. This
is inline with the prior findings about general pull request
evaluation [42], [47], [52], [116]. Perhaps surprisingly, the
predictors relating to developers’ standing ( core_team

and followers) and their social connection to the project
(social_strength) are not significant by controlling for
other confounds. Prior studies have shown that pull
requests from the developers holding higher standing and
having stronger social connection with the project have
higher acceptance rates [93], [108]. However, our model
does not achieve significant effects. Except for the bias on
our dataset, we present an assumption that in the context of
making a choice between duplicates, integrators’ decision
does not differentiate based on the identity of the submitter
in order to ensure fairness within the community [19], [46].
This assumption deserves a further investigation.

For patch-level metrics, early_arrival is highly signif-
icant in the model. As expected, duplicate pull requests sub-
mitted earlier have a higher likelihood of being accepted.We
can also observe that the predictor loc has a positive effect,
which indicates that duplicate pull requests changing more
LOCs are more likely to be accepted. This finding is opposite
with the results in previous studies [93], [101] that large pull
requests are less likely to be accepted. For a pair of duplicate
pull requests, the large one might provide a more thorough
solution or fix additional related issues compared to the
small one, which increases the probability of acceptance
under the same conditions. For example, there is a typical
comment left by the integrator: “Since the PR also contains
some test cleanup, I’ll merge that instead and close this one. But
thank you for the efforts, it is much appreciated!!”. In addition to
loc, the predictor test_inclusion presents a significant,
positive effect, which is similar to the effect on pull request
acceptance in general [42], [93], [108].

Finally, we discuss the review-level metrics. The predictor
comments_inline has a significant, positive effect. This
indicates that duplicate pull requests receiving more inline
comments have a higher chance of being accepted. Neverthe-
less, prior study [93] showed that pull requests with a high
amount of discussion are less likely to be accepted. We argue
that duplicate pull requests receiving more comments, espe-
cially inline comments, might mean that they has been
reviewed and discussed more thoroughly than their counter-
parts. It requires less effort to be spent on the follow-up
review if integrators choose the highly discussed duplicates.
We notice that the predictor revisions has a positive effect.
This indicates that duplicate pull requests revised more times
are more likely to be accepted, which agrees with what was
already found in prior study [47]. As for comment sentiment,
unsurprisingly, duplicate pull requests receiving more posi-
tive comments than negative comments are more likely to be
accepted. In terms of DevOps checking, as expected, the pre-
dictor CI has a strong, positive effect when its value is suc-
cess or pending compared to when the value is failure.
This means that duplicate pull requests have lower likelihood
of being accepted if the CI test result is failure. Our result con-
firms the finding in the previous study [98], [108] that CI plays

TABLE 13
Overview of Metrics

Metric Mean St. Min Median Max

Submitter-level characteristics
prev_pullreqs 1.7e2 3.1e2 0 45.00 3.5e3
prev_prs_acc 0.45 0.26 0.0 0.47 1.0
first_pr_proj 0.29 0.45 0 0.00 1
followers 3.1e2 1.5e3 0 41.00 3.3e4
core_team 0.33 0.47 0 0.00 1
social_strength 0.62 0.46 0.0 1.00 1.0

Patch-level characteristics
early_arrival 0.50 0.50 0 0.50 1
files_changed 11.60 73.44 0 2.00 1.4e3
loc 6.0e2 5.0e3 0 17.00 9.9e4
test_inclusion 0.37 0.48 0 0.00 1
issue_tag 0.37 0.48 0 0.00 1
text_len 4.9e2 1.4e3 4 2.6e2 2.7e4

Review-level characteristics
revisions 0.83 2.11 0 0.00 27
comments 5.18 11.84 0 2.00 3.3e2
comments_inline 1.55 5.42 0 0.00 1.1e2
comments_pos 0.17 0.27 0.0 0.00 1.0
comments_neg 0.04 0.13 0.0 0.00 1.0
CI 0.10 1.05 �1.0 0.00 3.0
CLA �0.81 0.60 �1.0 �1.00 3.0
CR �0.84 0.56 �1.0 �1.00 3.0
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a key role in the process of pull request evaluation, even in the
context of duplication. We do not achieve any result for other
two DevOps tools (i.e., CLA and CR), probably due to the
imbalanced data (i.e., most of pull requests are not checked by
these tools). We plan to conduct further analysis focusing on
these two kinds of tools in futurework.

6.3 Manual Inspection

The regression analysis examines the correlation between
several factors and integrators’ choice between duplicate
pull requests. It reveals what kind of duplicates are more or
less likely to be accepted. We further investigate the exact
reasons why integrators accept a duplicate pull request
rather than its counterpart. This can also examine and verify
the results of the regression analysis. To this end, we ana-
lyze the review comments of duplicate pull requests and
perform a card sort [82] to gain insight into the common
themes around integrators’ choice between duplicates. The
following sections present the card sorting process and the
identified reasons for integrators’ choice.

6.3.1 Card Sorting

The card sorting analysis is conducted on 150 randomly
selected duplicate pairs. This sample yields a 90 percent
confidence level with a 6.28 percent error margin. This pro-
cess includes the following three steps.

Card Preparation. For each randomly selected duplicate
pair, we read the dialogue and select all the comments

expressing integrators’ choice preference between dupli-
cates. The selected comments are then recorded in a card.

Pair Execution. For each card, two authors read the text
and sort the card into an existing category. If the authors
believe that the card does not belong to any of the existing
categories, they create a new category for that card. The cre-
ated category is labeled with a descriptive title to indicate
its theme. For a card citing multiple themes, more copies of
the card are created for each cited theme. When the two
authors disagree about the category of a specific card, they
invite the other authors to discuss the discrepancy and vote
on the card.

Final Analysis. After all cards have been sorted, the two
authors review each of the cards again to ensure the integrity
of the emerged categories and resolve potential inclusive or
redundant relations among categories. All categories are
then further grouped into higher-level categories. Finally, to
reduce the bias from the two authors, all authors of the paper
review and agree on the final taxonomy of categories.

6.3.2 Reasons for Integrators’ Choice

As shown in Table 15, we find 8 reasons for integrators’
choice between duplicates, which can be classified in to two
categories, i.e., technical assessment and non-technical consider-
ation. Note that the total frequency is greater than 150,
because more than one reason might be cited in a decision-
making discussion. In the following, we discuss each of rea-
sons supported by examples.

TABLE 14
Statistical Models for the Acceptance of Duplicate Pull Requests

Model 1 Model 2 Model 3

response: accept = 1 response: accept = 1 response: accept = 1

Coeffs. Errors Signif. Coeffs. Errors Signif. Coeffs. Errors Signif.

log(prev_pullreqs + 0.5) �0.078 �1.832 �0.097 �1.987 * �0.091 �1.738
log(prev_prs_acc + 0.5) 1.597 7.884 *** 1.729 7.363 *** 1.644 6.617 ***
first_pr_proj TRUE �0.206 �1.270 �0.169 �0.911 �0.173 �0.868
log(followers + 0.5) 0.061 1.674 0.062 1.477 0.064 1.415
core_team TRUE 0.251 1.786 0.184 1.111 0.237 1.312
log(social_strength + 0.5) 0.383 2.590 ** 0.217 1.295 0.283 1.538

early_arrival TRUE - - - 0.534 6.865 *** 0.483 5.572 ***
log(loc + 0.5) - - - 0.462 5.701 *** 0.386 4.477 ***
log(files_changed + 0.5) - - - 0.388 2.341 * 0.200 1.135
test_inclusion TRUE - - - 0.239 1.034 0.203 2.805 *
issue_tag TRUE - - - 0.255 1.855 0.261 1.734
log(text_len + 0.5) - - - 0.152 2.253 * 0.133 1.877

log(revisions + 0.5) - - - - - - 0.275 2.563 *
log(comments + 0.5) - - - - - - 0.036 0.406
log(comments_inline + 0.5) - - - - - - 0.208 2.138 *
comments_pos>comments_neg TRUE - - - - - - 0.460 3.315 ***
CI Success - - - - - - 0.728 3.574 ***
CI Pending - - - - - - 1.175 5.226 ***
CLA Success - - - - - - 1.596 0.532
CLA Pending - - - - - - 2.948 0.984
CR Success - - - - - - 1.4e+01 0.022
CR Pending - - - - - - 1.4e+01 0.022

Akaike’s Information Criterion (AIC): 1411.52 1116.52 1014.19
Bayesian’s Information Criteria (BIC): 1436.39 1171.23 1118.64
Area Under the ROC Curve (AUC): 0.704 0.856 0.890

*** p < 0.001, ** p < 0.01, * p < 0.05.

1326 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



A) Technical Assessment.
Higher Quality. If both of two duplicates have provided

correct implementation, integrators are inclined to choose
the one of higher quality. High quality has multiple manifes-
tations in our analysis, such as less affected files (e.g., “After a
short discussion internally, we are going to close this one in favour
of merging #7666. This is nothing more than the fact that the other
PR touches much less files”), and more outstanding perfor-
mance (e.g., “Closing this in favor of #10373, which also contains
performance improvements”). Given that higher-quality imple-
mentation tends to receive more positive review comments,
this choice preference is consistent with the regression analy-
sis result that duplicate pull requests receivingmore positive
comments are more likely to be accepted.

Correctness. The acceptance of duplicate pull requests fun-
damentally depends on the correctness of its implementa-
tion, as described by an integrator “Looks like #2716 fixed this
though the quoting on that one is not 100 percent right and I prefer
your solution... Would you like to rebase yours on top of head to use
the ‘+=(...)’ operator?”. Since a failed status check indicates
problematic implementation, this preference supports the
finding in the regression analysis that duplicate pull requests
are less likely to be accepted if the status is failure.

Broader Coverage. Two pull requests might be partial
duplicates in which one is the subset of the other one, as a
reviewer pointed “This PR is a subset of PR #16031”. In such
case, we observe that integrators prefer to choose the large
one that has covered more issues. Considering that the
broader coverage usually leads to more changed LOCs, this
choice preference is reflected in the regression analysis that
duplicate pull requests changing more LOCs are more likely
to be accepted.

Pushed to the Proper Branch. It is common for OSS projects
to follow a certain strategy on branch management. For
example, the maintenance branch in many projects accepts
only bug fixes, and new feature proposals are not accepted.
Therefore, integrators accept duplicate pull requests pushed
to the proper branch (e.g., “closing this PR as a duplicate of
#5193 (the latter is sent against 2.0 which is the branch to target
for bugfix)”).

Inclusion of Test Code.Most OSS project require contributors
to provide necessary test code for their modifications. There-
fore, the existence of test code in the duplicate pull requests
could help win some favor from integrators (e.g., “Thanks for

the fix. Not sure we want to merge this or wait for #3907 which also
fixes it and adds a regression test for all estimators”). This agrees
with the result in the regression analysis.

B) Non-Technical Consideration.
First-Come, First-Served. Integrators may follow the “first-

come, first-served” rule and accept duplicates arriving ear-
lier than those arriving later (e.g., “Actually, I see that #28026
is at the head of the merge queue right now, so it will probably
merge bfore this one, in which case we can just discard this PR”
and “Thank you very much for opening the pull request @xxx.
Sadly I have to close it nonetheless because someone already opened
one with the same changes before: #5761”). This is consistent
with the finding in the regression analysis that duplicates
submitted earlier have a higher possibility of being accepted.

Active Response. In the review process of a pull request,
contributors are usually requested to update their pull
requests until integrators are satisfied. Consequently, if a
duplicate pull request has not been actively updated by its
submitter, integrators might turn to its counterpart from
which integrators have received active responses (e.g.,
“@xxx The original author of that PR hasn’t responded in a week.
If you want to fix the tests in your PR, we could merge this one.
Your call”).

Encouraging Newcomers. New contributors act as an inno-
vation source for new ideas and are essential to the survival
of OSS projects [84]. Integrators have always tried to retain
newcomers and hope that they become long-term contribu-
tors [112]. Consequently, duplicate pull requests submitted
by newcomersmight be accepted by integrators to encourage
newcomers to make more contributions (e.g., “@xxx do you
mind if we close this in favor of #12004 from a new contributor?”).
However, we find very few instances of this choice prefer-
ence. This is in line with the fact that the factors first_-

pr_proj and core_team show no significant effects in the
regression model. This finding can indicate that when mak-
ing a choice between duplicates, integrators care more about
the pull requests than the role of their submitters.

C) No Explanation.
Integrators may make a choice without leaving any fur-

ther explicit explanation (e.g., “Replaced by #5067” and
“closing in favour of #10582”). For these cases, we examine
the submission time of the involved duplicate pull requests.
We find that most accepted pull requests are those that are
submitted earlier. Therefore, a possible explanation for why
integrators offer no explicit explanation is that they think
the “first-come, first-served” rule is the default standard in
duplication choice. In addition, integrators and contributors
might have discussed the matter on other communication
media or face-to-face outside GitHub, and as a result, inte-
grators simply make a choice without more explanation.

6.3.3 Complementary Investigation: Beyond Rejection

In examining integrators’ comments, we also find that,
sometimes, making a decision between duplicates is more
complex than simple acceptance and rejection. Even though
integrators give their preference to one duplicate pull
request, they might not directly and completely abandon
the other one. In the following, we present three instructive
scenarios where integrators make a decision beyond simple
close in dealing with the rejected duplicates.

TABLE 15
The Taxonomy of the Reasons for Integrators’

Choice Between Duplicates
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Supplementary. Although it has been decided to accept
one duplicate pull request instead of another one, some
integrators would examine what could be reused from the
rejected one to enhance the accepted one. For example,
although rails/rails/#20697 was preferred over rails/rails/
#20050, the author of rails/rails/#20697 was asked to reuse
the test code from rails/rails/#20050 (“I prefer this behavior
(and its simpler implementation) Can you please cherry-pick the
test from #20050”). In such cases, integrators usually also
gave credits to the author of the rejected pull request for the
incorporated code (“along with adding an changelog entry list-
ing both authors” and “Can you credit him in the commit as well
after you squash and rebase”).

Reopen and Backup. Some rejected duplicate pull requests
were later reopened as useful backups, since their counter-
parts that were previously preferred could not be merged
finally. For example, facebook/react/#5236 was closed at first
because there was already a duplicate pull request facebook/
react/#5220. But later, facebook/react/#5236 was reopened and
merged due to the inactivity of facebook/react/#5220, as the
integrator said: “Other PR didn’t get updated today and the fail-
ures were annoying on new PRs”.

Collaboration. Integrators might ask the author of the
rejected duplicate pull request to improve the preferred one
together (e.g., “Could you jump on #3082 and help us review
it?” and “Please work with @xxx to test his code once he fixes the
merge conflicts”). We also found that some of the authors
were willing to offer their help (e.g., “Made a minor note on
the other PR to include one of the improvements” and “Looks like
they took my advice and used proc_terminate() so another package
was not needed. Thanks for catching duplicate, but at least it was
not a waste. :)”).

RQ3: Pull requests with accurate and high-quality implemen-
tation, broad coverage, necessary test code, high maturity, and
deep discussion are more likely to be accepted. However, inte-
grators also make a choice based on non-technical considera-
tions, e.g., they may accept pull requests to respect the arrival
order and active response. For the rejected duplicates, integra-
tors might try to maximize their value, e.g., cherry-picking the
useful code.

7 DISCUSSION

Based on our analysis results and findings, we now provide
additional discussion and propose recommendations and
implications for OSS practitioners.

7.1 Main Findings

7.1.1 Awareness Breakdown

Maintaining awareness in global distributed development is a
significant concern [43], [92]. Developers need to pursue “an
understanding of the activities of others, which provides a context
for your own activity” [38]. As the most popular collaborative
development platform, GitHub has centralized information
about project statuses and developer activities and made
them transparent and visible [37], which helps developers to
maintain awareness with less effort [48]. However, awareness
breakdown still occurs and results in duplicate work. Our

findings about the specific contexts where duplicates are pro-
duced, as shown in Section 5.1, highlight three mismatches
leading to awareness breakdown.

A Mismatch Between Awareness Requirements and Actual
Activities. In most community-based OSS projects, develop-
ers are self-organized [26], [34], and are allowed to work on
any part of the code according to individual’s interest and
time [43], [54]. Awareness requirements arise as a response
to developers’ free and spontaneous activities. Whenever a
developer decides to get engaged in a task, s/he should
ensure that no other developers have worked on the same
task. However, our findings show that some contributors
lack sufficient effort investment in awareness activities
(Section 5.1: Not searching for existing work, Overlooking linked
pull requests, andMissing existing claim). We assume that this
is due to the volunteer nature of OSS participation. For some
developers, especially the casual contributors and one time
contributors, a major motivation to make contributions is to
“scratch their own itch” [56], [69]. When they encounter a
problem, they code a patch to fix it and send the patch back
to the community. Some of them even do not care about the
final outcome of their pull requests [85]. It might be harder to
get them to spend more time to maintain awareness of other
developers. Automatic awareness tools can mitigate this
problem. Prior research has proposed to automatically detect
duplicates at pull request submission [57], [73] and identify
ongoing features from forks [113]. Furthermore, we advocate
for future research on seamlessly integrating awareness tools
to developers’ development environment and designing
intelligent and non-intrusive notificationmechanism.

A Mismatch Between Awareness Mechanisms and Actual
Demands. Currently, GitHub provides developers with a
wide range of mechanisms, e.g., following developers and
watching projects [37], to maintain a general awareness
about project status. However, developers can be over-
whelmed with a large-scale of incoming events in popular
projects (Section 5.1:Missing notifications). It is also impracti-
cal for developers to always maintain overall awareness of a
project due to multitasking [95] and turnover [58]. Usually,
developers need to obtain on-demand awareness around a
specific task whenever deciding to submit a pull request,
i.e., gathering task-centric information to figure out people
interested in the same task. Currently, the main mecha-
nisms to meet this demand are querying issue and pull
request list and reading through the discussion history. As
mentioned in Section 5.1, the support by these mechanisms
is not as adequate as expected due to information mixture
(Section 5.1: Overlooking linked pull requests andMissing exist-
ing claims) and other technical problems (Section 5.1: Disap-
pointing search functionality and Diversity of natural language
usages). Awareness mechanisms would be most useful if
they can fulfil developers’ actual demands in maintaining
awareness.

A Mismatch Between Awareness Maintenance and Actual
Information Exchange. Maintaining awareness is bidirec-
tional. Intuitively, it means that developers need to gather
external information to stay aware of others’ activities, with
the hope that I do not duplicate others’ work. But from a global
perspective, it also means developers should actively share
their personal information that can be gathered by others,
with the hope that others do not duplicate my work. Our
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findings show that some developers do not timely announce
their plans (Section 5.1: Implementing without claiming first)
and link their work to the associated issue (Section 5.1: Lack
of links). This hinders other developers’ ability to gather ade-
quate contextual information. Although prior work [18],
[29], [92] has extensively studied on how to help developers
track work and get information, more research attention
should be paid to encouraging developers to share informa-
tion. For example, it would be interesting to investigate
whether developers’ willingness to share information is
affected by the characteristics of collaboration mechanisms
and communication tools.

Obviously, awareness tools are important for OSS devel-
opers to stay aware of each other. However, no tool or
mechanism can prevent all awareness breakdown entirely.
A better understanding of the importance of group aware-
ness and better use of available technologies can help devel-
opers ensure that their individual contributions do not
cause accidental duplicates.

7.1.2 The Paradox of Duplicates

Generally speaking, both project integrators and contribu-
tors hope to prevent duplicate pull requests, because dupli-
cates can waste their time and effort, as shown in Section 4.
This is also reflected in their comments, e.g., “it probably
makes sens to just center around a single effort”, “No need to do
the same thing in two PRs”, and “Oops! Sorry, did not mean to
double up”. However, when duplicates are already produced,
potential value might be mined from them as shown in Sec-
tion 6.3.3. From our findings, we notice two interesting para-
doxes of duplicates.

Redundancy versus Alternative. In many cases, duplicate
pull requests change pretty much the same code, which only
bring unnecessary redundance. While in some cases, dupli-
cates implemented in different approaches provide alterna-
tive solutions, as a developer put it: “The pull requests are
different, so maybe it is good there are two”. In such cases, project
integrators have a higher chance to accept a better patch.
However, this comes at a price. Integrators have to invest
more time to compare the details of duplicates in order to
clearly disclose the difference between them. Ensuring that
their effort is not wasted in copingwith duplicates, but maxi-
mizing the disclosure and adoption of additional value pro-
vided by each duplicate, is a trade-off integrators should be
aware of.

Competition versus Collaboration. At first sight, authors of
duplicate pull requests face a competition in getting their
own patches accepted. For example, one contributor tried to
persuade integrators to choose his pull request rather than
another one: “Pick me! Pick me! I was first! :)”. Nevertheless,
we found some cases where the authors of duplicates
worked together towards a better patch by means of mutual
assessment and negotiated incorporation, as shown in
Section 6.3.3. According to developers, the collaboration is
also an opportunity for both the authors to learn from each
other’s strength (“I looked at some awesome code that @xxx
wrote to fix this issue and it was so simple, I just did not fully
understand the issue I was fixing”). Standing for their own
patches, but seeking for collaboration and learning, is a
trade-off the authors of duplicates should be aware of.

7.1.3 Decision-Making in Either/Or Contexts

In the general context of pull request evaluation, integrators
are answering a Yes/No question “whether to accept this pull
request?”, and the considered factors are mainly relating to
individual pull requests. While in the context of making a
choice between duplicates, integrators are answering an
Either/Or question “whether to choose this duplicate pull request
or the other one?”, and integrators would evaluate the dupli-
cates from a comparative perspective. Based on our findings
about integrators’ preference between duplicates, as pre-
sented in Section 6, we infer two prominent characteristics
of integrators’ decisions in the Either/Or contexts.

Choose the Patch, not the Author.We find that whenmaking
decisions between duplicates, integrators have a preference
to consider patch-level metrics (e.g., arrival order) and
review-level metrics (e.g., CI test results) instead of submit-
ter-level metrics (e.g., the submitter’s identity). Compared to
submitter-level metrics, patch-level and review-level metrics
are more objective evidence. While the submitter’s identity
can be used to make inferences about the quality and trust-
worthiness of a pull request [42], [93], decisions made on the
basis of objective evidence might look more fair and rational
in the context of selection between duplicates. The benefits of
such decision strategy include ensuring the fairness within
the communities [19], [46] and eliminating integrators’ pres-
sure of explaining the rejection of duplicates [42].

Invested Effort Matters. We find that integrators prefer
duplicate pull requests that have been highly discussed and
revised a couple of times. While a higher number of com-
ments and revisions might indicate that a pull request was
not perfect and integrators have requested changes to update
it, it also reflects that the pull request has been thoroughly
reviewed and improved, and both integrators and the sub-
mitter have invested considerable effort. The invested effort
on one duplicate pull request cannot be “transferred” to its
counterpart because duplicate pull requests might have dif-
ferent implementation details and each of them has to be
carefully reviewed. Given the facts that time is the top chal-
lenge faced by integrators [42] and that asking for morework
from contributors to improve their code might be diffi-
cult [42], [85], choosing the thoroughly discussed and revised
duplicate pull requests might be a cost-efficient and safe
decision.

7.2 Suggestions for Contributors

To avoid unintentional duplicate pull requests, contributors
may follow a set of best contributing practices when they
are involved in the pull-based development model.

Adequate Checking. Many duplicates were produced
because contributors did not conduct adequate checking to
make sure that no one else was working on the same thing
(Section 5.1: Not searching for existing work, Overlooking linked
pull requests, and Missing existing claims). We recommend
that contributors should perform at least three kinds of
checking before starting their work: i) reading through the
whole discussion of an issue and checking whether anyone
has claimed the issue; ii) examining each of the pull requests
linked to an issue and checking whether any of them is
an ongoing work to solve the issue; and iii) performing
searches with different keywords against open and closed
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pull requests and issues, and carefully checking where simi-
lar work already exists.

Timely Completion.Quite a number of OSS developers con-
tribute to a project at their spare time, and some of them even
switch between multiple tasks. As a result, it might be
difficult for them to complete an individual task in a timely
fashion. However, we still suggest that contributors should
quickly accomplish each work in proper order, e.g., one item
at a time, to shorten their local duration. This can make their
work publicly visible earlier, which can, to some extent, pre-
vent others from submitting duplicates (Section 5.1:Overlong
local work).

Precise Context. Providing complete and clear textual infor-
mation for submitted pull requests is helpful for other contrib-
utors to retrieve these pull requests and acquire an accurate
and comprehensive understanding of them (Section 5.1:
Diversity of natural language usage). In addition, if a pull request
is solving a tracked issue, adding the issue reference in the
pull request description, e.g., “fix #[issue_number]”, can avoid
some duplicates because of the increased degree of awareness
(Section 5.1: Lack of links).

Early Declaration. Zhou et al. [114] already suggested that
claiming an issue upfront is associated with a lower chance
of redundant work. In our study, we find several actual
instances of duplicates where integrators clearly pointed
out the contributors should claim the issues first and then
implement the patches (e.g., “@xxx, btw, it is a good idea to
comment on an issue when you start working on it, so we can
coordinate better and avoid duplication of effort”). We would
like to emphasize again the importance of early declaration
which should become a best practice developers can follow
in OSS collaborative development. Compared with late
report, early declaration can timely broadcast contributors’
intention to the community to get the attention of interested
parties, so that they can avoid some accidental duplicate
work (Section 5.1: Implementing without claiming first).

Argue for Their Patches.As shown in Section 6, various fac-
tors can be examined when integrators make decisions
between duplicates. The authors of duplicates should
actively argue for their own pull requests by explicitly stating
the strength of their patches, especially if they have proposed
a different approach and provided additional benefits. They
can also review each of other’s patch and discuss the differ-
ence before waiting for an official statement from integrators.
This can provide a solid basis for integrators to make
informed decisions about which duplicate should be
accepted. Moreover, if the value of a duplicate pull request
has been explicitly stated, even it is finally closed, its useful
part has a higher chance to be noticed and cherry-picked by
integrators, as shown in Section 6.3.3.

7.3 Suggestions for Core Team

The core team of an OSS project, acting as the integrator and
maintainer of the project, is responsible for establishing con-
tribution standards and coordinating contributors’ develop-
ment. To achieve the long-term and continuous survival of
the project, the core teammay also follow some best practices.

Evident Guidelines. Although most projects have warned
contributors not to submit duplicate issues and pull requests,
the advice are usually too general. We suggest projects to
make the advice more visible, specific, and easy-follow. For

example, projects can use a section to list the typical contexts
where duplicates occur, as presented in Section 5.1, and item-
ize the specific actions should be taken to avoid duplicates, as
we have suggested for contributors (Section 7.2: Adequate
checking).

Explaining Decisions. Integrators must make a choice
between duplicate pull requests, which means that they
have to reject someone. For contributors whose pull
requests have been rejected, they might be pleased to get
feedback and explanation about why their work has been
rejected rather than simply closing their pull requests. How-
ever, we observed nearly 50 percent of our qualitative sam-
ples where decisions were made without any explanation
(as shown in Table 15). Even worse, we identified that the
rough explanation (e.g., “Thanks for your PR but this fix is
already merged in #20610”) would be likely to make the con-
tributor upset (“’already’ implies I submitted my PR later than
that, rather than nearly a year earlier ;) But at least it’s fixed”). In
that case, the integrator had to give an additional apology
(“sorry, sometimes a PR falls in the cracks and a newer one gets
the attention. We have improved the process in hopes to avoid this
but we still have a big backlog in which these things are present”)
to mitigate the negative effect. In the future, a careful analy-
sis should be designed to examine the effectiveness of this
suggestion based on controlled experiments.

7.4 Suggestions for Design of Platforms

Online collaborating platforms such as GitHub have
designed and provided numerous mechanisms and tools to
support OSS development. However, the practical problem
of duplicate contributions proves that the platforms need to
be improved.

Claim Button. In order to make it more efficient for devel-
opers to maintain awareness of each other, we envision a
new mechanism called Claim which is described as follows.
For a GitHub issue, each interested developer can click the
Claim button on the issue page to claim that s/he is going to
work on the issue. The usernames of all claimers are listed
together below the Claim button. Every time the Claim but-
ton is clicked, an empty pull request is automatically gener-
ated and linked to the claimer’s username in the issue
claimer list. Moreover, claimers have a chance to report
their plans about how to fix the issue in the input box dis-
played when the Claim button is clicked. The reported plans
would be used to describe the empty pull request. Subse-
quently, claimers perform updates of the empty pull request
until they produce a complete patch. All important updates
on the empty pull request, e.g., new commits pushed,
would be displayed in the claimer list. On the one hand,
this mechanism makes it more convenient for developers to
share their intentions and activities through just clicking a
button. On the other hand, developers can efficiently catch
and track other developers’ intentions and activities by sim-
ply checking the issue claimer list.

Duplicate Detection. As contributors complained, e.g., “... I
wish there has been some automated method to detect pending PR
per file basis. This could save lot of work duplicacy. ...”, or “ It’s
strange that GitHub isn’t complaining about this, because it’s an
exact dup of #5131 which was merged already”, an automatic
detection tool of duplicates is missing in GitHub. Such a tool
can help integrators detect duplicates in a timely manner
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and prevent them spending resources on the redundant
effort of evaluating duplicates separately. Therefore, GitHub
can learn from Stack Overflow and Bugzilla to recommend
similar work when developers are creating pull requests by
utilizing various similarity measures, e.g., title and code
changes. The features discussed in Section 5.2.1 can also be
integrated to enhance the recommendation system.

Reference Reminder. Since developers might overlook
linked pull requests to issues (Section 5.1: Overlooking linked
pull requests), platforms can actively remind developers of
existing pull requests linked to the same issue at pull
request submission time. The goal of this functionality is
similar to that of the duplicate detection tool. However, it
can be implemented in a more straightforward way. For
example, whenever developers add an issue reference in
filling a pull request, a pop-up box can be displayed next to
the issue reference to list the existing pull requests linked to
that issue.

Duplicate Comparison. As discussed in Section 6, when
integrators make a choice between duplicate pull requests,
they consider several factors. Platforms can support dupli-
cate comparison to make the selection process more effi-
cient. For example, platforms can automatically extract
several features of compared duplicates, e.g., inclusion of
test codes and the contributor’s experience, and display
these features in a comparison format to clearly show the
difference between duplicate pull requests and speed up
the selection process.

Online Incorporation. As presented in Section 6.3.3, inte-
grators sometimes prefer to incorporate one duplicate pull
request into the other one to promote patch thoroughness.
Currently, the typical way to incorporate a pull request PRi

into another pull request PRj is as follows: i) adding the
head branch of PRi as a remote branch in the corresponding
local repository of PRj, ii) fetching the remote branch to the
local repository, iii) cherry-picking the needed commits
from or rebase onto the remote branch, and iv) updating
PRj by synchronizing the changes from local repository to
the head branch of PRj. Developers might also need to
update the commit message or project changelog to give
credit for the incorporated code. The whole incorporation
process can be too complex for newcomers to undertake.
Moreover, this process seems to be tedious for incorporat-
ing trivial changes. GitHub can support online incorpo-
ration of duplicate pull requests. For example, it can allow
developers to pick the needed code by clicking buttons in
the UI, and the credit is given to the picked code by auto-
matically updating the commit message and changelog.

8 THREATS TO VALIDITY

In this section, we discuss threats to construct validity, inter-
nal validity and external validity, which may affect the
results of our study.

Construct Validity. In the definition of sequential relation-
ships between two duplicates, two time points are critical,
i.e., T-Creation and T-Evaluation, which stand for the start-
ing times of local work and online evaluation, respectively.
In the paper, we set T-Evaluation as the submission time of
pull request, in accordance with its definition. Nevertheless,
we cannot obtain the exact value of T-Creation because there

is no information recording when a contributor starts local
work. We set T-Creation as the creation time of the first com-
mit contained in a pull request. As a result, the observed
value of T-Creation is actually later than its real value
because it can be certain that the contributor must first start
the local work and then later submit the first commit. It is
possible that we introduce some bias to our quantitative
study when we set T-Creation to the creation time of the first
commit. For duplicate pairs of overlapping or inclusive rela-
tions, the bias does not matter much because they already
intersect with each other. However, the bias for duplicate
pairs of exclusive relations needs careful attention since
inaccurate value of T � Creationdup may affect whether the
relation is exclusive. Indeed, in our quantitative study of the
exclusive interval (Table 8), we find that the majority of
duplicate pairs of exclusive relations have relatively long
intervals, which means that a minor shift in the value of T �
Creationdup is unlikely to affect the original relation. There-
fore, setting T-Creation as the creation time of the first com-
mit is acceptable in practice.

Internal Validity. In the manual analysis of integrators’
choice between duplicate pull requests, we target a sampled
subset of duplicate pull requests. It is possible that we have
missed some other cases that are not in the sampled subset.
However, the items in the subset are randomly selected,
and the sample size is of high confidence level, as described
in Section 6.3. Therefore, missed cases (if any), accounting
for a very small proportion of the whole, would not signifi-
cantly change our findings.

External Validity. The threat to external validity relates to
the generalizability of our findings. To mitigate this threat,
our empirical study was conducted on 26 projects hosted on
GitHub, covering a diversity of programming languages
and application domains. However, it is still a small sample
given that 100 million repositories [1] have been hosted on
GitHub, let alone there are other social coding sites such as
GitLab and BitBucket. In the future, we plan to extend our
study by including more projects from jointCloud [99]
development platforms.

9 CONCLUSION

In this study, we investigated the problem of duplicate con-
tributions in the context of pull-based distributed develop-
ment. The goal of our study is to better understand the
influences of duplicate pull requests during collaborative
development, the context in which duplicate pull requests
occur, and the alternative preference of integrator between
duplicate pull requests. We conducted an empirical study
on 26 GitHub projects to achieve the goal. We found that
duplicate pull requests slow down the review process and
require more reviewers for extended discussions. We
observed that the inappropriateness of OSS contributors’
work patterns (e.g., not checking for existing work) and the
shortcomings of their collaboration environment (e.g.,
unawareness of parallel work) would result in duplicates.
We also observed that duplicate pull requests are signifi-
cantly different from non-duplicate pull requests in terms
of project-level characteristics (e.g., area hotness and num-
ber of active core team members), submitter-level character-
istics ( e.g., experience and social connection to project), and
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patch-level characteristics ( e.g., change type and issue visi-
bility). We found that duplicate pull requests with accurate
and high-quality implementation, broad coverage, neces-
sary test codes, high maturity, and deep discussion, are
more likely to be accepted. We also found that integrators
might make a choice based on non-technical considerations,
e.g., they may accept pull requests to respect arrival order
and active response.

Based on the findings we recommend that OSS contribu-
tors should always perform sufficient verification against
existing work before they start working on a task. Contribu-
tors are expected to declare their intentions as soon as
possible and prepare their work with complete related infor-
mation to make their work highly visible early on. Intergra-
tors should provide contributors with visible and detailed
guidelines on how to avoid duplicated work. Social coding
platforms are expected to enhance the awareness mecha-
nisms in order to make it more effective and efficient for
developers to stay aware of each other. It is also meaningful
to provide practical service and tools to support automatic
identification of duplicates, visualized comparison between
duplicates, etc.

Last but not least, our findings point to several future
research directions. Researchers can design awareness tools
to increase developers’ awareness of others’ activities. Such
tools not only help prevent duplicate effort on the same
tasks but also have the potential functionality to link related
contributors for better coordination. Moreover, we think it
is meaningful to investigate how integrators’ practices in
managing the contributors’ conflicts affect contributors’
continuous participation.
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Integrating an Ensemble Surrogate Model’s
Estimation into Test Data Generation
Baicai Sun , Dunwei Gong ,Member, IEEE, Tian Tian , and Xiangjuan Yao

Abstract—For the path coverage testing of aMessage-Passing Interface (MPI) program, test data generation based on an evolutionary

optimization algorithm (EOA) has beenwidely known. However, during the use of the above technique, it is necessary to evaluate the

fitness of each evolutionary individual by executing the program, which is generally computationally expensive. In order to reduce the

computational cost, this article proposes amethod of integrating an ensemble surrogate model’s estimation into the process of

generating test data. The proposedmethod first produces a number of test inputs using an EOA, and forms a training set together with

their real fitness. Then, this article trains an ensemble surrogatemodel (ESM) based on the training set, which is employed to estimate

the fitness of each individual. Finally, a small number of individualswith good estimations are selected to further execute the program, so

as to have their real fitness for the subsequent evolution. This article applies the proposedmethod to seven benchmarkMPI programs,

which is compared with several state-of-the-art approaches. The experimental results show that the proposedmethod can generate test

data with significantly low computational cost.

Index Terms—MPI program, path coverage testing, evolutionary optimization algorithm, ensemble surrogate model, test data generation

Ç

1 INTRODUCTION

DURING the development of MPI programs, communities
related to high-performance computing can provide

substantial supports [1]. In addition, MPI programs have
advantages of high efficiency, good portability, and simple
implementation [2]. Therefore, MPI programs have been
widely used in the past two decades, and become a de-facto
standard for writing parallel programs for computer clus-
ters [3].

MPI programs have a series of characteristics, such as
communication, synchronization, and non-determinism,
which greatly increase the testing cost and difficulty.
Especially, when executing an MPI program with non-
determinism, different targets will generally be traversed
under the same test data, suggesting the difficulty in gen-
erating test data to cover a given target. However, with the
recognition that the issue resulted from non-determinism
of MPI programs has been well tackled by our previous

work [4], we only consider MPI programs with determin-
ism in this paper. In other words, the method proposed in
this paper is also suitable for MPI programs with non-
determinism, not just those with determinism. There have
generally been a plenty of coverage criteria in software
testing, e.g., statement coverage, branch coverage, and
path coverage, and different criteria have different
emphases. However, we can generally transform test data
generation for other structural coverage to that for path
coverage [5].

Given the fact that the methods of testing sequential
programs have difficulties in testing parallel programs,
Souza et al. [6] proposed a specific set of test criteria by tak-
ing the challenges of MPI programs into consideration. Fur-
thermore, for additional features of MPI programs, e.g.,
collective and non-blocking communication, Souza et al. [7]
proposed new structural test criteria by extending this set.
These studies have focused on the features of MPI programs
and proposed the corresponding structural coverage crite-
ria, they have, however, not provided effective methods of
generating test data.

For the path coverage testing of MPI programs without
non-determinism, we used a co-evolutionary genetic algo-
rithm (CGA) to automatically generate test data covering
target paths [8]. However, when applying it to test complex
MPI programs, the computational cost will be too high to be
acceptable. The reason is as follows. When generating test
data using an EOA, it is required to calculate the fitness of
each individual by executing the program, which is gener-
ally computationally expensive. If we can first estimate the
fitness of all the individuals based on knowledge obtained
during the evolution and then calculate the real fitness of a
subset of those individuals with the best estimated fitness,
we will greatly reduce the number of times the program has
to be executed, alleviating the computational cost resulted
from individual evaluations.
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In order to reduce the above computational cost, Tong et al.
[9] proposed an efficient surrogate-assisted EOA based on a
Voronoi diagram, which can estimate the fitness of an indi-
vidual. For reducing the number of individual evaluations
when solving an optimization problem, Sun et al. [10] pro-
posed a strategy for estimating the fitness of an individual
based on the euclidean distance. In addition, Xiao et al. [11]
proposed a fitness estimation method with an adaptive pen-
alty function, so as to solve the problem of a high cost
involved in evaluating an individual.

Moreover, there have been various single surrogate mod-
els (SSMs), e.g., polynomial regression [12], Gaussian pro-
cess regression [13], support vector regression [14], and
radial basis function network (RBFN) [15], [16], to be
employed to estimate the fitness of an individual, so as to
reduce the number of individual evaluations. However, a
single surrogate model (SSM) is more prone to over-fitting
or under-fitting, which will reduce the estimation accuracy,
resulting in poor performance in generalization. In addition,
previous studies have demonstrated that an ESM is superior
to an SSM in terms of generalization for most cases [17]. As
a result, we use an ESM to estimate the fitness of an individ-
ual in this paper.

Based on the above analysis, for the path coverage testing
of complex MPI programs, we propose a method of inte-
grating an ESM into the process of generating test data in
this paper, so as to improve the efficiency of generating test
data. In the proposed method, we train an ESM based on
the training set formed in the steps of generating test data,
which is employed to estimate the fitness of each individual.
Following that, we select a small number of individuals
with good estimations to execute the program, so as to
achieve their real fitness for the subsequent evolution.

This paper has the following threefold novelties and
contributions:

1) Defining the composition of a sample, and giving a
method of forming the training set.

2) Proposing a method of constructing an MPI-based
ESM.

3) Presenting a method of selecting superior individu-
als based on the rank of the estimated fitness of all
individuals in a population.

The rest of this paper is organized as follows. Section 2
reviews the related work. The method of integrating an
ESM into the process of generating test data is proposed in
Section 3, including overall framework, forming the training
set, constructing and applying an ESM, and selecting supe-
rior individuals for executing the program. Section 4 applies
the proposed method to seven complex MPI programs, and
compare it with other state-of-the-art approaches with ana-
lyzing the experimental results. Threats to validity are dis-
cussed in Section 5. Finally, Section 6 summarizes the whole
paper, and points out the topics to be studied in the future.

2 RELATED WORK

2.1 Preliminary Knowledge

We have provided some studies associated with the path
coverage testing of MPI programs in [8], among which some
basic concepts can be employed in this paper. These concepts

include MPI program, node, control-flow graph, path, and
the path similarity. In the following, wewill briefly introduce
them, and please refer to [8] for more details.

An MPI program refers to a program consisting of a
number of processes which execute in parallel and commu-
nicate with each other, denoted as S ¼ fs0; s1; . . . ; sm�1g,
where siði ¼ 0; 1; . . . ;m� 1Þ represents the ith process in S,
and m is the number of processes. For S, its input can be
represented as X ¼ ðx1; x2; . . . ; xnÞ, where xjðj ¼ 1; 2; . . . ; nÞ
means the jth input variable of X. If the range of xj is hj,
then the range ofX will beH ¼ h1 � h2 � . . .� hn.

This section introduces some basic concepts and illus-
trates them through an MPI example program, shown in
Figs. 1 and 2. Fig. 1 shows the master process of the example
program, and is denoted as s0, and Fig. 2 provides two slave
processes created by the master process, denoted as s1 and
s2, respectively. In the program, the Spawn primitive aims
to create two slave processes, the Scatter primitive is
employed to send sbuf from the master process to rbuf in
the slave processes, where sbuf means a sending buffer,
and rbuf refers to a receiving buffer. In addition, the Gather
primitive has the function of collecting sbuf from the slave
processes, and storing into rbuf in the master process.
Please refer to [18] for more details about the usage of the
above three MPI primitives.

Node. For a process of an MPI program, a node refers to a
basic execution unit. For process si, the jth node is repre-
sented as ni

j, which corresponds to a series of sequentially
executed commands or a communication primitive. In ni

j, j
corresponds to the line number in Figs. 1 and 2.

Control-FlowGraph. The control flow graph of S can be rep-
resented as G ¼ fV;Eg, where V and E mean the node set
and the edge set, respectively. For two nodes ni

l ; n
i
k 2 V , if ni

k

is executed after ni
l , then there will exist an edge, denoted as

< ni
l; n

i
k > ; from ni

l to ni
k, called a control edge. For ni

l ; n
j
k 2

V , i 6¼ j, if ni
l is a sending node and nj

k is its corresponding
receiving node, then there will exist an edge, < ni

l; n
j
k >;

from ni
l to nj

k, termed a communication edge. As a result, the
edge set, E, consists of all the control and communication

Fig. 1. Master process source code for the example program.
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edges. Fig. 3 is the control-flow graph of the example
program.

Path. When S is executed under X 2 H, a series of tra-
versed nodes in si form a sub-path, denoted as pi. The num-
ber of nodes in pi is called the path length of pi, denoted as
jpij. Furthermore, the path, P ðXÞ, traversed by X is com-
posed of side-by-side traversal sub-paths, denoted as
P ðXÞ ¼ fp0; p1; . . . ; pm�1g.

For two paths, P � and P ðXÞ, where P � is a target path,
and is denoted as P � ¼ fp�0; p�1; . . . ; p�m�1g, the path simi-
larity between them can be formulated as [8]

SimðP �; P ðXÞÞ ¼ 1

m

Xm�1

i¼0

simðp�i; piÞ; (1)

where simðp�i; piÞ is the sub-path similarity, with the follow-
ing expression:

simðp�i; piÞ ¼ jp�i \ pij
maxfjp�ij; jpijg ; (2)

where jp�i \ pij is the number of successively same nodes
between p�i and pi from the first node, and maxfjp�ij; jpijg
refers to the maximum path length of p�i and pi.

Moreover, we modeled the problem on test data genera-
tion as that of an evolutionary optimization [8]. From the
Formula (1), the larger SimðP �; P ðXÞÞ is, the closer P ðXÞ is
to P �. When SimðP �; P ðXÞÞ ¼ 1, P ðXÞ is namely the target
path P �, and X is the test datum covering the target path. In
this way, we can model the problem of generating test data
that cover P � as the following single-objective optimization
problem:

max F ðXÞ ¼ SimðP �; P ðXÞÞ
s: t: X 2 H:

(3)

It should be noted that the above formula is the fitness
function for evaluating an individual in the steps of generat-
ing test data using an EOA.

2.2 Test Data Generation

When generating test data based on an EOA, a number of
targets are usually aggregated into a fitness function, which
reduces the coverage of test data aiming at a specific target
to some extent. To overcome this drawback, Panichella et al.

[19] proposed a dynamic multi-objective sorting algorithm,
which was employed as a many-objective solver to improve
the efficiency of generating test data. In order to reduce the
cost of regression testing based on a user’s needs, Gupta et al.
[20] developed an automatic regression testing tool to gener-
ate test data with high efficiency. In addition, Scalabrino et al.
[21] proposed a search-based tool, Ocelot, to automatically
generate test data, with the purpose of reducing the testing
cost. For improving the efficiency of generating test data
based on an EOA, Lv et al. [22] proposed a method of gener-
ating test data for covering multiple paths by combining
metamorphic relations. However, the above methods are
only applicable to sequential programs.

For variable correlations in multi-threaded code, Janne-
sari and Wolf [23] proposed a parallel method of generating
test data, so as to improve the efficiency of detecting concur-
rent bugs. In order to reduce the computational complexity
of finding concurrency bugs, Bo et al. [24] proposed an effec-
tive method to improve the efficiency of generating test data
by combining the advantages of both bug-driven and cover-
age-guided techniques. For improving the efficiency of gen-
erating test data for multi-threaded concurrent programs,
Yue et al. [25] proposed an input-driven active testing
approach with two test input selection strategies based on
the diversity metric of test data. For concurrent program
testing, Sahooa and Ray [26] compared the efficiency of
search-based techniques in test data generation. However,
the above methods are only suitable for testing concurrent
programs. Concurrent algorithms are indeed beneficial to
the development of test data generation techniques for con-
current programs. However, these concurrent algorithms
have not provided effective strategies for solving the prob-
lem of high computational cost when generating test data.
In view of this, our proposed approach estimates the fitness

Fig. 2. Slave process source code for the example program.

Fig. 3. Control-flow graph for the example program.
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of each evolutionary individual based on knowledge
obtained during the evolution, and only select a small num-
ber of individuals with good estimations to execute pro-
grams under test, which can alleviate the computational cost
resulted from program executions.

For the path coverage testing of MPI programs, we
employed a co-evolutionary genetic algorithm to automati-
cally generate test data that cover a path of an MPI program
without non-determinism [8]. To alleviate negative influen-
ces of these scheduling sequences, we proposed a method
of reducing scheduling sequences when generating test
data to cover a target path [4]. In addition, we utilized a
genetic algorithm to generate test data that cover a path of
an MPI program by mutating the communication parame-
ters of a non-deterministic primitive [27].

However, when the above methods are employed to gen-
erate test data, it is required to execute an MPI program
under test for the maximum number of runs, i.e., the prod-
uct of the population size and the maximum number of gen-
erations in the worst case, so as to evaluate the fitness of
each individual. Especially, considering that executing a
complex MPI program is time-consuming, if a method
requires a large number of program executions, it will be
said computationally expensive. To reduce the computa-
tional cost for a complex MPI program, this paper employs
an ESM to estimate the fitness of each individual, with the
aim of greatly reducing the number of times the program
has to be executed, hence alleviating the computation cost
for individual evaluations.

2.3 Ensemble Surrogate Model

Surrogate model has been widely applied in software test-
ing with various testing criteria. To determine the correct-
ness of a program, Chang et al. [28] formed a training set
based on test data and their covered paths, and obtained a
surrogate model of simulating the execution process of a
program. To get representative test data, Christiansen and
Dahmcke [29] employed a surrogate model to analyze exist-
ing and manually marked data, and combined them with
newly generated data. In addition, when applying a surro-
gate model to software testing, Zhang [30] pointed out that
an ESM is superior to an SSM. Therefore, we employ an
ESM to estimate the fitness of an individual in this paper, so
as to generate test data with high efficiency.

There generally have two ways to train an ESM. One is to
train each base surrogate model (BSM) in an iterative man-
ner, and the other is to do it in a parallel manner. The former
is so called boosting [31], which is often computationally
expensive. The latter is termed bagging [32], with obvious
advantages in terms of the time consumption. Furthermore,
Zhou [33] pointed out that a bagging ESM often utilizes the
method of bootstrap to generate a number of training sets,
so as to train each BSM, thus avoiding the over-fitting or
under-fitting problem resulted from an SSM. In view of the
goal of reducing the computational cost in generating test
data, we employ the bagging method to train an ESM.

Given a training set, denoted as D ¼ fðXj; yjÞ; j ¼
1; 2; . . . ; NÞg, where ðXj; yjÞ represents a training sample,Xj

and yj are the input and the output of the sample, respec-
tively, and N refers to the number of samples. In addition,
Np represents the number of BSMs in an ESM. To achieve

an ESM, we first generate Np training sets using the boot-
strap method based on D, denoted as Dlðl ¼ 1; 2; . . . ; NpÞ,
with the same size as D. Following that, we train the lth
BSM, denoted as BSMl, based on Dl, which is utilized as
the lth estimation model. Finally, either the voting method
or the average method is employed according to a specific
task to each BSM when forming the estimation output of the
ESM. Algorithm 1 provides the principle of an ESM. In the
algorithm, T ¼ fðXt

jÞ; j ¼ 1; 2; . . . ;MÞg is an testing input
set with its size ofM, among which the output of each input
is required to estimate using the ESM.

Algorithm 1. The Principle of an ESM

Input:D, Np, T
Output: �Y (output estimations of T )
1: for l ¼ 1 ! Np do
2: Dl ¼ bootstrapðDÞ;
3: Train lth base surrogate model BSMl based onDl;
4: for j ¼ 1 ! M do

5: ŷlj ¼ BSMlðXt
jÞ;

6: end
7: end
8: for j ¼ 1 ! M do
9: sum ¼ 0;
10: for l ¼ 1 ! Np do
11: sumþ ¼ ŷlj;
12: end
13: �ytj ¼ sum=Np;
14: end
15: return �Y ¼ ½�yt1; �yt2; . . . ; �ytM �;

3 INTEGRATING AN ESM INTO TEST DATA

GENERATION

3.1 Overall Framework

In this section, we propose the integration of an ESM into
the process of generating test data using an EOA. The pur-
pose of the integration is to improve the efficiency of gener-
ating test data by reducing the number of times the
program has to be executed.

Algorithm 2 provides the overall framework of the pro-
posed method. For the inputs of the pseudo-code, ColGen is
the number of iterations using an EOA to form the training
set, MaxGen is the maximum number of generations for
evolving a population using an EOA, jBj is the number of
target paths (please see Section 4.3 for details). In Algorithm
2, we first initialize a population, set the coverage flag of
each path to 0, and let each training set be empty (lines 1 to
3). Then, the current population is taken as input of Algo-
rithm 3, which is executed to form the training sets for all
the target paths (line 7). Next, we construct an ESM based
on the training set by executing Algorithm 4, and estimate
the fitness of each evolutionary individual (line 10). Follow-
ing that, Algorithm 5 is executed based on the fitness esti-
mations, and a small number of representative individuals
are selected to execute the program, with the purpose of
achieving their real fitness (lines 11 to 13). Next, during gen-
erating test data covering the lth path, if the fitness of an
individual is equal to 1, test data generation of the ðlþ 1Þth
target path will be performed (lines 14 to 22). Finally, we
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update the current population to a new one based on For-
mula (4) and return to line 7 or 10, so as to form each train-
ing set or generate test data covering the current target path
(line 23).

Algorithm 2. The Framework of the Proposed Method

Input:MaxGen, ColGen, jBj, w, c1, c2, �, h
Output: TD (test data covering all the target paths)
1: Initialize population;
2: Flag½r� ¼ 0ðr ¼ 1; 2; . . . ; jBjÞ (coverage flag);
3: Dk ¼ fðk ¼ 1; 2; . . . ; jBjÞ (training set);
4: for r ¼ 1 ! jBj do
5: for i ¼ 1 ! MaxGen do
6: if i <¼ ColGen && r ¼¼ 1 then
7: Execute Algorithm 3 with the current population as

input to form the training setDkðk ¼ 1; 2; . . . ; jBjÞ;
8: end
9: if i > ColGen jj r 6¼ 1 then
10: Execute Algorithm 4 withDr to construct an ESM as

well as apply it to estimate the fitness of each indi-
vidual in the current population;

11: Execute Algorithm 5 to select selsize individuals,
denoted as Ind;

12: for j ¼ 1 ! selsize do
13: Evaluate F ðIndjÞ by executing the program;
14: if F ðIndjÞ ¼¼ 1 then
15: Add Indj to TD, and Flag½r� ¼ 1;
16: Break;
17: end
18: end
19: end
20: if Flag½r� ¼¼ 1 then
21: Break;
22: end
23: Evolve the current population into a new one and

redefine the new population as the current one;
24: end
25: end
26: return TD;

It should be noted that Algorithm 3 is employed to form
the training sets, the function of Algorithm 4 is to construct
and apply an ESM, and Algorithm 5 aims to selecting supe-
rior evolutionary individuals. The details of the above algo-
rithmswill be given in Sections 3.2, 3.3, and 3.4, respectively.

3.2 Formatting the Training Set

During the process of generating test data using an EOA, a
large amount of knowledge associated with testing is gener-
ally generated. In order to make full use of these knowl-
edge, we combine the generated test data with their fitness
evaluations to form a training set, which is employed to
train an ESM. With the recognition that the fitness of an evo-
lutionary individual are not the same for different target
paths, we set a training set to store evolutionary individuals
and their fitness for each target path.

To form the training set, we first use an EOA to generate
a certain number of individuals, i.e., test data, and obtain
their traversal paths by executing programs. Then, the fit-
ness of each individual is calculated between the obtained
traversal path and each target one, respectively. Finally, for

each target path, we add those individuals and their fitness
to the corresponding training set.

In addition, there will inevitably be redundancy between
the evolutionary individuals in the steps of forming the
training set. Therefore, we calculate the information entropy
after adding a new sample, so as to determine whether the
sample can be added to the training set or not [34]. In other
words, an individual and its fitness can be added if and
only if the information entropy of the training set can be
increased. The reason lies in that a training set having a
large information entropy generally contains samples with
uniform distribution, which is beneficial to the generaliza-
tion performance of a surrogate model trained based on the
training set.

The pseudo-code of forming the training set using an
EOA is provided in Algorithm 3. In the algorithm, we exe-
cute the program under each individual in the population,
and obtain the traversal path of the individual (line 2). For
each target path, we calculate the fitness of each individual,
and update the training set based on the information
entropy (lines 3 to 6).

Algorithm 3. Forming the Training Set

Input: pop ¼ fðXjÞ; j ¼ 1; 2; . . . ; popsizeg (population),
popsize (population size)

Output:Dkðk ¼ 1; 2; . . . ; jBjÞ (training set)
1: for j ¼ 1 ! popsize do
2: Execute the program under Xj in pop and get the traversal

path P ðXjÞ;
3: for k ¼ 1 ! jBj do
4: Calculate the fitness F ðXjÞ between the kth target path

and P ðXjÞ;
5: Add Xj and F ðXjÞ to Dk based on the information

entropy;
6: end
7: end
8: returnDk;

3.3 Constructing and Applying an ESM

Based on the training set formed in Section 3.2, we construct
an estimation model and apply it to estimate an individual’s
performance in this section. To fulfill this task, we need to
address the following two issues. One is the type that the
surrogate model belongs to, and the other is the way to train
the surrogate model.

For the first issue, considering that the SSM has disadvan-
tages, e.g., low generalization performance, which is mainly
manifested in over-fitting or under-fitting. Therefore, we
adopt an ESM as the type of the estimation model. In addi-
tion, given the fact that RBFNs have beenwidely used in esti-
mating the fitness of an individual [15], [16], [35], [36], an
RBFN is employed as a BSM. It should be noted that other
SSMs can also be employed as a BSM in an ESM, however,
the focus of this paper is to study the effectiveness and effi-
ciency of applying surrogate models to reduce the testing
cost, rather thanwhich type of surrogate models to be used.

RBFN is a network with a unique hidden layer and out-
put layer. The activation function of each hidden layer node
is Gaussian, and that of the output node is linear. When
RBFN was applied to estimate the fitness of an evolutionary
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individual, Wang et al. [37] set the number of nodes in the
hidden layer as the dimension of the decision variable, and
used the K-means algorithm to train the center and width of
each Gaussian kernel function. In addition, the pseudo-
inverse method has been applied to train the connection
weight between each hidden layer node and the output
node in [37]. Therefore, we use the above same methods to
solve these parameters in this section.

Regarding the second issue, we develop a method of con-
structing and applying an MPI-based ESM. This method
includes a master process and several slave processes, the
details of which are as follows: we first use the bootstrap
sampling method [38] to obtain several training sets and
create several slave processes in the master process. Then,
we place an RBFN in each slave process, and train the
RBFN in the slave process based on a training set. Following
that, the fitness of each evolutionary individual is estimated
using the trained RBFN in each slave process. Finally, we
use the average method to integrate the fitness estimation of
all RBFNs as the individual’s final estimation in the master
process.

Algorithm 4 gives the pseudo-code for the construction
and application of an MPI-based ESM. For the number of
RBFNs, we generate the same number of training sets and
create the same number of slave processes in this algorithm
(lines 1 to 5). Each slave process allocates a generated train-
ing set for training an RBFN in the slave process, so as to
estimate the fitness of each evolutionary individual (lines 6
to 13). We calculate the average estimations of all RBFNs as
the fitness estimation for this individual (line 15).

Algorithm 4. Constructing and Applying an MPI-Based
ESM

Input: pop ¼ fðXjÞ; j ¼ 1; 2; . . . ; popsizeg (population),Dk

(training set corresponding to the kth target path), Np
(number of RBFNs)

Output: �F ðXjÞ (fitness estimation of individualXj)
1: ==Master process;
2: for l ¼ 1 ! Np do
3: Dl

k ¼ bootstrapðDkÞ;
4: end
5: Create Np slave processes;
6: for l ¼ 1 ! Np do
7: SendDl

k to RBFNl in the lth slave process;
8: end
9: == Slave process;
10: for l ¼ 1 ! Np do
11: Train RBFNl based onDl

k;
12: F̂ lðXjÞ ¼ RBFNlðXjÞ;
13: end
14: ==Master process;
15: Calculate the mean of all F̂ lðXjÞ as the fitness estimation,

denoted as �F ðXjÞ;
16: return �F ðXjÞ;

3.4 Selecting Superior Individuals

In the process of generating test data using an EOA, we
need to execute the program under each individual in the
population, which will lead to expensive computational
costs. In view of this, if a small number of individuals are

selected to execute a program for obtaining their real fitness,
the number of times the program has to be executed will be
greatly reduced, hence alleviating the computational costs
resulted from evaluating individuals.

Since we tackle the problem of generating test data for
path coverage, the larger the fitness of an individual is, the
closer the path traversed by the individual is to the target
path, so the closer the individual is to the desired test
datum. Therefore, we select individuals with a large fitness
estimations to execute the program.

Algorithm 5. Selecting Superior Individuals

Input: pop ¼ fðXjÞ; j ¼ 1; 2; . . . ; popsizeg (population), �F ðXjÞ
(fitness estimation ofXj)

Output: Ind (selected individuals)
1: for i ¼ 1 ! popsize do
2: for j ¼ 1 ! popsize� i do
3: if �F ðXjÞ < �F ðXjþ1Þ then
4: ExchangeXj andXjþ1;
5: end
6: end
7: end
8: for j ¼ 1 ! selsize do
9: AddXj to selected individuals Ind;
10: end
11: return Ind;

To fulfill this task, we sort individuals within a popula-
tion in a descending order of their fitness estimations, and
select a small number of individuals with good estima-
tions, called superior individuals, from front to back, so as
to further execute the program for calculating their real fit-
ness. Algorithm 5 gives the pseudo-code for selecting supe-
rior individuals. In the algorithm, evolutionary individuals
are ranked (lines 1 to 7). a small number of individuals are
selected (lines 8 to 10).

4 EXPERIMENTS

We apply the proposed method to test various complex MPI
programs in this section, and verify whether it can improve
the efficiency of generating test data or not through a series
of experiments. The contents of this section are organized as
follows. The research questions are first raised, followed by
the programs under test and experiment settings. Finally,
the experimental results are provided and analyzed.

4.1 Research Questions

In this paper, an EOA is employed to generate a number of
test inputs, and a training set is formed by combining these
test data with their fitness. Based on the training set, an
ESM is trained to estimate the fitness of an individual.
Therefore, it is necessary to verify whether the ESM can
accurately estimate the fitness of an individual. In addition,
based on the estimated fitness, we select a small number of
individuals with good performance to execute the MPI pro-
gram, so as to achieve their real fitness. Thus, it is necessary
to verify that executing an MPI program with superior indi-
viduals can effectively reduce the computational costs
resulted from evaluating individuals.
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When using the proposed method to generate test data
that cover the target paths, if such operations as forming the
training set, training an ESM, and selecting superior indi-
viduals to execute a program are helpful for improving the
efficiency of generating test data, then it will be shown that
the proposed method is advantageous. In view of the above
analysis, the following research questions are raised.

RQ1 Can the ESM trained based on the formed training set
accurately estimate the fitness of an individual?

Given the fact that a single RBFN has been widely used to
estimate the fitness of an individual, the ESM and the single
RBFN are employed to estimate the fitness of an individual
during the evolution to answer this question, respectively.

Here, we denote the comparative method of integrating
an RBFN into test data generation as RBFN-S. The proposed
method and RBFN-S are employed to generate test data,
respectively. If the proposed method is more efficient and
effective, then it is rational that the ESM can accurately esti-
mate the fitness of an individual.

RQ2 Has the proposed method a low computational cost due
to executing an MPI program only with selected superior
individuals?

Considering that particle swarm optimization (PSO) has
the advantages of a simple mechanism, easy implementa-
tion, and fast optimization speed, Windisch [39] proposed a
method of generating test data using PSO, and verified that
it is superior to genetic algorithms. In view of this, we
employ PSO as an EOA to generate test data, so as to evalu-
ate the method proposed in this paper.

To reduce the testing cost, we employ an ESM to estimate
the fitness of each individual in the subsequent evolutions,
so as to alleviate the number of evaluations. However, we
do not know the experimental results without the proposed
strategies. In other words, the computational cost of only
employing PSO to generate test data is unknown. Therefore,
it is necessary to compare the proposed method with the
method of generating test data only using PSO, which can
verify whether the proposed method can improve the test-
ing efficiency.

Here, we denote the method of generating test data using
PSO without the proposed strategies as PSO-W. To answer
this question, we generate test data using the proposed
method and PSO-W, respectively. If it is more efficient and
effective to generate test data using the proposed method,
the computation cost will be reduced if we execute the pro-
grams against a small number of individuals with good
estimations.

RQ3 Can the proposed method improve the efficiency of gener-
ating test data?

In view that CGA has been proposed to generate test data
that cover paths of MPI programs and it is superior to
genetic algorithms and the random method in terms of effi-
ciency and effectiveness [8], we generate test data using the
proposed method and CGA, respectively. If the proposed
method is more efficient and effective than CGA, the pro-
posed method will have a capability in improving the effec-
tiveness and efficiency in generating test data, and the
experimental results will be more valuable and trustworthy
for MPI programs.

We adopt the student’s t-test to show whether there is a
significant difference or not in terms of an indictor between

the proposed method and the comparative one in this
paper. To fulfill this task, we set the significance level to
0.05, which indicates that if the P-value of an indicator is
smaller than 0.05, then the proposed method will have a sig-
nificant difference with the comparative one. On this cir-
cumstance, we further determine whether the proposed
method is significant better than the comparative one or not
according to their average values.

4.2 The Programs Under Test

In the experiments, seven complex open source MPI pro-
grams are selected as test objects. Among them, Convex,
QR_value, and Cjacobi were implemented by Guoliang Chen
(glchen@ustc.edu.cn) and his team members [40], with Con-
vex being utilized to seek the smallest convex polygon from
all the given points in a plane. ForQR_value, it aims to obtain
the eigenvalues of a matrix. Regarding Cjacobi, its function is
to diagonalize a symmetric matrix by an orthogonal similar-
ity transformation. In addition, Heat is a parallel solver for
heat equations [41], and was developed by David Lecomber
(david@allinea.com) et al. With respect to Depsolver, Kfray,
and ClustalW, they were employed in [42]. Among them,
Depsolver is a parallel multi-media 3D electrostatic solver,
Kfray is a ray tracing program which is utilized to create real
images, and ClustalW is a commonly used multi-gene
sequence alignment tool. The developers of the above three
programs are Carlos Rosales Fernandez (carlos.rosales.fer-
nandez@gmail.com), Ait-Si-Amer (aitsiame@polytech.upmc.
fr), and Mick Elliot (micke@sfu.ca), respectively. It should be
noted that the communication behaviors of the above bench-
marks include both blocking/non-blocking point-to-point
communication and collective communication. The basic
information of these programs is listed in Table 1.

Myers et al. [43] pointed out that if a program contains
more than 500 lines of code, then the program will belong to
a large program. In addition, the computational cost when
testing an MPI program lies in the following two aspects:
the calculation cost and the communication cost. Among
them, the calculation cost is mainly affected by the intra-
process calculation, which can be determined by the lines of
code to a certain extent. In contrast, the communication cost
is mainly determined by the number of inter-process com-
munication, which can be indirectly judged by the number
of communication primitives and the number of processes.
Based on the above analysis and the data in Table 1, we can
observe that the programs under test are diverse in the lines
of code, the number of processes, and the number of com-
munication primitives, indicating their sufficient complex-
ity and representativeness.

TABLE 1
Basic Information of the Programs Under Test

Program # of processes # of primitives lines of code (LOC)

Convex 14 49 569
QR_value 8 34 575
Cjacobi 7 97 721
Heat 12 72 613
DepSolver 6 63 8,988
Kfray 8 116 12,728
ClustalW 24 178 23,265
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4.3 Experimental Settings

The experimental platform includes 2 computing nodes.
The hardware configuration of each computing node is Intel
Core i9-9900K CPU, 32GB RAM, 1TSSD hard disk, and
Gigabit Ethernet. Its software configuration is Windows 10
operating system, MPI+C/C++ programming language,
and Shark machine learning library [44].

In this paper, the following two steps are taken to select the
basis target path set for a program, so that the paths in the set
have a good coverage of the statements and branches of the
program. First, the set of feasible basis sub-paths is selected
for each process of a program according to [45]. Following
that, the feasible sub-paths corresponding to all the processes
of the program are combined to form a number of target
paths, which further constitute the basis target path set.

For the first step, the set of feasible basis sub-paths in si is
denoted as Bi, and initially Bi ¼ f. We first extract a sub-
path, denoted as spi1, using the breadth-first search algo-
rithm [46] based on the CFG of si. Then, we determine its
feasibility by use of EPAT [47]. If it is feasible, we will put it
into Bi. Next, we investigate the second sub-path, denoted
as spi2, followed by determining whether it can be linearly
expressed by the sub-path in Bi or not through the linear
programming tool, lpsolve, in [48]. If it cannot and is feasi-
ble, then we will put it into Bi. The above steps will be
repeated until all the basis sub-paths of si are checked.

Regarding the second step, the number of feasible sub-
paths of si is denoted as jBij. To obtain a target path of S,
we first generate a copy of Bi. Then, we sample Bi without
replacement, and form a target path of S by combining all
the sampled sub-paths. If Bi ¼ f, we will further sample the
copy of Bi with replacement, and form another target path
of S using the same method. The above process will be
repeated until the sub-path set with the largest cardinality
is empty. Here, all the combined target paths form the set of
basis target paths to be covered, denoted as B. In this way,
the number of target paths in B is the same as the cardinal-
ity of the largest sub-path set, and denoted as jBj.

The above method can guarantee that the selected target
paths include any statement and branch of the program
under test, suggesting their good representativeness. For
more details of selecting B, please refer to [4].

When using PSO, the position and speed of each evolu-
tionary individual in a population are updated based on the
Formula (4).

V genþ1
j ¼ w � V gen

j þ c1 � � � ðpgenj �Xgen
j Þ

þ c2 � h � ðpgeng �Xgen
j Þ

Xgenþ1
j ¼ Xgen

j þ V genþ1
j

8
><

>:
; (4)

where gen represents the number of iterations. For the
parameter settings of PSO, we also employ the values from
[39], which are provided as follows. The value ofw decreases
linearly from 0.9 to 0.4. The population size is 40 ðj ¼
1; 2; . . . ; 40Þ. The learning factors, c1 and c2, are 1.49. The Vmax

is set according to the input space of a specific program, and
MaxGen is 1,200.

To employ CGA, we continue to use the parameter set-
tings of CGA from [8], and the related parameters are given
as follows. The size of the cooperative population is 10, the
number and size of sub-populations are m� 1 and 30,

respectively, the numbers of representatives and dominant
individuals are equal to 2 and 4, respectively, and the peri-
ods of evolving the cooperative and sub-populations are 5
and 2, respectively. In addition, roulette-wheel selection,
one-point crossover, and one-point mutation with their
probabilities of 0.9 and 0.3, respectively, are adopted.

In addition, we analyze the computational complexity of
PSO, CGA, and the proposed method when generating test
data, so as to highlight the objective of this paper. Consider-
ing that the population size of PSO is 40, the complexity,
i.e., the number of times the program has to be executed,
when generating test data using PSO in the worst case is 40 �
MaxGen � jBj. In view that CGA contains a cooperative pop-
ulation with its size of 10 and m� 1 sub-populations with
each size of 30, and m� 1 sub-populations in all processes
are equivalent to a cooperative population, the computa-
tional complexity of CGA in the worst case is ð10þ 30Þ �
MaxGen � jBj. With respect to the proposed method, the
complexity is divided into two parts, one is the number of
times the program has to be executed, and the other is the
number of training and applying surrogate models. In view
of this, the computational complexity of the former and
the latter using the proposed method is ð40� selsizeÞ �
ColGenþ selsize �MaxGen � jBj and jBj þ 40 �MaxGen �
jBj � 40 � ColGen, respectively, in the worst case. Based on
the above analysis, the efficiency of the proposed method
depends on whether the training and application of surro-
gate models can significantly reduce the computational cost
of program executions.

Moreover, Quinlan [49] set the number of BSMs to 1, 2, ...,
50, for achieving the optimal number of BSMs in an ESM. In
order to obtain the optimal value of Np in a larger scope, we
set the value of Np to integers ranging from 1 to 150 in this
paper.

We employ the following two indicators when answer-
ing the research questions, the success rate and the time
consumption. Among them, the success rate reflects the
effectiveness of a method, which is calculated by the ratio of
the number of runs which successfully find the desired test
data to the total number of runs. For the time consumption,
it is employed to measure the efficiency of a method, which
is time spent in generating test data, or reaching the maxi-
mum number of generations when failing to generate test
data. It is clear that the higher the success rate and the lower
the time consumption of a method are, the more advanta-
geous the method is. In order to alleviate the negative influ-
ence of random factors on the performance of a method,
each method is run 20 times independently for each basis
target path set, and the experimental results of each run are
recorded, followed by calculating the success rate and the
average time consumption.

4.4 Key Parameter Settings

Before generating test data using the proposed method, we
need to determine three key parameters, i.e., ColGen, Np,
and selsize.

To determine the optimal value of ColGen, we take Con-
vex as an example, and select its 15 basis target paths. In
addition, we set Np and selsize to 75 and 20, respectively.
For the selected target paths, we first set ColGen from 1 to
1,200 with the step size of 10, and evolve a population using
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PSO for ColGen generations, so as to form the corresponding
training set for each target path. Then, an MPI-based ESM is
trained based on each training set, followed by estimating the
fitness of each individual in the subsequent population using
the ESM. Finally, twenty superior individuals are selected
based on the estimated fitness to execute the program. The
above steps are run 20 times, and the success rate and the
average time consumption are calculated. We will obtain the
optimal value ofColGenwhen themaximum success rate and
theminimumaverage time consumption are achieved.

Fig. 4 depicts the curves of the success rate and the aver-
age time consumption w.r.t. the value of ColGen. In this fig-
ure,“o” indicates the success rate, and “�” refers to the
average time consumption (the same symbol has the same
meaning in the following). In this figure, the success rate is
the maximum when ColGen is equal to 310, and thereafter it
changes little with the value of ColGen. In addition, the
average time consumption reaches the minimum value
when ColGen is 480. In view of these, it is rational to set the
value of ColGen as 480.

To determine the optimal value ofNp, we adopt the same
set of target paths and parameter settings as those in the
above-mentioned experiments except for setting the value
of ColGen as 480. In the experiments, we set the value of Np
from 1 to 150 with the step size of 1, and determine its opti-
mal value using the similar steps and criteria for determin-
ing the optimal value of ColGen.

Fig. 5 depicts the curves of the success rate and the aver-
age time consumption w.r.t. the value of Np. Fig. 5 reports

that the success rate reaches the maximum value once Np is
43, and thereafter it varies little as Np increases. For the
average time consumption, it is the minimum in case of the
value of Np being 56. Therefore, we set the optimal value of
Np as 56.

In order to determine the optimal number of selecting
superior individuals, we adopt the same basis target path
set as that in the above-mentioned experiments except for
the value of ColGen and Np being 480, and 56, respectively.
Besides, we select 1 to 40 individuals sorted by the esti-
mated fitness to execute Convex, and determine its optimal
value using the similar steps and criteria for determining
the optimal value of ColGen.

Fig. 6 depicts the curves of the success rate and the aver-
age time consumption w.r.t. the value of selsize. From this
figure, the success rate is the maximum on the circumstance
of selsize being larger than or equal to 6, and thereafter it
varies little with the value of selsize. Regarding the average
time consumption, it achieves the minimum value when
selsize is 10. Therefore, it is appropriate to set the value of
selsize as 10.

It should be noted that each method is run 20 times inde-
pendently, and each run is to seek all desired test data that
cover the basis path set of an MPI program. As a result, if
test data covering one or more paths in the path set cannot
be generated, this run will be deemed unsuccessful, thereby
reducing the success rate and forming the outliers of the
success rate in Figs. 4, 5, and 6.

For each program under test, we can obtain its optimal
parameters using the above method, listed in Table 2. In
addition, considering that each run of the proposed method
for tuning the parameters of an MPI program under test is

Fig. 4. The curves of the success rate and the average time consumption
w.r.t. the value of ColGen.

Fig. 5. The curves of the success rate and the average time consump-
tion w.r.t. the value of Np.

Fig. 6. The curves of the success rate and the average time consumption
w.r.t. the value of selsize.

TABLE 2
The Optimal Values of Key Parameters

Program Np ColGen selsize

Convex 56 480 10
QR_value 49 430 8
Cjacobi 77 570 9
Heat 72 550 8
DepSolver 81 640 11
Kfray 86 660 10
ClustalW 93 630 13
Average 73 566 10
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probably time-consuming, we pick up one universal set of
parameters consisting in the average of each parameter at
the last row in Table 2, i.e., ColGen ¼ 566, Np ¼ 73, and
selsize ¼ 10, so as to improve the generalization of the pro-
posed method and facilitate the use of other testers.

4.5 The Experimental Results and Analysis

(1)Answering RQ1
When answering RQ1, we generate test data using the

proposed method and RBFN-S to cover the target path set,
respectively, and calculate the average time consumption of
20 runs. To further determine the difference in efficiency
between the above two methods, the average number of
evaluated individuals need to be compared. Table 3 lists the
average time consumption and the reduction rate. In this
table, columns 3 and 4 are the average time consumption
using the proposed method and RBFN-S, respectively. Col-
umn 5 is the reduction rate, calculated by ðv� v�Þ=v�
100%, where v� and v are the average time consumption of
the proposed method and RBFN-S, respectively.

We can see from Table 3 that, (1) for each program under
test, the average time consumption of the proposed method
is smaller than that of RBFN-S, where Convex has the small-
est average time consumption, and the above two methods
take 124.2 s and 192.3 s, respectively. The average time con-
sumption of ClustalW is the biggest, where the two methods
take 3592.8 s and 9606.4 s, respectively. For all the seven
programs, the average time consumptions of the two meth-
ods are 1393.5 s and 3316.8 s, respectively, and (2) the reduc-
tion rate on the average time consumption is different for
different programs, where ClustalW has the biggest reduc-
tion rate, which is up to 62.6 percent, and Cjacobi has the
smallest that, which is 33.2 percent. For all the programs,
the average reduction rate between the above methods is
equal to 47.9 percent. The experimental results show that

the proposed method can greatly reduce the time consump-
tion when generating test data.

Table 4 lists the average number of evaluated individuals
and the reduction rate. The meaning of each column in this
table can be similarly understood according to Table 3. It
can be seen from Table 4 that, (1) for each program, the aver-
age number of evaluated individuals in the proposed
method is smaller than that in RBFN-S, where the average
number of evaluated individuals for Convex is the smallest,
39013.8 and 60580.4, respectively. The average number of
evaluated individuals for ClustalW is the biggest, where the
two methods evaluate 116718.5 and 317169.8 individuals,
respectively. For all the programs, the average numbers of
evaluated individuals are 82301.0 and 173706.5, respec-
tively, and (2) the reduction rate on the average number of
evaluated individuals is different for different programs.
ClustalW corresponds to the maximum reduction rate,
which is up to 63.2 percent, and Cjacobi is the smallest,
which is 32.6 percent. For all the seven programs, the aver-
age reduction rate is 48.1 percent. It is clear that the number
of evaluated individuals can be greatly reduced using the
proposed method.

From Tables 3 and 4, we can see that the number of eval-
uated individuals is positively correlated with the average
time consumption for each program, namely the more the
number of evaluated individuals is, the more the average
time consumption is. Correspondingly, the average of each
indicator of each program has the above relationship.

To check whether the two methods have a significant dif-
ference in terms of the above indicators or not, we conduct
the student’s t-test, with the experimental results being
listed in Table 5.

Table 5 shows that, for all the MPI programs under test,
there is significant differences in the time consumption and
the number of evaluated individuals between the proposed
method and RBFN-S. Together the average values in the
last row of Tables 3 and 4, the efficiency of generating test
data using the proposed method is significantly higher than
that using RBFN-S.

For the proposed method and RBFN-S, we compare their
success rate. Table 6 lists the success rate and percentage
difference between the two methods. In this table, columns
3 and 4 show the success rate of the above two methods,
respectively. Column 5 is the percentage difference, calcu-
lated by u� � u, where u� and u are the success rate using
the two methods, respectively. It should be noted that if we
employ the proposed method or RBFN-S to generate all
desired test data covering the basis path set of an MPI pro-
gram, this run will be deemed to be successful.

TABLE 3
Average Time Consumption of Different Surrogate Models

Program jBj Proposed method/s RBFN-S/s Reduction rate/%

Convex 15 124.2 192.3 35.4
QR_value 11 207.9 403.7 48.5
Cjacobi 17 258.6 387.1 33.2
Heat 19 137.5 254.2 45.9
DepSolver 24 2605.7 4991.8 47.8
Kfray 33 2827.5 7382.5 61.7
ClustalW 27 3592.8 9606.4 62.6
Average 20.9 1393.5 3316.8 47.9

TABLE 4
Average Number of Evaluated Individuals

of Different Surrogate Models

Program jBj Proposed method RBFN-S Reduction rate/%

Convex 15 39013.8 60580.4 35.6
QR_value 11 67133.4 133466.0 49.7
Cjacobi 17 87243.7 129441.7 32.6
Heat 19 66358.2 124733.5 46.8
DepSolver 24 98126.9 186199.1 47.3
Kfray 33 101512.3 264354.9 61.6
ClustalW 27 116718.5 317169.8 63.2
Average 20.9 82301.0 173706.5 48.1

TABLE 5
P-Values of the Student’s t-Test

Program Time consumption # of evaluated individuals

Convex 0.003 0.001
QR_value < 0.001 < 0.001
Cjacobi 0.005 0.007
Heat < 0.001 < 0.001
DepSolver < 0.001 < 0.001
Kfray < 0.001 < 0.001
ClustalW < 0.001 < 0.001
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From Table 6, we can see that, (1) for each program, the
success rate using the proposed method is higher than that
using RBFN-S, and Convex, Cjacobi, Heat, and Kfray have the
highest success rate using the proposed method, which are
100 percent, whereas those of these programs using RBFN-S
are 85, 90, 80, and 80 percent, respectively. For all the seven
programs, the success rates of the above two methods are
96.4 and 82.1 percent, respectively, and (2) different programs
have different percentage differences. The percentage differ-
ences of QR_value, Heat and Kfray are the biggest, which are
20 percent, and DepSolver has the smallest percentage differ-
ence, which is 5 percent. For all the seven programs, the aver-
age percentage difference is 14.3 percent. In view of the above
analysis, we easily conclude that the proposed method can
effectively generate test data that cover the target paths.

From the above experimental results and analysis, we
can draw the following conclusion: the proposed method
can generate test data with better performance in effective-
ness and efficiency than the comparative one, meaning the
advantageous of using the constructed ESM to estimate the
fitness of an individual.

(2)Answering RQ2
To answer RQ2, the proposed method and PSO-W are

utilize to generate test data that cover the target paths,
respectively. Tables 7, 8, 9, and 10 list the related experimen-
tal results, and the meaning of each column in these tables
can be similarly understood according to Tables 3, 4, 5, and
6, respectively.

From Table 7, we can summarize that, (1) for each pro-
gram, the average time consumption using the the proposed
method is smaller than that using PSO-W, where Convex has
the smallest average time consumption, and 124.2 s and
158.4 s, respectively. The biggest average time consumption
is ClustalW, where 3592.8 s and 6336.5 s are spent by the
two methods, respectively. For all the seven programs, the
average time consumptions using the two methods are
1393.5 s and 2292.7 s, respectively, and (2) different pro-
grams have different values of the reduction rate, where the
reduction rate of ClustalW is up to 43.3 percent, which is the
biggest, whereas the reduction rate of Cjacobi, only 19.9 per-
cent, is the smallest. For all the programs, 32.1 percent aver-
age reduction rate is achieved. The experimental results
clearly show that the proposed method can greatly reduce
the time consumption when generating test data.

Table 8 lists the average number of evaluated individuals
and the reduction rate of the two methods. Table 8 reports
that, (1) for each program, the average number of evaluated
individuals using the proposed method is smaller than that
using PSO-W, where the smallest average number of evalu-
ated individuals is got by Convex, 39013.8 and 49884.7,
respectively. The biggest average number of evaluated indi-
viduals is got by ClustalW, where 116718.5 and 207652.8
individuals are evaluated by the two methods, respectively.
For all the programs, the average numbers of evaluated
individuals are 82301.0 and 126889.2, respectively, and (2)
the reduction rate of different programs is different. The
reduction rate of ClustalW is up to 43.8 percent, which is the
maximum, whereas that of Cjacobi, only 20.6 percent, is the

TABLE 6
Success Rate of of Different Surrogate Models

Program jBj Proposed method/% RBFN-S/% Difference/%

Convex 15 100 85 15
QR_value 11 95 75 20
Cjacobi 17 100 90 10
Heat 19 100 80 20
DepSolver 24 95 90 5
Kfray 33 100 80 20
ClustalW 27 85 75 10
Average 20.9 96.4 82.1 14.3

TABLE 7
Average Time Consumption Between the

Proposed Method and PSO-W

Program jBj Proposed method/s PSO-W/s Reduction rate/%

Convex 15 124.2 158.4 21.6
QR_value 11 207.9 331.2 37.2
Cjacobi 17 258.6 322.8 19.9
Heat 19 137.5 194.7 29.4
DepSolver 24 2605.7 3772.1 30.9
Kfray 33 2827.5 4932.9 42.7
ClustalW 27 3592.8 6336.5 43.3
Average 20.9 1393.5 2292.7 32.1

TABLE 8
Average Number of Evaluated Individuals Between

the Proposed Method and PSO-W

Program jBj Proposed method PSO-W Reduction rate/%

Convex 15 39013.8 49884.7 21.8
QR_value 11 67133.4 106692.6 37.1
Cjacobi 17 87243.7 109853.4 20.6
Heat 19 66358.2 95667.3 30.6
DepSolver 24 98126.9 142565.2 31.2
Kfray 33 101512.3 175908.6 42.3
ClustalW 27 116718.5 207652.8 43.8
Average 20.9 82301.0 126889.2 32.5

TABLE 9
P-Values of the Student’s t-Test

Program Time consumption # of evaluated individuals

Convex 0.079 0.075
QR_value 0.006 0.006
Cjacobi 0.138 0.132
Heat 0.017 0.014
DepSolver 0.012 0.009
Kfray < 0.001 0.001
ClustalW < 0.001 < 0.001

TABLE 10
Success Rate Between the Proposed Method and PSO-W

Program jBj Proposed method/% PSO-W/% Difference/%

Convex 15 100 100 0
QR_value 11 95 85 10
Cjacobi 17 100 100 0
Heat 19 100 95 5
DepSolver 24 95 90 5
Kfray 33 100 100 0
ClustalW 27 85 85 0
Average 20.9 96.4 93.6 2.9
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minimum. For all the programs, the average reduction rate
is 32.5 percent. Therefore, the number of estimated individ-
uals can be greatly reduced using the proposed method.

To check whether the two methods have a significant dif-
ference in terms of the above indicators or not, the student’s
t-test is conducted, with Table 9 listing the experimental
results.

From Table 9, we can see that, (1) for Convex and Cjacobi,
there is no significant differences in the time consumption
and the number of evaluated individuals between the pro-
posed method and PSO-W, and (3) apart from the above
programs, the proposed method differs significantly PSO-
W, which is deduced from their P-values smaller than 0.05.
Further, considering the average values at the last row of
Tables 7 and 8, it is clear that the efficiency using the pro-
posed method is significantly high than that using PSO-W.

For the proposed model and PSO-W, the success rate is
compared. Table 10 lists the success rate and percentage dif-
ference between the proposed method and PSO-W.

Table 10 shows that, (1) for each program, the success
rate using the proposed method is higher than or equal to
that using PSO-W, and all the success rate of Convex, Cjacobi,
Heat, and Kfray are 100 percent, whereas the success rates
of these programs using PSO-W are 100, 100, 95, and
100 percent, respectively. For all the seven programs, the
success rate of the above two methods are 96.4 and 93.6 per-
cent, respectively, and (2) different programs have different
values of the percentage difference. The percentage differ-
ences ofQR_value is the biggest, 10 percent, and Convex, Cja-
cobi, Kfray, and ClustalW have the smallest percentage
difference, which are zero. For all the seven programs, the
average percentage difference is 2.9 percent. As a result, the
proposed method can effectively generate test data that
cover the target paths.

Through the experimental results and analysis of this
group of experiments, we can draw the following conclu-
sion: the proposed method can generate test data with better
performance in effectiveness and efficiency than the com-
parative one, indicating that it is advantageous of selecting
superior individuals to execute an MPI program.

(3)Answering RQ3
When answering RQ3, the proposed method and CGA

are utilized to generate test data to cover the target path set,
respectively. Tables 11, 12, 13, and 14 list the related experi-
mental results. In addition, the meaning of each column in
Tables 11, 12, 13, and 14 can be similarly understood accord-
ing to Tables 3, 4, 5, and 6, respectively.

Table 11 shows that, (1) for each program, the average
time consumption of the proposed method is smaller than
that of CGA, where Convex has the smallest average time
consumption, 124.2 s and 180.3 s, respectively. The biggest
average time consumption is ClustalW, 3592.8 s and 6749.4 s
are spent by the two methods, respectively. For all the seven
programs, the average time consumptions of the two meth-
ods are 1127.6s and 2482.3 s, respectively, and (2) different
programs have different reduction rates, where the reduc-
tion rate of ClustalW is up to 46.8 percent, the biggest one, in
contrast, the reduction rate of Cjacobi is 25.3 percent, which
is the smallest. For all the programs, 37.5 percent average
reduction rate is achieved. The experimental results signifi-
cantly reflect that the proposed method can greatly reduce
the time consumption.

Table 12 lists the average number of evaluated individu-
als and the reduction rate of the two methods. From
Table 12, (1) for each program, the average number of evalu-
ated individuals of the proposed method is smaller than
that of CGA, where the smallest average number of evalu-
ated individuals is got by Convex, 39013.8 and 56153.3,
respectively, whereas the biggest average number of evalu-
ated individuals is got by ClustalW, 116718.5 and 217581.8,
respectively. For all the programs, the average numbers of

TABLE 11
Average Time Consumption Between the

Proposed Method and the CGA

Program jBj Proposed method/s CGA/s Reduction rate/%

Convex 15 124.2 180.3 31.1
QR_value 11 207.9 337.5 38.4
Cjacobi 17 258.6 346.2 25.3
Heat 19 137.5 212.9 35.4
DepSolver 24 2605.7 4366.1 40.3
Kfray 33 2827.5 5183.7 45.5
ClustalW 27 3592.8 6749.4 46.8
Average 20.9 1393.5 2482.3 37.5

TABLE 12
Average Number of Evaluated Individuals Between

the Proposed Method and the CGA

Program jBj Proposed method CGA Reduction rate/%

Convex 15 39013.8 56153.3 30.5
QR_value 11 67133.4 109563.7 38.7
Cjacobi 17 87243.7 117534.0 25.8
Heat 19 66358.2 104012.6 36.2
DepSolver 24 98126.9 165203.4 40.6
Kfray 33 101512.3 185369.4 45.2
ClustalW 27 116718.5 217581.8 46.4
Average 20.9 82301.0 136488.3 37.6

TABLE 13
P-Values of the Student’s t-Test

Program Time consumption # of evaluated individuals

Convex 0.010 0.016
QR_value 0.005 0.003
Cjacobi 0.034 0.029
Heat 0.002 0.001
DepSolver 0.001 < 0.001
Kfray < 0.001 < 0.001
ClustalW < 0.001 < 0.001

TABLE 14
Success Rate Between the Proposed Method and the CGA

Program jBj Proposed method/% CGA/% Difference/%

Convex 15 100 95 5
QR_value 11 95 85 10
Cjacobi 17 100 95 5
Heat 19 100 90 10
DepSolver 24 95 85 10
Kfray 33 100 95 5
ClustalW 27 85 80 5
Average 20.9 96.4 89.3 7.1
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evaluated individuals are equal to 82301.0 and 136488.3,
respectively, and (2) the reduction rate is different for dif-
ferent programs. The reduction rate of ClustalW is up to
46.4 percent, the maximum one, in contrast, the reduction
rate of Cjacobi, 25.8 percent, is the minimum. For all the pro-
grams, the average reduction rate is 37.6 percent. Therefore,
the number of evaluated individuals can be greatly reduced
using the proposed method.

To check whether the two methods have a significant dif-
ference in terms of the above indicators or not, the student’s
t-test is conducted, with the experimental result being listed
in Table 13.

According to Table 13, for all the seven programs, the
time consumption and the number of evaluated individuals
of the proposed method is significantly different from those
of CGA. Together with the average values at the last row of
Tables 11 and 12, the proposed method is significantly effi-
cient than CGA.

Table 14 represents the success rate and percentage dif-
ference between the proposed method and CGA.

FromTable 14, (1) for each program, the success rate of the
proposedmethod is higher than that of CGA, and all the suc-
cess rates of Convex, Cjacobi,Heat, and Kfray are 100, whereas
the success rates of these programs using CGA are 95, 95, 90,
and 95 percent, respectively. For all the seven programs, the
success rate of the above two methods are 96.4 and 89.3 per-
cent, respectively, and (2) the percentage differences of dif-
ferent programs are different. QR_value, Heat, and DepSolver
have the biggest percentage difference, 10 percent, whereas
Convex, Cjacobi, Kfray, and ClustalW have the smallest per-
centage difference, 5 percent. For all the seven programs, the
average percentage difference is 7.1 percent. Therefore, the
proposedmethod can effectively generate test data.

From the experimental results and analysis of the last
group of experiments, we can conclude that the proposed
method is beneficial to improve the efficiency of generating
test data.

To summarize, (1) the MPI-based ESM in the proposed
method accurately estimates the fitness of an individual, (2)
the proposed method has a low computational cost by
selecting superior individuals to execute a program, and (3)
it is beneficial to improve the efficiency of generating test
data. In addition, considering that we draw the above con-
clusions for representative MPI programs, the results can be
extensible to other programs.

5 THE THREATS TO VALIDITY

We analyze the threats that possibly affect the experimental
results, and divide them into the following two catalogues:
internal and external threats.

5.1 Internal Threats

When executing Algorithm 3, if the value of ColGen is too
small, an insufficient training set will be formed. At this
time, the estimation model trained based on the training set
will have poor generalization performance. On the contrary,
it will pose a large computational cost resulted from execut-
ing programs to calculate the fitness of each individual,
which is oppose to the purpose of this paper. To minimize
this threat, test data from 1 to 1,200 generations are collected

and form the training set by combining them with their fit-
ness. When the proposed method achieves the best perfor-
mance in effectiveness and efficiency, the value of ColGen
will be optimal. In the experiments, its value is set after
many try and error, and different values are set for different
programs.

When executing Algorithm 4, all the RBFNs will have an
inadequate difference if the value of Np is too small. At this
time, the ESM may result in the over-fitting or under-fitting
problem. Conversely, a large computational resources will
be required to implement the ESM. In order to reduce this
threat, Np is set from 1 to 150, and the ESM with the corre-
sponding size is trained based on the formed training set.
The optimal value of Np will be obtained in case of the time
consumption and the success rate of the proposed method
being the best. Similarly, in the experiments, its value is
obtained after a number of try and error, and different pro-
grams require different values.

During executing Algorithm 5, it will be harmful to
reducing the computational costs of generating test data if
too many individuals are selected. Contrarily, the success
rate of generating test data cannot be guaranteed. In order
to alleviate the threat, 1 to 40 individuals sorted by the esti-
mated fitness are selected to execute a program, and the
optimal number of estimated individuals is determined on
the circumstance of the time consumption and the success
rate of the proposed method achieving their best values.

Although the methods of setting parameters may not be
optimal in Section 4.4, 20 runs are conducted for each pro-
gram, with the purpose of obtaining their values as optimal
as possible.

The parameter settings of CGA and PSO also affect the
experimental results, which was discussed in [8], [39]. In
order to reduce such threat, the parameters of CGA and
PSO are cited from [8] and [39], respectively. It can be seen
from the experimental results that these parameter settings
are reasonable.

5.2 External Threats

The selected programs under test generally have an impor-
tant influence on the generalization of the experimental con-
clusions. If these programs are not representative, the
experimental conclusions will be hardly to be directly gen-
eralized to more complex programs. To alleviate this threat
as much as possible, we select programs with various num-
bers of processes, communication primitives, and LOC in
the experiments, suggesting their good representativeness.

The selected target paths also impact the generalization
of the experimental conclusions. To have good performance
in generalization, we propose a novel method of selecting
the target paths of each program, through which any state-
ment and branch of the program under test can be included
in at least one target path, indicating their good perfor-
mance in test adequacy.

Besides, the time consumption is a vital indicator to
reflect the efficiency in generating test data. In the experi-
ments, the time consumption has a close relation with the
configuration of the implementation environment, such as
the number and the type of computers and processors, as
well as the operating system. It is clear that environments
with different configurations will have different time
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consumptions when fulfilling the same task. To alleviate
this threat, we run the same task for 20 times in the same
environment for each program, record all the time con-
sumptions, and calculate their average value.

6 CONCLUSION AND FUTURE WORK

We have proposed a method of using an ESM to make full
use of test data generated during the evolution in this paper.
In the proposed method, PSO is employed to generate a
number of test inputs, which are combined with their fitness
to form a training set. Following that, an ESM is trained using
the training set, and utilized to estimate the fitness of each
individual. Based on the estimation, a small number of supe-
rior individuals are selected to execute the program, with the
purpose of achieving their real fitness for the subsequent
evolution.

We have also applied the proposed method to seven
complex MPI programs and compared with several state-
of-the-art approaches. The experimental results show that
the proposed method can improve the test efficiency.

It should be pointed out that although the proposed
method is advantages in terms of the time consumption and
the success rate, various attempts are required to further
improve the efficiency of the proposed method, such as the
choice of the ESM composed of other BSMs, which will be
our research topic in the future.
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Behavior of Software Testers?
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Abstract—Background: The existing literature in software engineering reports adverse effects of confirmation bias on software testing.

Confirmation bias among software testers leads to confirmatory behavior, which is designing or executing relatively more specification

consistent test cases (confirmatory behavior) than specification inconsistent test cases (disconfirmatory behavior).Objective:Weaim to

explore the antecedents to confirmatory and disconfirmatory behavior of software testers. Furthermore, we aim to understand why and

how those antecedents lead to (dis)confirmatory behavior.Method:We follow grounded theory method for the analyses of the data

collected through semi-structured interviewswith twelve software testers.Results:We identified twenty antecedents to (dis)confirmatory

behavior, and classified them in nine categories. Experience and Time are the twomajor categories. Experience is a disconfirmatory

category, which also determineswhich behavior (confirmatory or disconfirmatory) occurs first among software testers, as an effect of

other antecedents. Time Pressure is a confirmatory antecedent of the Time category. It also contributes to the confirmatory effects of

antecedents of other categories.Conclusion: The disconfirmatory antecedents, especially that belong to the testing process, e.g., test

suite reviews by project teammembers, may help circumvent the deleterious effects of confirmation bias in software testing. If a team’s

resources permit, the designing and execution of a test suite could be divided among the test teammembers, as different perspectives of

testers may help to detect more errors. The results of our study are based on a single context where dedicated testing teams focus on

higher levels of testing. The study’s scope does not account for the testing performed by developers. Future work includes exploring other

contexts to extend our results.

Index Terms—Software testing, cognitive biases, confirmation bias, grounded theory, interviews

Ç

1 INTRODUCTION

CONFIRMATION bias is the cognitive tendency to look for
evidence that confirms, rather than refutes, one’s prior

beliefs [1]. In software testing, confirmation bias occurs
when developers or testers exercise a program with the
data that is consistent with its specified behaviour instead
of inconsistent data [2]. Confirmation bias leads to confirma-
tory behaviour by software testers during testing [3]. For
example, if requirements specification state that ...the phone
number field accepts seven digits from 0 to 9; a consistent test
case would validate the behaviour of the field by providing
in, e.g., 0123456 as an input test data. An inconsistent test

case would validate the field’s behaviour with inconsistent
data, e.g., a - a letter instead of a digit.

The higher the level of confirmation bias, the more adverse
effects it has on software testing [4], [5], [6], [7]. For example,
Çalikli and Bener observed a positive correlation between
software defect density and confirmation bias levels of soft-
ware developers [4], [8]. In their experiments, Teasley et al.
observed that participants designed two to four times more
positive test cases compared to negative test cases1 (i.e., confir-
mation bias) [7]. Similarly, Causevic et al. also found a signifi-
cant difference between the number of positive and negative
test cases designed by the participants in an experimental
study on test-driven development [9]. Salman et al.’s work
also supports these findings, in their experiment, participants
designed significantly more consistent test cases, with respect
to provided specifications, compared to inconsistent test cases
in performing functional testing [3].

Mohanani et al. found the primary studies that investi-
gated the effects and antecedents to confirmation bias in
software testing were all experiments [10]. For example, an
experimental study observed that a lack of logical reasoning
skills is an antecedent to confirmation bias [10]. The authors
identified a need to conduct more qualitative research that
explores how cognitive biases are manifested in the soft-
ware engineering (SE) industry rather than only focusing on
causal relationships. The primary studies on antecedents to
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confirmation bias in software testing are limited in provid-
ing an insight into the phenomenon [10]. These findings,
therefore, establish a need of not only to explore more ante-
cedents to confirmation bias but also to understand why
and how it occurs among software testers.

The goal of this paper is to explore antecedents that may
lead to confirmation bias in software testing. The antece-
dents may belong to the working environment, could be
part of the testing process or are personal attributes of soft-
ware testers. We additionally aim to understand why and
how these antecedents lead software testers to confirmatory
behaviour. In order to address our objectives, we apply the
Glaserian grounded theory to explore the phenomenon of
confirmation bias among software testers. We conducted
twelve semi-structured interviews with software testers to
collect our data. They were all employees of the same com-
pany but worked in different projects.

We identified nine antecedents to confirmatory behav-
iour and eight to disconfirmatory behaviour. A disconfirma-
tory behaviour is contrasting to a confirmatory behaviour,
i.e., it may mitigate confirmation bias. Additionally, three
more antecedents were found that lead to both (confirma-
tory and disconfirmatory) behaviours by software testers.
Both refers to the completeness of a test suite2 that may also
mitigate confirmation bias. Experience of testing in general
and particular to the project are two major disconfirmatory
antecedents. They determine the confirmatory or disconfir-
matory behaviour of testers due to other antecedents. Proj-
ect’s testing experience also improves the completeness of a
test suite. Time pressure is a major confirmatory antecedent
for software testers. It contributes to promoting the confir-
matory influence of other confirmatory antecedents. For
example, time pressure promotes the confirmatory behav-
iour of a tester in case of a minor functional change (a confir-
matory antecedent).

Our study contributes by generating a grounded theory
that explains the phenomenon of confirmation bias among
software testers. We also contribute with the identification
of thirteen new antecedents, relative to the existing ones in
the SE literature, that may lead to confirmation bias. We
also provide a list of disconfirmatory antecedents that can
be used by practitioners to alleviate confirmation bias.

Section 2 presents the related work and the conceptual
background. Research Method is detailed in Section 3. The
results are presented in Section 4, and discussed along with
the validity threats in Section 5. Section 6 concludes the
paper.

2 RELATED WORK AND BACKGROUND

Humans rely on simplifying heuristics for judgement of
uncertain events instead of relying on formal logic [11]. These
heuristics usually offer a workable solution, butmay also lead
to systematic errors in decision making, known as cognitive
biases [11], [12]. The concept of cognitive biaseswasfirst intro-
duced by Tversky and Kahneman in the early 1970s, and is
defined as, “cognitive biases are cognitions or mental behaviours
that prejudice decision quality in a significant number of decisions

for a significant number of people” [1, p. 59], [10], [12]. Cognitive
biases are also referred to as judgement biases or decision
biases [13]. The human mind is inherent to cognitive biases
[1], [13], [14]. Kahneman et al. elaborate on why humans are
incapable to recognise their own cognitive biases by referring
to two modes of thinking; system-one and system-two, also
referred to as the dual-process theory [14], [15]. System-one�
intuitive, thinking is fast and effortless, which makes it more
prone to biases [10], [16]. System-two � reflective, thinking is
effortful, intentional and slow, therefore, less prone to biases
[10], [16]. Thoughts are usually determined by system-one,
humans are unaware of it because it is proficient in its opera-
tion [15], [16]. In addition to system-one, noisy information
processing, emotion and social influences can also generate
cognitive biases [10]. Cognitive biases also form biasplexes
because some biases may overlap, interact and reinforce each
other [17]. Therefore, when biases occur it is uncertain which
one is the cause andwhich one is the effect [10].

Confirmation bias is a cognitive bias [1], [11].Mohanani et al.
categorise confirmation bias to the category of interest biases
among the categories defined for cognitive biases in the SE dis-
cipline [10]. Confirmation bias negatively affectsmultiple areas
of SE, e.g., maintenance [18], design [19] and testing [2], [20].
The software testing studies that investigated confirmation
bias use different terminologies, e.g., positive test bias, but
essentially refer to the same phenomenon of confirmation bias
[3], [21].

The earliest (1993� 1994) work exploring the impact of
confirmation bias in software testing was conducted by Lev-
enthal et al. and Teasley et al. [2], [6], [7]. These authors, in
their family of experiments conducted with advanced testers
(senior-level and graduate students in computer science),
observed multiple factors that may cause the manifestation
of positive test bias in functional software testing. The results
showed that a higher level of expertise and completeness of
specifications may cause less positive test bias [6], [7].
Another studied factor, error feedback (the effect of presence
or absence errors), was not confirmed to cause the effect pos-
sibly due to the types of software used in the experiments [6].

The second era of focus begins from 2010 when multiple
studies examined the effects of confirmation bias in software
testing. Çalikli and Bener [5] and Çalikli et al. [22], in their
series of experiments, assessed confirmation bias levels of
the participants by deriving measures from psychological
instruments, Wason’s Rule Discovery and Selection Task. In
an experiment with software engineers and graduate stu-
dents, Çalikli et al. found that company culture affected the
confirmation bias levels [23]. The authors also investigated
the effects of logical reasoning skills acquired through educa-
tion, experience and activeness in testing and development,
job titles (tester, developer, analyst, researcher), develop-
ment methods, company size (large, small and medium
enterprises), educational background (undergraduate) and
educational level (bachelor’s, master’s) [5], [8]. They found
that confirmation bias levels were low due to logical reason-
ing skills and for those participants who were experienced
but inactive in testing or development [5], [8]. The rest of the
factors were not observed to affect confirmation bias levels
except the job title - researcher [5], [8]. Çalikli and Bener
related the lower levels of confirmation bias of researchers to
their critical and analytical skills [5].

2. It refers to the completeness of design/execution in terms of con-
sistent and inconsistent test cases.
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In a test-driven development (TDD) experiment, carried
out in the industry, Causevic et al. observed that partici-
pants created more positive test cases compared to negative
test cases [9]. The experimenters also observed that negative
test cases have a higher tendency of finding defects com-
pared to positive test cases [9]. Eldh investigated whether
negative testing reveals ‘real important faults’ of the system
under test (SUT) by applying negative testing techniques
referred to as ‘attacks’ by Whittaker et al. [24], [25]. The
author found that negative testing could not find any major
faults for the SUT, albeit notable ones [24]. Eldh attributed
the findings to the high quality of the SUT and the types of
the executed negative test cases [24].

According to Salman et al., confirmation bias occurs
when a software tester designs relatively more consistent
test cases (consistent with the requirements specification) in
comparison to inconsistent test cases [3]. An inconsistent test
case validates a behaviour of the software application that is
not explicit in the requirements specification or is an out-
side-of-the-box test case, within the context of the SUT [3].
In functional test case design, a consistent test case is an
indication of a confirmatory behaviour; similarly, an incon-
sistent test case indicates a disconfirmatory behaviour on a
tester’s end [3].

Multiple qualitative studies on cognitive biases have
used interview data collection method for grounded theory
and case studies. The objectives were to identify the occur-
rence of cognitive biases in the studied context, antecedents
to cognitive biases and mitigation techniques for cognitive
biases [26], [27], [28], [29], [30]. For example, Cunha et al.
conducted semi-structured interviews for a cross-case anal-
ysis of decision-making in project management [26]. The
authors identified antecedents to multiple cognitive biases,
e.g., the absence of records of the learned lessons from pre-
vious projects, can lead to availability bias3 during decision
making by a project manager [26]. These studies support
the use of interview data collection method and grounded
theory as an appropriate approach for exploring and under-
standing the phenomenon of confirmation bias.

This section shows that the existing literature on confir-
mation bias is limited to controlled experiments only. These
studies tested hypotheses about isolated factors as potential
antecedents to confirmation bias. A qualitative study is,
therefore, required to explore what other antecedents lead
to confirmation bias and how? Our study, by applying
grounded theory, explores other antecedents to confirma-
tion bias in software testing. We also aim to understand
how these antecedents lead to confirmation bias. The postu-
lates generated by our theory can be verified by further
empirical studies.

3 RESEARCH METHOD

We apply grounded theory (GT) as our research method.
The objective of GT is to generate a theory that is grounded
in data [31]. According to Urquhart, “Theory asserts a plausi-
ble relationship between concepts and sets of concepts, and the

resulting theory can be reported in a narrative framework or a set
of propositions” [31, p. 5]. GT is suitable to address our
study’s objectives because of a lack of empirical evidence on
the antecedents to confirmation bias, and why testers mani-
fest confirmation bias is yet unknown; to the best of our
knowledge [10]. Therefore, we try to understand, “What’s
going on here?” [32, p.120]. “Here”, refers to our context of
understanding, why and how confirmation bias occurs. We
apply the Glaserian version of GT because we wanted the
specific research questions to emerge during the data analy-
sis [32]. Our ontological position is positivism. By using the
GT’s inductive theory-building process, we first present the
theory of the phenomenon under study in narrative form in
Section 4. An integrative diagram of the theory is then pre-
sented in Section 5 that explains the inter-relationship of the
derived concepts and categories. We follow the guidelines
by Stol et al. for reporting this study [32].

3.1 Goal

In the context of this study, confirmatory behaviour occurs
when a tester designs or executes consistent test case(s), and
a disconfirmatory behaviour otherwise. In order to have
complete coverage for the SUT, a tester should manifest
both confirmatory and disconfirmatory behaviours. In other
words, a test suite should be complete in terms of consistent
and inconsistent test cases. We refer to it as the complete-
ness of a test suite in this study.

Certain antecedents may lead to a compromise of one
behaviour over the other, e.g., disconfirmatory over confir-
matory. Thus, possibly not only promoting confirmation bias
but also limiting the completeness of a test suite. The objec-
tive of this study is to explore the antecedents to the confirma-
tory and disconfirmatory behaviour of software testers while
performing testing. It is worth to find out antecedents also for
disconfirmatory behaviour because the absence of them may
imply the promotion of confirmatory behaviour, which may
lead to confirmation bias by software testers. We, therefore,
answer the following research questions:

RQ1: What are the antecedents to confirmatory and dis-
confirmatory behaviour among software testers?

RQ2: Why or how do the antecedents influence the behav-
iour of software testers as confirmatory or disconfirmatory?

The objective of the study initially helped define RQ1.
RQ2 emerged during the data analysis, which also, in turn,
refined RQ1. The application of the Glaserian coding techni-
ques enabled us to break down the research question into
specific research questions [31].

3.2 Context, Participants, and Data Collection

We used interviews as a primary data collection method for
our study. Interviews are a qualitative source of data that
perfectly aligns with the inductive process of GT [31].

We interviewed twelve professionals working in a world
leading company in Information and Communication Tech-
nology domain. To maintain anonymity, we refer to this
company as Company-ICT in our study. The Company-ICT
is offering services in networks, digitisation of solutions,
managing IT services and providing solutions in IoT areas.
The Company-ICT develops internal software projects using
Agile software development. The projects have dedicated

3. “Availability bias refers to a tendency of being influenced by the
information that is easy to recall and by the information that is recent
or widely publicised” [10, p.21].
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testing teams who perform higher levels of testing, e.g., inte-
gration testing, while developers are responsible for per-
forming unit testing. In case of a small project team, one
person may perform multiple roles, despite their job title,
e.g., software architect also performs testing when required.
The company also has dedicated test automation teams that
are not part of any particular project; they automate manual
test suites of the projects. We chose this company for two
main reasons: 1) it acts as a vendor to conduct system tests
on behalf of its business contractors, thus, 2) it has been col-
laborating with academia, international partners in EU and
nationally funded projects for improving its testing process,
test effectiveness andmeasurement.

The interviewed professionals participated in this study
voluntarily. We specified the recruitment of test engineers
or engineers with testing experience to our contact person
at the company because we wanted a sample well aligned
with the goal of our study. The champion approached the
pool of more than fifty software testing engineers through
their respective managers. Twelve engineers positively
responded to the call of the champion for participation. The
sample consisted of 10 test engineers. The additional two
were: a solution architect and a software engineer. The solu-
tion architect was also partly performing activities as a test
engineer, and the software engineer was involved in both
development and testing (as a test engineer). The partici-
pants belong to different projects or domains at the
company’s two sites. We refer to all these participants as
testers from now onward in this study. Based on the charac-
teristics of our participants and set-up of the company, test-
ing performed as a developer is not accounted for in this
study’s scope. We focus on the higher levels of testing per-
formed by testers. It is important to note that our study
does not aim to achieve statistical generalisation with this
sample because, in qualitative research, researchers general-
ise to theory instead of a population [31], [33]. We are
exploring the phenomenon in the defined context rather
than achieving representativeness [33]. However, the issue
of achieving generalisability with a positivist GT approach
is discussed later in Section 5.5.

The format of the interviews was semi-structured. Before
conducting the actual interviews, we piloted the script with
a software engineer from a different company. The objective
of the pilot interview was to improve the wording of the
questions and timing of the session. The interviews were

conducted in October 2017 via Skype through video-calls,
and voice-calls when the video was not viable. On average,
it took 65 min per person to interview. We collected approx-
imately 13 hr of audio (with informed consent) and 127
pages of verbatim transcribed data. One of the authors went
through the transcriptions and audio files again to tally the
content and to ensure that technical terms were correctly
transcribed. The interview script is available as an online
appendix4.

The characterisation of participants is given in Table 1.
The participants have at least two years of working experi-
ence at the Company-ICT, except for two of them. Only one
participant has only 6 months of testing experience other-
wise the average testing experience is approx. 6 years. Two
of the testers are automation test engineers, one is perform-
ing testing both manually and in an automated way, the
rest are all manual testers.

3.3 Data Analysis

The data analysis procedures in GT are systematic [31]. The
applied coding techniques are open coding, selective coding
and theoretical coding. The application of the constant com-
parison method (CCM) to the coding techniques made cod-
ing an iterative process [31], [32], [34]. We followed the
guidelines by Urquhart and Boeije for applying the men-
tioned techniques [31], [34]. An example of deriving two of
the antecedents (past experience, project experience) belong-
ing to a single category, experience, through the applied cod-
ing techniques is illustrated in Fig. 1. The sample raw data
from three interviews, P2, P3 and P10, is shown separately in
the figure. We first applied open coding to the individual
interviews and then filtered it to the relevant concepts, i.e.,
antecedents, per the objective of our study. The open coding
is shown as bold texts in the excerpts. After the application
of CCM within the interviews and among the interviews,
and the application of selective coding, concepts emerged.
The emerged concepts were then grouped under a category,
which is a higher level of abstraction. In the illustration -
Fig. 1, the category is experience, which is one of the identified
antecedents to disconfirmatory behaviour. We also applied
memoing and memo sorting along the process of selective
coding and CCM. It enabled us to classify the antecedents as
(dis)confirmatory and to capture the relationships between

TABLE 1
Participants (Exp. in Testing Does Not Account the Duration of Testing as a Software Developer)

P# Job Title Exp. in Company-ICT Exp. in Testing Tester Type Interview Length

P1 Software Engineer 2 yr 11 mos 6 mos Manual 71 min
P2 Test Engineer 6 yr 7 yr Manual 79 min
P3 Senior IT Test Engineer 5 yr 9 yr 6 mos Manual, Automation 57 min
P4 Senior Software Test Engineer 2 yr 2 yr Manual 80 min
P5 Test Engineer 5 mos 9 yr Manual 58 min
P6 Solution Architect 5 yr 6 mos 12 yr Automation 76 min
P7 Experienced Integration Engineer 4 yr 4 yr Manual 81 min
P8 Integration Engineer 2 yr 2 yr Automation 58 min
P9 Configuration Manager & Test Engineer 4 yr 6 yr Manual 68 min
P10 IT System Expert (Software Test Expert) 3 yr 6 yr Manual 51 min
P11 Test TeamManager 5 yr 6 mos 5 yr 6 mos Manual 53 min
P12 Software Test Engineer 1 yr 4 yr 6 mos Manual 39 min

4. http://doi.org/10.5281/zenodo.3376920
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the emerging concepts. This led us to the integrative diagram
as a result of theoretical coding, which is the third stage of
coding in the Glaserian GT [31], [32]. We used NVivo5 data
analysis tool for coding.

We implement coding validity steps because of our posi-
tivist ontological position, as recommended by Urquhart
[31]. In our context, intercoder reliability refers to, two or
more coders identify the same code (antecedent) and use
same classification (e.g., confirmatory, disconfirmatory) for
the code, when coding independently [35]. Intercoder agree-
ment assurance requires that the coders discuss and recon-
cile their coding discrepancies [35]. We performed multiple
steps to ensure intercoder reliability and agreement for the
identification of antecedents to confirmatory or disconfirma-
tory behaviour.

One of the authors (the interviewer) initially formed a list
of the terms that interviewees used to indicate their confir-
matory or disconfirmatory behaviour during testing. After-
wards, we developed a coding protocol that comprised
coding guidelines and the previously formed list of terms.
One of the authors is experienced in applying grounded

theory coding techniques, two of the authors contributed
with knowledge on software testing and cognitive biases.
One of the authors brought in expertise in software testing.
Therefore, we also developed a unanimous understanding
of confirmation bias and its manifestation in the studied
context. The four authors then performed a pilot coding of a
randomly chosen interview (P2) from the set of twelve inter-
views. The objective was to identify antecedents and classify
them as confirmatory or disconfirmatory, and validate the
coding process. The objective was also to ensure that codes
produced by any single knowledgeable coder would be
reproducible by other equally knowledgeable coders, as all
the authors may not be available to code the data [35].

The joint discussion session, after the pilot coding,
revealed a need for a refined understanding of an anteced-
ent and introduction of more categories for classifying ante-
cedents. As, we noticed that some of the antecedents could
neither be classified as confirmatory nor disconfirmatory,
rather both or unknown - see Table 2. Additionally, we
decided to disregard the data where the interviewee’s
understanding of the terms differed from the theoretical
definitions, e.g., referring functional testing to as non-func-
tional testing. This decision was taken to prevent personal
interpretations on the coder’s behalf because further

Fig. 1. GTcoding mechanisms.

TABLE 2
Data Extraction

Concept Definition

Antecedent Of the testing process (e.g., reviews) OR from the environment (project, organisational) OR personal
attributes (e.g., experience) that leads to themanifestation of a (dis)confirmatory behaviour.

Antecedent Classification

Confirmatory The evidence indicates the promotion or manifestation of a confirmatory behaviour.
Disconfirmatory The evidence indicates the promotion or manifestation of a disconfirmatory behaviour.
Both The evidence indicates the manifestation of confirmatory and disconfirmatory behaviours without

stating the relative preference of one behaviour over the other.
Unknown The effect on behaviour is evident but leading to either a confirmatory or disconfirmatory

behaviour is not explicitly mentioned.

5. https://www.qsrinternational.com/nvivo
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communication with the participant also couldn’t clarify
those misunderstandings. The percentage of such data accu-
mulated to 0.92% by the end of the data analysis of all
interviews.

Due to the recognition of the issue with antecedents’ clas-
sification, we assessed intercoder reliability6 of our pilot
coding only for the identified antecedents. The agreement
between (coder1, coder2) was 54%, (coder1, coder3) was
39% and (coder1, coder4) was 46%. We assessed agreements
in pairs with coder1 because it was decided that coder1
would code the rest of the interviews. In order to improve
the intercoder reliability measure, we performed the follow-
ing steps.

The other three coders then revised their identified antece-
dents and reclassified them according to the classification pre-
sented in Table 2. It was followed by one-on-one discussions
with coder1 on the identified antecedents and their classifica-
tion. For example, between coder1 and coder2; a code was
defined for higher authority involvement in deciding the den-
sity of issues to deliver a patch with. After analysing the
excerpts and context, it was decided that this does not qualify
as an antecedent because it is not influencing a tester’s behav-
iour during testing activities. Later, coder3 and coder4 also
agreed to that decision. These discussions provided input to
coder1 to revise the coding of the P2 interview. Coder1 then
coded the rest of the interviews in three iterations. After each
iteration, we held a joint discussion session in which confu-
sions regarding the codingwere resolved. For example, a con-
fusing excerpt that was coded for the antecedent change
request was resolved to illegible evidence towards any of the
classification: “Actually, we make a task separation between us
[with his colleague] before making test cases, and we start to create
test cases of our products. And, then, we come together and we try to
question our test cases, we try to reveal the solution documents
together and we try to understand, actually, we have a short [tech-
nique name]. We are trying to compare our test cases with these
objectives, smart. And, we are trying tomeet the requirements which
we gathered. There is no specific thing like we do. We’re just dis-
cussing.” - P7. This was an answer to a question about the par-
ticipant’s discussion with their colleague, which did not
indicate any effect (per Table 2) on P7’s behaviour. In each
iteration, coder1 also shared the classification of the excerpts
of the emerging concepts (antecedents) to be validated by
others. These steps ensured that coder1’s bias was minimised
and coding is reproducible.

4 RESULTS

We have identified 20 antecedents, which are classified into
nine categories. First, we define the category, then we intro-
duce the respective antecedents with the description and
evidence of why and how they influence the dis(confirma-
tory) behaviours. The definitions of the formed categories
are based on the collected data. Table 3 summarises the
answers to RQ1 and RQ2. The columns C (confirmatory), D
(disconfirmatory), B (both) and U (unknown) present for
how many participants the respective antecedent influenced
as C/D/B/U for their behaviour. The Total column presents

the total number of participants and the total number of
excerpts that provided the evidence for C/D/B/U for the
respective antecedent as xðyÞ. It is important to note that x
is not a sum of the counts reported in the previous columns
because in a few cases the same interview provided multi-
ple evidence. Why & How (RQ2) summarises how the ante-
cedent influences the behaviour. The example evidence
excerpts presented in this section are revised from gram-
matical and comprehension perspective because the inter-
viewees were not native English speakers.

4.1 Experience

Experience refers to the knowledge of an individual tester
that they acquired by working in either a different, similar or
the same project, roles and company, and the application of
this knowledge for software testing. The data analysis
showed that experience mainly leads to disconfirmatory
behaviour. However, it also promotes a confirmatory behav-
iour, which results in improved completeness of a test suite.

4.1.1 Past Experience

Past experience refers to the experience of the participant in
general or they did not associate it with any particular proj-
ect domain. It promotes disconfirmatory behaviour by
designing inconsistent test cases. For example, “You are mak-
ing the happy path [consistent scenarios] and then you are making
some negative scenarios, that are functional or communicated by
the customer. And then, you think of the need for extra test cases,
which are not written [in specifications], but you should figure
them out based on the decision points [of the functionality] or
other similar conditions that you have learned from your past
experience... Most of such test cases are failure cases [inconsistent]
because the happy cases should be [written] in the documents.” -
P3. In this evidence extra test cases contextually refers to
inconsistent test cases. Past experience also results in the
occurrence of both behaviours because an experienced tes-
ter knows how to approach an SUT, as explained by P7: ”...
the more you do testing, the more you get experienced, and the
more you know how to approach a product or a system... I can say
both [consistent and inconsistent]. I cannot comment about the
preference of one over the other”.

4.1.2 Project Experience

This experience is acquired either by working in the same
project over the years or in the same domain, which may
not be limited to the Company-ICT. Project experience ren-
ders an enhanced perspective on the project due to which
disconfirmatory behaviour manifests. This is explained by
P10: “I use my experience in this project because I know the cus-
tomer, I know the domains in [customer’s company name], and it
gives me many advantages because I can view the system, when it
starts and runs...”; it helps in designing more “Exceptional
paths [inconsistent tests]” - P10. This antecedent also
increases the completeness of the suite by prompting both
behaviours, e.g., P9 stated: “I joined this project when it started
four years ago. As the project scaled up over the years from a little
code base, little tests; I learnt the project well all along. Due to
that knowledge, I can see [visualise] the end-to-end part of the
[domain name]... 90 percent of the times, I can know, yes this is

6. Percentage of the total number of common antecedents divided
by the total number of identified antecedents.
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an exceptional [inconsistent], and yes this is a happy path [consis-
tent], and it is important to test”.

4.2 Priority

It relates to the priority of a functionality and user stories or
OS platform (e.g., Android). Our data informs that priorities
are defined by customers, roles higher in a hierarchy to a
software engineer (e.g., product owner, project manager, test
manager) and it is based on the functionality (e.g., finance). If
the higher management or customers are not setting the

priority, then testers themselves define them based on their
experience, i.e., past experience or project experience.

4.2.1 High Priority

In the context of automating manual test suites by an auto-
mation engineer, higher priority scenarios take precedence.
According to the data, testing of consistent scenarios usually
have a higher priority. However, if a functionality or particu-
lar scenario is a high priority, then it also leads to both behav-
iours. P6 explains this in the context of automating a manual

TABLE 3
RQ1: Antecedents and Evidence, RQ2: Why and How

Antecedent (RQ1) Why & How (RQ2) C D B U Total

Experience
Past Experience Experience in testing enables how to approach the system, and

which particular functionality checks to test for.
0 3 1 0 4 (6)

Project Experience It enables testers to visualise the end-to-end functional flow of a
system, and a good learning of the customer domain.

0 5 4 1 10 (28)

Priority (of a functionality, user stories or platforms)
High Priority Consistent test cases have higher priority, but inconsistent test

cases also acquire an equal priority in case of high priority
scenarios, of a certain functionality.

2 0 2 0 4 (11)

Medium or Low Priority Testers give either less or no consideration to the designing or
execution of inconsistent test cases.

2 0 0 0 2 (3)

Requirements
Ambiguous Requirements Impedes correct and complete test case designing, which results

into the design/execution of mostly consistent test cases.
3 1 0 2 6 (14)

Clarifying Requirements Clarifying ambiguous requirements leads to the designing of
both consistent and inconsistent test cases.

0 1 3 2 6 (17)

Incomplete Requirements Confirmatory because it limits the testers to test only what is
minimally specified.

1 0 0 1 2 (2)

Functionality Retesting
Production Bug Fix Testing the fix first is confirmatory that is followed by the testing

of relevant inconsistent cases and other consistent test cases.
0 1 3 2 6 (10)

Change Request Both behaviours occur while designing/executing cases for a
change request.

1 0 5 1 7 (8)

Change/Fix Size Minor change is confirmatory due to its minor impact on the
system. Both behaviours occur in case of a major functional
change.

3 0 2 0 3 (9)

Test Suite Reviews
Internal Party Review When performed by members of the same project, it is

disconfirmatory, and also enhance the completeness of a suite.
1 7 3 2 6 (26)

External Party Review By customers who define which devices to test, and set
priorities. Therefore, only adhering to those priorities is
confirmatory.

1 0 0 1 1 (9)

Automated Test Suite Review Manual testers review to validate conformity with the manual
suite. They are not expert in automation to assist with the
handling and coverage of inconsistent test cases.

1 0 0 2 3 (9)

Testing Mode (manual or automated)
Automated Testing Confirmatory because it is difficult to automate every

inconsistent test case and to handle unexpected results.
2 1 1 0 4 (5)

Test Execution Feedback
Detection of Errors It leads to further testing to find more errors, and sometimes the

addition of more inconsistent test cases.
0 5 0 0 5 (7)

Absence of Errors Disconfirmatory because it leads to rethinking of the test
approach, and assessing a test suite from a different perspective.

0 4 0 0 4 (7)

Time
Time Pressure Consistent test cases are prioritised because they ensure the

behaviour of the SUT per the documented specifications.
4 1 3 1 9 (27)

No Time Pressure Leads to more testing e.g., through exploratory testing and the
execution of more inconsistent test cases.

0 1 0 2 3 (8)

Perspective Change (testing from a changed perspective)
Developer & Tester Disconfirmatory because testing as a tester, compared to

development, changes and broadens perspective for the SUT.
0 1 0 0 1(7)

Complement Testing A tester executing test cases that were previously executed or
designed by another tester promotes disconfirmatory behaviour.

0 2 0 1 3(5)
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suite that they, then, automate consistent and inconsistent
test cases with equal priority: “...It should be definitely both
[consistent, inconsistent]. When we are talking about the top prior-
ity test scenarios or the negative scenarios [inconsistent], it’s
almost equally important like a happy path [consistent] test
scenario.” Our analysis further suggests that high priority
testing may not lead to an enhanced coverage; we discuss
this in Section 5.

4.2.2 Medium or Low Priority

If functionality is not high in priority, then it could be a
medium or low priority. In this case, inconsistent test cases
receive either less or no consideration in designing/execu-
tion, which results in a confirmatory behaviour manifesta-
tion by a tester. P9 explained it as: “If a function is important,
all the happy path [consistent] and the exceptionals [inconsistent]
are also important. But, some functions may not be very impor-
tant, and we can skip the exceptional scenario for not important
functions” - P9.

4.3 Requirements

This category refers to the documents that serve as require-
ments specifications for testers to prepare test cases. It
includes technical documents, business rules, functional
documents, high-level design documents and low-level
design documents.

4.3.1 Ambiguous Requirements

Ambiguous requirements are such requirements that are
either not well defined or are difficult to understand by the
testers. According to P2, such requirements affect the activity
of preparing test cases because testers have to ask for clarifi-
cations; “...these requirements might be not very clear, sometimes
you might need to ask more questions about the documents, to be
able to make all your test cases clear and comprehensive enough, to
be able to test the system” - P2. Other participants’ data indi-
cates that ambiguous requirements promote confirmatory
behaviour. Testers design more consistent test cases because
it helps them in understanding the requirements well to
design inconsistent test cases, afterwards. Otherwise, they
only design and execute consistent test cases based on their
own understanding. For example, “If I do not understand
what’s going on [in requirements], then I’m not able to write test
cases... I code [design] happy [consistent test cases] just because
I’m not clear with what they expect me to do [test]. And, I’m not
sure what system does, so I go with happy path and if products do
not crash, then I say it’s okay” - P12.

4.3.2 Clarifying Requirements

Clarifying requirements is an activity that is performed by
testers to clarify ambiguous requirements to improve the test-
ing of a functionality. Testers clarify the requirements with
customers, product owners, developers or project managers.
It usually leads to the completeness of a test suitewhen testers
manifest both behaviours. P1 states this as: “I don’t know
[understand] all of them [the requirements]. I will exchangemy com-
ments with customers, whether I am understanding them right, or
maybe it’s not required [a particular functionality], it’s not end-

user’s behaviour. I will give comments about all of them... Yes, both
[consistent and inconsistent], I will check all of them”.

4.3.3 Incomplete Requirements

This antecedent is different from the above antecedents
because it refers to minimal requirements. In other words,
requirements may be ambiguous but may not lack details on
the required functionality to be tested. For example: “If no
information [is available] about the task. For example, they [author-
ity figure for preparing the documents] wrote only a single sentence
about a problem’s fix on the production, and developers fix it. It’s
sometimes difficult for the tester to understand [the functional fix],
what did he [the developer] do, and what was the real problem” -
P10. The incomplete specifications, in case of a production
fix, make it difficult for a tester to perform proper testing
because they lack details on the functionality. It promotes
confirmatory behaviour because testers, test per the minimal
information that limits testing inconsistent scenarios. As fur-
ther explained by P10: “it will affect, what I don’t know [the
requirements], so it affects my test cases... Exceptional or failure
ones [inconsistent]. Because I don’t know the details. Only focus on
the happy paths [consistent], maybe I miss [testing] something”.

4.4 Functionality Retesting

Retesting refers to retesting a module or functionality after
its re-implementation, in case of a reported production bug
or a functional change request. In addition to retesting of a
particular fix or change, it is also done for the relevant
impacted functionalities of the SUT.

4.4.1 Production Bug Fix

The data analysis showed that both behaviours occur due to
retesting a fix of the production bug. After validating the
fixed scenario, the tester begins to test the inconsistent sce-
narios of themodule, which is followed by the testing of con-
sistent scenarios. For example, P10 stated: “First failures [that
failed], and then check the happy paths... I also ask the developer,
“which code did you change and which cases does it affect?”. First
we talk, then I check the failure one, and [then] check the success
path”. Per this evidence, the tester first validates particularly
a fixed scenario. It is a confirmatory behaviour because they
are confirming the communicated (serving as a requirement)
functional flow. Then, a disconfirmatory behaviour when
they validate the other relevant inconsistent scenarios, which
is followed by the testing of other confirmatory test cases.

4.4.2 Change Request

Retesting a module, in case of a change request mostly leads
to both behaviours. For example in the context of automa-
tion testing, P8 stated: “We should delete some methods, and we
should have some other control points, and add some other mod-
ules or functions to the automation framework... Both. Happy
[consistent] paths and exceptional [inconsistent] and failure
scenarios”. On further enquiry, the participant explained
that first they prefer to test consistent scenarios.

4.4.3 Change/Fix Size

The size of the implemented change or a bug-fix also influ-
ences the behaviour of testers. In case of a minor change,
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testing is confirmatory and limited to a particular functional-
ity. For a major change, the manifestation of both behaviours
was reported. A type of a major and minor change is elabo-
rated by P5 as: “for example some text box or button is not in the
right place on graphic user interface. Either it is there or is not visi-
ble. So, I just test this because it’s a makeup thing, just an interface
issue. It’s not a major big problem. But, if I cannot make any stock
or product transfers, i.e., main function is not working at all, of
course, that means that all product transfer function will be tested
from the top to down”. However, time availability also plays a
role in retesting: ”if you don’t have much time; e.g., if you have a
small change, it’s not affecting all the release, all the software out-
come, if it doesn’t affect every part of your platform, you can just
run a quick happy path [consistent] test cases” - P2.

4.5 Test Suite Reviews

It is the review of test suites that are designed by testers, prior
to suite executions, to ensure the completeness of the suite
with respect to the SUT. The antecedents of this category
indicate two types of reviewers, which promote different
kinds of behaviours among testers based on their review-
feedback.

4.5.1 Review By Internal Party

These reviews are conducted by the roles who are employees
of the Company-ICT. They may be part of the same project
or team, i.e., project manager, solution architect, product
owner, team lead, development lead, test expert or fellow
testers, or testers from other projects. The reviews frommem-
bers of the same project/teammostly promote a disconfirma-
tory behaviour by recommending to accommodate more
inconsistent test cases. P11, who also reviews others’ test
suites, stated: “Generally they forget exceptionals [inconsistent]
scenarios because they argue that it works. But, I check and [fore]
see other different bugs. And generally I suggest, “You can write
some exceptional scenarios; [e.g.,] sometimes bad things [situa-
tions], sometimes field checking; it’s important” - P11. According
to P3, reviews enhance the completeness of the suite: “When I
am adding, most probably, you are not adding the happy [consis-
tent] cases. When you are sending it for review, a very small part,
maybe five per cent that they are arguing or asking for an extra
[test cases]”. On enquiring the type of ‘extra’ cases, P3 replied:
“It’s changeable because they are giving review, which you forgot
about [test cases]... Both [consistent and inconsistent]” - P3. The
data analysis also shows that reviews performed by testers
from other projects are confirmatory because they are not
knowledgeable about the functionality. It limits their per-
spective that could promote disconfirmatory behaviour.

4.5.2 Review By External Party

External reviews are performed by customers. The purpose
is to get their feedback, if the suite meets their expectations,
to continue with the test execution. Per P2: ”We have shared
this with customer, if these test cases, test suites meet their expect-
ations to be able to test the system... We test on mobile platforms,
e.g., iPhone, iPad, Android tab, Android phone. So customer can
say, it is enough for us to execute the tests only one Android
device, and only one iOS device. This is enough. So, “Continue
your tests on the set top box, which is more important for us.”
They can say this. So, we have to consider this”. The review

from customer influenced the coverage, which in this case is
limiting testing to certain devices. Additionally, the feed-
back also defined priorities for testing. It is confirmatory
because the tester is confining the testing only to the cus-
tomer’s feedback, per the available evidence.

4.5.3 Automated Test Suite Review

Reviews of automated test suites are internal reviews. How-
ever, it is different from internal and external reviews
because those are performed only for manual test suites.
Contrary to the range of roles involved for manual suites,
automated test suites are reviewed only by manual testers.
The major reason for this is, automated suites development
is based on manual suites. P6 stated this as: “For the main
sources are manual test scenarios. We are expected to automate
the manual test scenarios as it is, the same steps, the same verifica-
tion points, the same databases... we have only the manual tests
and they just want us to simulate it”. The manual testers usu-
ally assess and compare the functional flow of the auto-
mated tests with manual tests. Therefore, the quality (the
level of completeness) of manual suites gets transferred to
the automated suites, as P3 stated: “you are simulating the
manual testing, so you should take a proof review on the manual
testing; It’s OK or not”. P6 explained: “the common observa-
tions they [manual testers] are giving are observation on the
happy path [consistent] test scenarios. But, the exceptional [incon-
sistent], there are some experienced test engineers, giving some
feedback about the negative [inconsistent] scenarios, but this is
less, maybe one in a ten” - P6. This evidence cannot be consid-
ered as Both because the frequency of feedback that can lead
to the addition of inconsistent test cases is considerably low.

4.6 Testing Mode

This category refers to the mode of testing, i.e., manual test-
ing or automated testing.

Automated Testing

Automated testing is the testing performed in an automated
way using tools, e.g., Visual Studio, Selenium. Test automa-
tion engineers develop automation scripts that run the tests
in an automated way. In comparison to manual testing,
automated testing leads to confirmatory behaviour. It is
because of the difficulty to code inconsistent test cases and
automation tool’s limitations in this regard. For example,
P3: “Automation is more [about] happy cases, you can say that.
Of course, it can handle negative [inconsistent] test cases, but
with manual testing, negative cases or unexpected times or results
can be handled better. With automation test cases it’s more diffi-
cult to handle unexpected results”. Also, P8 complemented to
this; ”... from manual testing opinion you should test the whole
thing. Because you are a user on the computer, you are using that
computer with your hands, with your mouse. You can do any-
thing in that time. But in automation testing, you should write a
code. This is not the natural way. This is about the priority of test-
ing, I think. The automation testing mainly focuses the happy
paths”. According to P2, a tester can benefit from the confir-
matory nature of automated testing due to its fast execution
time. ”If you automate 200 cases... you can run them e.g., in one
hour or two hours. Rather than spending a day or two man-days.
So, this shows you a general outcome, result of this. And you can
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review it. You can say, “Okay let’s now concentrate on these failure
[inconsistent] cases because we haven’t automated [testing of] these
cases and these features. Let’s focus on them.” This gives you a good
time to focus on other features, areas and failure cases” - P2.

4.7 Test Execution Feedback

This category refers to the effect of the results of a test suite
execution especially when a module is tested the first time.
The data analysis has revealed that detection of errors and
also an absence of errors lead to a disconfirmatory behav-
iour by testers.

4.7.1 Detection of Errors

This antecedent refers to the situation when a test case failed
due to the presence of error. It is disconfirmatory because it
leads testers to find more errors in the SUT by performing
further detailed investigations. In case of P9 it leads to
exploratory testing, i.e., performing more manual testing for
finding errors, hence, a disconfirmatory behaviour: “When I
see a bug, I first open a trouble report... And after that I think, [if]
there is a bug, maybe other scenarios are also troubled. And also, I
do free tests [exploratory testing] at that part, at that time maybe...
if there is one bug there must, there can be other bugs. And, I inves-
tigate that part, and sometimes I get [detect] other bugs, sometimes
not” - P9. It also leads to the addition of more test cases, as P5
stated: “if I find a new important bug, I go deeper, and I also won’t
let the test cases [go] unseen. I still run the cases, and if I find some
exceptional cases that I couldn’t consider before, I know they’re
exceptionals, I go deeper, too... Maybe I didn’t consider [it] before
[test cases], and it’s also not written in the requirements, So I write
it down”. This antecedent’s influence on the behaviour is
observed only for manual testers, not for automation test
engineers - discussed in Section 5.

4.7.2 Absence of Errors

This is a situation when all test cases of a suite pass, i.e., no
error is detected by the suite for the SUT. This promotes a
disconfirmatory behaviour among testers because it makes
them curious over the situation and to rethink of their test
approach. Per P10: “I always think, I’m doing something wrong.
“How [could] they develop with no bug?”. P2 explains this situ-
ation as: “If you can’t find some issues with your test set, there
might be issues in your test set approach. So you should be able to
consider error cases [inconsistent], failure cases [inconsistent],
what’s going on. Go over your documents, test sets, and then
detail some of them, change your mindset, how you created them”.
Hence, this situation also prompts testers to force the sys-
tem from a different perspective to reveal its errors. In case
of automation testing, testers execute a few test cases manu-
ally to reassure a 100 percent pass result. “Green is kind of a
very relieving colour, and when you see green all over, you feel
very happy. Of course, we are investigating, we are just executing
manually a couple of test scenarios. Let’s see [if] it really passed
all the test scenarios” - P6. It is a disconfirmatory behaviour
because it led the tester to investigative more rather than
being contented by the test results of automated suite.

4.8 Time

This refers to the available time for two main testing activi-
ties: test suite designing and test suite execution.

4.8.1 Time Pressure

It is an insufficient time availability from testers’ perspective
for performing testing in the situations when they do not
arrange overtime. The data analysis shows, in this situation,
most testers manifest confirmatory behaviour because they
prioritise to validate that SUT accomplishes the specified
functionality. Inconsistent test cases fall second because they
validate implicit functionality, i.e., not explicitly mentioned
in the specifications. P10 stated: “I want to test more but I have
a limited time. I only check the happy path [consistent] or, one or
two exceptional [inconsistent] test cases. But I think, I should test
more and [also] check the other exceptional ones. But I don’t have
time, and should start [testing] the other project. So, it limits my
execution, I think. Exceptional test case execution”. Those who
were observed to manifest both behaviours, for most of them
a confirmatory behaviour occurred prior to a disconfirma-
tory behaviour. For example, “If I have really a short time, really
short time, of course, first I need to see the system is working cor-
rectly, the happy path [consistent]. Whether the happy path passes
right or wrong. I mean, then exceptional cases [inconsistent] of
course. But I have to tell you that happy cases don’t take that long
time, just pass away” - P5. Testers who first manifest a discon-
firmatory behaviour, they compromise on the testing of con-
sistent scenarios. “So for urgency [time shortage], I first start
with exceptional [inconsistent] scenarios. And for urgency some-
times, you make exploratory tests, based on our experience of the
product... If it’s enough urgent, you sometimes, trust the develop-
ment team that they should have developed these according to
requirement” - P7.

4.8.2 No Time Pressure

No time pressure refers to two situations: 1) when testers
are finished before the deadline, or 2) testers have enough
time to perform testing, i.e., without doing overtime.
According to P2: ”You should make enough time to run even
different tests. Sometimes, we have free time and we don’t base it
on any test set [designed tests]. We just start testing a mixture
of functional and non-functional tests”. In this case, the tester
is performing exploratory testing. The influence on the
behaviour is not known because it is not clear, whether
they execute consistent test cases or inconsistent ones.
However, it definitely leads to the execution of more test
cases. However, P9’s behaviour is disconfirmatory in this
regards: ”... if I have enough time, I also execute free tests... not
related with any [designed] test cases. Maybe there are [exist]
test cases, but I do not know... I also do [test] the exceptional
[inconsistent] cases. For example, in this example [case], maybe
more of them will change the status [of the feature] four or five
times, but when I test, I change it [the case]”. P9 also referred
to the execution of exploratory testing that consists of
inconsistent tests. The test case, in this evidence, is validat-
ing the status’ feature for the situation for which a test
case may not already exist.

4.9 Perspective Change

The change in perspective occurs either due to a change of
role or testing the functionality that was previously tested
by another tester. The antecedents of this category pro-
mote disconfirmatory behaviour because of the changed
perspective.
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4.9.1 Developer and Tester

A software engineer working in two roles, as a developer
and tester in the same project, also influence their behav-
iour. P1 explained this as: “when I am a developer, I just focus
on happy [consistent] paths, maybe one risky [inconsistent] case
but mainly happy path to check it out if it is okay. But when I am
a functional tester, I will see every risky point. If I am an integra-
tion tester, I will force every possible error from the integration
part because it’s the most risky thing in our environment. So it
changes my approach”. After a confirmatory behaviour in test-
ing as a developer, testing as tester changes and broadens
their perspective of the SUT, which leads to a disconfirma-
tory behaviour. However, P1 related the reason for discon-
firmatory behaviour in testing to their past experience.

4.9.2 Complement Testing

This antecedent refers to two situations: 1) a tester executing
test cases, designed by another tester, and 2) a tester, testing
the functionality that was tested by another tester in the pre-
vious test cycle of the same release. P12 explained the first sit-
uation as: “We do not actually check the entire cases because our
test lead separates the things that we do. So we are seven people and
two or three of them write the test cases and the other three or four,
run the cases. And if we find something that was not included in
those cases, we add it”. On enquiring further, they mentioned
that the missing cases are usually inconsistent test cases.
Hence, the execution of the suite that was designed by
another tester prompted a disconfirmatory behaviour
because it enabled a different perspective to test the same
functionality. This antecedent also leverages improved
defect detection, e.g., P4 stated: “I run the [functionality-1
name], [functionality-2 name], [functionality-3 name], for exam-
ple. Other LSV [system testing] cycles, my other friends run [func-
tionality-2 name], [functionality-1 name] and [functionality-3
name]. If I miss something, miss a failure, miss defects, maybe she
finds it. Therefore, we have little defects”.

5 DISCUSSION

We first discuss the classification of the identified antece-
dents and present the integrative diagram, followed by their
comparison with the antecedents from the existing litera-
ture. The section also presents the implications for research
and practice. Finally, the threats to validity are discussed.

5.1 Classification of Antecedents

Based on the results, we can classify the antecedents from
three aspects: confirmatory, disconfirmatory, and both, that
represents the test suite completeness perspective. The cate-
gories: test execution feedback and perspective change, and the
antecedents: no time pressure and past experience are discon-
firmatory. The antecedents: medium or low priority, incomplete
requirements, external party review, automated test suite review
and automated testing are confirmatory antecedents. Ambigu-
ous requirements can also be classified as a confirmatory ante-
cedent. The rest of the antecedents, in addition to providing
the evidence for confirmatory or disconfirmatory behaviour,
also provide evidence for the manifestation of both behav-
iours. It is important to note that both may not suggest a
complete test suite, albeit an improved suite. For example,

the antecedents: change request and clarifying requirements
mainly lead to improved completeness of a test suite. Pro-
duction bug fix leads to an increased execution of the test
suite because it is in the context of retesting, as indicated by
the antecedent’s category. For the two antecedents, high pri-
ority and time pressure, both does not suggest completeness
of the test suite in terms of design, and also a complete exe-
cution of a test suite. It is detailed later in this section. The
antecedents: project experience and internal party review, in
addition to the promotion of disconfirmatory behaviour,
also improve the completeness of the suite. Change/fix size is
a special case because, for major change/fix, it is both the
behaviours, otherwise it is confirmatory.

Despite the proposed classification of the identified ante-
cedents, our data suggest that exclusive classification of
these may not be practical. If an antecedent leads to confir-
matory behaviour for some testers, it may also lead to dis-
confirmatory behaviour for other testers, which could be
pertained to certain factors, e.g., personality elements. This
issue and other particular aspects related to the identified
antecedents are detailed further.

General and Specific Behaviours: The data informs that
the general behaviour of testers is to first manifest a confir-
matory behaviour, i.e., designing of consistent test cases and
then a disconfirmatory behaviour, which is designing of
inconsistent test cases. It happens because they identify
inconsistent test cases based on consistent test cases. The
automation engineers reported the same behaviour sequence
when they automate the manual suites, though they only
simulate the manual flow. In addition to designing the test
suites, test execution also follows the same course, i.e., first
confirmatory and then disconfirmatory.

A few participants manifest the opposite sequence of
behaviours - specific behaviour. They manifest disconfirma-
tory attitude prior to confirmatory attitude, which is per-
tained either to their experience, particular nature or
assumptions (developers must have rightly implemented
the consistent scenarios). For example, in Table 3, the evi-
dence of specific behaviour can be seen for ambiguous require-
ments and time pressure, though they are confirmatory
antecedents. P1 associated this with their experience. Also,
this pertains to tester’s nature; in the context of ambiguous
requirements, they stated: “It makes me check risky scenarios...
Because I think like this, if it is difficult it might be more risky... so I
need to see them first” - P1.

If a test suite designing or execution is complete in terms
of consistent and inconsistent test cases, then manifesting
one behaviour before the other is not an apprehension.
However, if completion of one type of test cases is compro-
mised (due to the antecedents), then the behaviours may
lead to adverse effects on software quality, as already
explained in Section 2.

Functionality Retesting: For testing change requests or
production bug fix, the same sequence of general and spe-
cific behaviours occurs. Project experience also influences the
preferred behaviour manifestation by the participants, i.e.,
confirmatory or disconfirmatory.

High Priority Testing: The testing with inconsistent test
cases along the testing with consistent test cases (manifesta-
tion of disconfirmatory behaviour leading to Both in Table 3),
for higher priority functionalities or scenarios, does not
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imply improved completeness of a suite design/execution.
Since, the testing is still limited to the higher priority items.

Requirements and Agile Software Development: The par-
ticipants of this study belonged to projects that apply agile
software development method Scrum. Hence, the antece-
dents of the requirements category (ambiguous, incomplete
requirements) may be confined to this software development
method. In other words, the emergence of this category sug-
gests a high dependency on Scrum. P2 stated: “The actual rea-
son, why in this project agile scrum is used, customer sometimes
might give you less details, less detailed requirements. So, this
causes some issues. Also, you might forget to get [obtain] enough
detailed requirements. So, this is a very normal situation. It hap-
pens in all projects. That’s why agile scrum is used in this project”.
Paetsch et al. stated that agile software development is more
adaptive to frequent changes, and is more reliant on direct
collaboration instead of documentation oriented processes
[36]. As a result, agile is more “code-oriented” and less
“document-centric” [36]. Therefore, the requirements to be
implemented in the following sprint might not be compre-
hensive for testers to design complete test suites.

Clarifying Requirements: This antecedent of Requirements
category promotes Both behaviours but it may not always
be possible to clarify requirements, e.g., in case of time
pressure.

Detection of Errors and Automated Testing: Detection of
errors does not promote any kind of behaviour among test
automation engineers. The reason for this could be that auto-
mated testing, compared to manual testing, do not require an
active involvement of a tester during the test suite execution.
Once the complete script is run, the results are generated,
which are then investigated by the automation tester. The
dependency of automated suites on the manual suites may
also be a reason for this observation, i.e., the automation testers
may find/receive a complete manual test suite to automate.

We could not observe the level of automation as an ante-
cedent to the behaviours of testers performing automated-
testing. According to the results, automated suites are
developed based on manual suites. Therefore, the modules
that are not fully automated, are possibly manually tested.
Nonetheless, a possible effect of (the level of) automation is
mentioned in Section 4.6, i.e., the fast execution time of auto-
mated testing creates time for the (manual) execution of dif-
ficult-to-automate inconsistent test cases and other modules
that could not be automated. This may promote disconfir-
matory behaviour among manual testers.

The analysis also could not support the effect of testing-
tools on the behaviour of testers. The participants reported
using the tools for maintaining test suites, designing and
execution of test suites, test cases statuses, assignments of
test cases to others (e.g., to developers for fixing), progress
tracking, generating test reports and having a shared plat-
form. These support the testing process, either manual or
automated. This may not affect a tester’s (dis)confirmatory
behaviour except, for example, the stage of testing (design-
ing or execution) or other reported antecedents (Section 4)
inclusive of the general and specific behaviours. For exam-
ple, P1 reported that the tool they use does not affect their
(dis)confirmatory behaviour.

Time Pressure: The data analysis also suggests that time
pressure leads to high priority testing, whether a manual or

automated testing. It is also found to affect the practice of
exploratory testing that some testers perform, e.g., in the
case of detection of errors. Moreover, the participants have
reported applying experience under time pressure for per-
forming effective testing. Based on the experience, they
choose the execution of test scenarios that can be either con-
sistent, inconsistent or both. As P2 explained: “when time is
pushing and both of things [time and previous experience]... You
can choose which parts to test. This is like an instinct from your
previous experiences and history of the project. You know things
[functionalities] and then you find the best approach...”. Further-
more, the participants attributed limited time availability to
Agile practices. A study by Linß et al. found ten antecedents
to, and five consequences of time pressure, by analysing
time pressure in software projects that apply Scrum [37]. It
is evidence that time pressure is intrinsic to the agile devel-
opment method - scrum.

Fig. 2 presents the integrative diagram of the formed cat-
egories based on the identified antecedents. The antecedents
are separated with a semicolon (;) inside a category box, fol-
lowed with their classification, e.g., ’D: Detection of Errors’.
The arrows depict relations among the categories, i.e., how
one category is influencing the other, e.g., customers define
priorities for platform or functionalities (priority) when they
perform reviews (external party reviews). This is indicated by
an arrow sign from the Test Suite Reviews category to the Pri-
ority category. The relations between the categories are
based on the relations between the antecedents of those cat-
egories. These relations are a figurative depiction of the nar-
rative in the results and discussion section. In the figure, the
time pressure can be seen as impacting other categories by
promoting confirmation bias and limiting the completeness
of test suite design or execution. The time pressure is also
diminishing the possibility of exploratory testing, thus
decreasing the disconfirmatory effects of the antecedents of
test execution feedback. In the holistic perspective, the experi-
ence has emerged as a decisive category for the specific or
general behaviour manifestation for other categories, and a
contributor to the priority category.

Conclusively, confirmation bias is manifested due to the
confirmatory antecedents because consistent test cases are
designed/executed relatively more than the inconsistent
test cases. The antecedents that lead to the disconfirmatory
behaviour, and also to a complete test suite (design or exe-
cution), suggest the possible mitigation of confirmation
bias. Fischoff mentions five levels of debiasing7 interven-
tions: a) warning about the possible bias, b) describing the
direction of the typically observed bias, c) personalised
feedback, d) training for cognitive mastery and e) debias the
task instead of the person [10], [39]. a, b and c are seldom
effective, and d is expensive, hence, Fischoff proposed e
[10], [39]. In this perspective, a few of our disconfirmatory
antecedents are task/practice-oriented, e.g., complement test-
ing that may debias confirmation bias. The antecedents that
mostly promote both behaviours for testers, e.g., change
request, lead to improved completeness of a test suite, if not
interrupted by time pressure. When time pressure occurs, it
affects the completeness of either consistent test scenarios

7. It refers to preventing or alleviating the effects of cognitive biases
[10], [38].
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or inconsistent test scenarios, which is respective to the gen-
eral or specific behaviour of a tester. The specific behaviour
(first disconfirmatory) in such a situation although could
mitigate confirmation bias but may not assure a defect-free
SUT. Since, the consistent test cases are not executed by the
tester, that may fail.

5.2 Comparison With Existing Literature

Table 4 presents a comparison of the identified antecedents
to the antecedents found in the existing literature. Five out
of 12 antecedents of the existing literature are comparable to
seven of the antecedents of our study. However, the existing
literature does not empirically support the effect of two of
the five antecedents on confirmation bias. Our study identi-
fied 13 new antecedents compared to the existing literature.
There are seven antecedents that the existing literature
investigated, but our study could not identify them. How-
ever, the existing literature does not empirically support the
effect of four of these 7 antecedents on confirmation bias.
Table 4 uses different symbols (‘E’, #) for presenting the
effect of antecedents because the existing literature uses dif-
ferent assessment methods for measuring confirmation
bias. Additionally, our study is a qualitative study and the
existing literature are quantitative studies. No effect symbol
(‘E’, #) before the antecedent indicates that the existing liter-
ature could not experimentally observe it to affect confirma-
tion bias.

The category experience and the related antecedents of the
existing literature are similar because they all point towards
the possible mitigation of confirmation bias due to experi-
ence of the testers. The antecedent, completeness of specifica-
tions, which led to the lower levels of confirmation bias in the
studies of Leventhal et al. and Teasley et al., is relatable to A6
of our study [6], [7]. Since, the results of A6 may lead to the
complete elaboration of all the required and non-required
functional behaviour of the SUT. Leventhal et al. and Teasley
et al. defined three levels of specifications [6], [7]. The first
and second levels, minimal and positive only specifications
are similar to A7 because they all suggest a manifestation of
confirmation bias. The effect of the antecedent, error feedback
was investigated in the context of the presence of errors ver-
sus absence of errors by Leventhal et al., which remained
inconclusive [6]. Contrary to the hypothesised effect of error
feedback by Leventhal et al. that absence of errors may not
decrease confirmation bias levels [6], our study suggests that
not finding any error (absence of errors) also promote the dis-
confirmatory or code-breaking behaviour among testers. The
disconfirmatory behaviour manifestation in our study may
be attributed to the extensive industrial testing experience of
the participants. Whereas, Leventhal et al. employed gradu-
ate students to represent advanced testers, whose maximum
professional experience did not exceed over a year as an
intern-programmer [6]. Our study showed that time pressure
is a confirmatory antecedent as well as an antecedent that is

Fig. 2. Integrative diagram depicting the relationships of the identified categories and antecedents to (dis)confirmatory behaviour.
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ineffective for testing from the test completeness perspective.
However, Salman et al. could not find it as a promoting factor
for confirmation bias in their experimental study [3].

The participants of our study did not refer to their logical
reasoning skills (acquired through their education) or educa-
tional background and levels for their (dis)confirmatory behav-
iours, in contrast to the evidence shown by Calikli and Bener
[5], [8]. The antecedent, job title cannot be compared with any
antecedent of our study because we did not segregate based
on roles. We considered all roles performing core testing ori-
ented activities, e.g., test suite designing and test suite execu-
tions, as testers. Additionally, all the participants were
practitioners, therefore comparison with researcher aspect is
impossible. Company culture, company size and development
methods are also not directly comparable with any of our

antecedents because our data collection was limited to one
company only and none of our participants was solely a
developer. It is important to mention that the antecedents
with no effect on confirmation bias levels, in the existing litera-
ture, are due to not statistically significant results. The discus-
sion on the observed effect sizes of those antecedents, which
may imply a possible effect, is beyond the scope of this study.

5.3 Implications for Research and Practice

For research, we propose a multi-case study to explore,
whether the antecedents found in this study also hold in other
settings because the results of our study are confined to the
testers of one company only. A cross-case analysis would also
aid towards finding the influence of the antecedents that are
particular to the companies, e.g., organisational culture,

TABLE 4
Comparison With Existing Literature

No. Our Study Existing Literature

Experience # Expertise level [6], [7]; # Experience and activeness in testing
and development [5], [8]

A1 D: Past Experience
A2 D+B: Project Experience

Priority
A3 C+lB: High Priority -
A4 C: Medium or Low Priority -

Requirements
A5 C: Ambiguous Requirements -
A6 B: Clarifying Requirements # Completeness of Specifications [6], [7]
A7 C: Incomplete Requirements

Functionality Retesting
A8 B: Production Bug Fix -
A9 B: Change Request -
A10 C+B: Change/Fix Size -

Test Suite Reviews
A11 D+B: Internal Party Review -
A12 C: External Party Review -
A13 C: Automated Test Suite Review -

Testing Mode
A14 C: Automated Testing -

Test Execution Feedback Error Feedback [6]
A15 D: Detection of Errors
A16 D: Absence of Errors

Time
A17 C+lB: Time Pressure Time Pressure [3]
A18 D: No Time Pressure -

Perspective Change
A19 D: Developer & Tester -
A20 D: Complement Testing -

- E: Company Culture (of different geographic regions) [23]

- # Logical Reasoning Skills [5], [8]

- # Job Titles (researchers versus tester, developer, analyst) [5], [8]

- Development Methods (e.g., incremental, agile and TDD) [5], [8];
TDD versus TLD [9]

- Company size (large, small and medium enterprises) [5], [8]

- Educational Background (undergraduate) [5], [8]

- Educational Level (bachelor’s versus master’s) [5], [8]

Key: E = effect on confirmation bias; # = decrease level of confirmation bias
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development methods, company size, as per quantitatively
investigated by Calikli and Bener [5], [8]. More studies
applying grounded theory using multiple data collection
methods, for exploring the same phenomenon, may reveal
new antecedents with more intense evidence. According to
our results, ambiguous and incomplete requirements pro-
mote a disconfirmatory behaviour, however, under time
pressure this leads to a confirmatory behaviour manifesta-
tion. More studies are needed on how to improve the
requirement specifications that may deteriorate software
quality especially in the context of Agile that also constraints
time [37]. Yet, the manifestation of confirmation bias in the
case of complete requirements is not detrimental for soft-
ware quality because a tester is then validating all the speci-
fied required and not required behaviours of the SUT [3]. In
the context of Agile, whether to improve the requirements or
to devise solutions to manoeuvre the possibly limited time,
is a question that needs scientific attention.

Experimental studies and experimental replicationswould
help strengthen the evidence quantitatively of the identified
antecedents. Experimental studiesmay also help find the rela-
tive importance of the identified disconfirmatory antecedents
for effective testing, e.g., presence of errors versus absence of
errors, and how influential is the role of experience (general
experience in testing versus project/domain experience) in
this comparison.

We recommend the following to practitioners:
Test Suite Reviews: It is important to implement internal

test suite review practices if they are not already in place. It is
critical thatmanual test suites are reviewed by the teammem-
bers of the same project. The same project members are better
able to promote disconfirmatory behaviour and also enhance
the test suite completeness because they are knowledgeable
on the project or domain of the SUT. Despite the review by
customers, of the manual suites, internal reviews should still
be conducted because customers may focus only on defining
the priorities of the functionality rather than promoting a dis-
confirmatory behaviour. Once the quality of manual suites is
assured - a suite that is disconfirmatory and improved in com-
pleteness, the dependence of automated suites on manual
suitesmay not be deteriorating for the quality of testing.How-
ever, expert test automation engineers should review the
automated suites to help less-experienced automation engi-
neers to develop complex test cases especially the inconsistent
ones. This could improve the coverage of inconsistent test
cases alongside the learning and manifestation of disconfir-
matory behaviour by test automation engineers.

The recommended practice of test suite reviews may also
be interrupted by time pressure. In such a case, testers with
project (specific) experience or practice of complement testing
may cover for skipping test suite reviews. Project experi-
enced testers could be able to achieve possible completeness
in designing/executing a test suite(s). The practice of com-
plement testing, i.e., test case designing and execution by
two different testers may accommodate more/missing
inconsistent test cases to the suite. Thus, ensuring improved
completeness for test suite execution.

Experience and Test Execution Feedback: Modules
developed by experienced testers may appear less defective
or defect-free to inexperienced testers. These modules
should be tested by experienced testers because the apparent

absence of errors may prompt more code-breaking (disconfir-
matory) behaviour among them compared to inexperienced
testers. This may lead to enhanced coverage of inconsistent
test cases for themodule, whichmay also reveal errors.

Time and Complete Test Execution: In order to increase
test suite execution in terms of (in)consistent test cases,
under time pressure, manual test engineers should work in
collaboration with automation test engineers. For example,
automation engineers run the automated test cases and
manual testers run the cases that could not be automated
for the SUT. This collaboration may make efficient use of
the limited available time with an improved test suite exe-
cution. The collaboration may also support other situations
that may suffer due to time pressure, e.g., complete execu-
tion of inconsistent (manifestation of disconfirmatory
behaviour) and not high priority test cases. Automation can
be run for not high priority test cases, and manual testers
can validate the rest of the functionalities and test cases.
Functionality retesting may also benefit from the collabora-
tion in the same manner for time-pressured situations.

5.4 Evaluating the Grounded Theory

We evaluate our grounded theory presented in Fig. 2
according to the Glaserian evaluation criteria [32], [40].

One aspect to evaluate fit of the theory is its ability to
explain the realities of the studied phenomenon as per viewed
by the participants [40]. We shared the generated theory with
the participants of our study. The participants found that the
identified antecedents and their relationships represent their
testing experience, as per said by P6: “factors [antecedents] are
covering my testing experience”. The respondents also men-
tioned that the theory also explains the effects of the antece-
dents on their testing behaviour, especially regarding the
disconfirmatory antecedents. This relates to thework criterion
of the evaluation [32]. In our case, relevance relates to the the-
ory’s appeal for practitioners [41]. We achieved it based on
the feedback of the participants, as they agreed with the iden-
tified antecedents and their inter-relationships in comparison
with their testing experience. The last criterion is modifiabil-
ity, which suggests that the theory is flexible to accommodate
variations proposed by new data [32], [40]. We were able to
modify our theory as we progressed with the analyses of
data. Modifiability continued to appear at two points, first,
during the classification of the antecedent as (dis)confirma-
tory and both. Second, during the analyses of the relationships
among the emerging categories and concepts (antecedents)
because of our additional,why& how focus of the analyses.

5.5 Threats to Validity

This section elaborates on the threats to validity of our study.
Transcription of the interviewswas affected by the accent of

the interviewees because they were non-native English speak-
ers. Therefore, we sent summaries of the transcribed content to
the respective interviewees for a confirmation on the collected
data. However, we received only one response that confirmed
the content, other participants did not respond. The interviews
conductedwithout videomay not have provided lower quality
data because there is not enough empirical evidence to support
this possible threat to the data quality [42]. The pilot interview
ensured that we collect the right data during the actual

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1365



interviews. The percentage of disregarded data (Section 3.3) is
minor, we do not believe that it could have caused major
threats to our results. We achieved code saturation while cod-
ing our data. Code saturation is achieved when code book sta-
bilises, i.e., the data do not suggest any further issues (codes),
which in our case are the antecedents [43]. According to Hen-
nink et al., it is possible to achieve code saturation by as few as
nine interviews [43]. Our participants were chosen based on a
common criterion of experience of software testing; this intro-
duces homogeneity in our sample [44]. Therefore, twelve inter-
views have been sufficient to achieve (code) saturation when
the study’s objective is to describe the behaviour of a compara-
tively homogeneous group [44].

In order to mitigate the potential threat of researcher bias
while forming an initial list of the terms that indicated dis
(confirmatory) behaviour on the tester’s (participant’s) end,
we also coded the evidence that explained participants’
understanding of the terms. The initial list of the terms could
be a source of bias for the other coders while performing the
pilot coding - Section 3.3. However, the low agreement levels
between the coders of the pilot coding, do not suggest such a
possibility. According to Urquhart, a researcher applying
GT should not have “preconceived theoretical ideas before start-
ing the research” [31, p. 16]. In our opinion, familiarity with
the relevant literature beforehand has not compromised this
characteristic of GT because only limited literature is avail-
able. Our study is the first that has explored the why and how
aspect of confirmation bias in software testing. Additionally,
the identification of 13 new antecedents and absence of seven
existing antecedents from our generated theory (Section 5.2)
suggest less influence of any preconceived ideas. We
acknowledge possible threats to our theory for not perform-
ing theoretical sampling because it was not practically possi-
ble. Theoretical sampling enables to address the gaps in the
emerging theory [31], [32]. It also helps to increase the scope
of the theory by sampling other substantive areas [31].
According to Eisenhardt and Graebner, theoretical sampling
refers to the selection of cases that are specifically appropri-
ate for “illuminating and extending relationships and logic
among constructs [45, p. 27]”. From this aspect, theoretical
sampling was implicitly applied from the beginning when
our contact person sampled the professionals based on their
characteristic, i.e., experience in software testing. However,
these software testers belong to a single context.

Our theory is generated from the data of a single company
only, i.e., the testers of the Company-ICT, which limits the
applicability of the theory to dissimilar contexts. However, a
properly performed grounded theory approach produces a
theory that is flexible and modifiable (GT evaluation criterion)
[32], [40]. It can be modified using CCM (a key component of
GT) based on the data from other studied contexts [31], [32],
[40]. With reference to the concept of biasplexes (Section 2), con-
firmation bias belongs to the inertia biasplex [17]. The other cog-
nitive biases of this biasplex are, e.g., the bandwagon effect and
anchoring bias [17], [38]. These other biases may also reinforce
or overlap with confirmation bias among software testers to
form their (dis)confirmatory behaviour. Our study is limited to
exploring the phenomenon of confirmation bias without con-
sidering its biasplex. Furthermore, our study does not employ
data triangulation to improve the strength of evidence, instead
is limited to a single data collection method, i.e., interviews.

However, this study can be considered a post-hoc approach to
explore further the phenomenon of confirmation bias among
testers because we observed its manifestation in our previous
experimental studywith student-participants as testers [3].

6 CONCLUSION AND FUTURE WORK

We applied grounded theory to explore the antecedents to
confirmatory and disconfirmatory behaviours and to under-
stand how they occur among software testers. We identified
twenty antecedents to (dis)confirmatory behaviour, classi-
fied in nine categories; experience, priority, requirements,
functionality retesting, test suite reviews, test execution
feedback, time, testing mode and perspective change.

The antecedents that promote confirmatory behaviour,
leading to confirmation bias are; ambiguous requirements,
incomplete requirements, high priority testing, medium or
low priority testing, automated testing, automated test suite
reviews, external party reviews, (minor) change/fix size
and time pressure. Time pressure plays an important role in
the occurrence of confirmatory behaviour among testers,
e.g., when they are dealing with ambiguous requirements
or performing only a high priority testing.

The antecedents that promote disconfirmatory behaviour
and also improve the completeness of a test suite from design
and execution perspective are; project experience, past experi-
ence, developer and tester perspective, complement testing,
detection of errors, absence of errors, no time pressure and
internal party reviews. These antecedents may help circum-
vent confirmation bias and improve the quality of testing.
Practitioners are recommended to implement internal party
reviews because it may increase the completeness of inconsis-
tent test cases. Similarly, a practice of complement testing,
among the testers,may also help in the completeness of incon-
sistent test cases and increase defect detection. Defect detec-
tion (detection of errors), in turn, promotes disconfirmatory
behaviour, as propositioned by our grounded theory.

The future work of this study includes the extension and
modification of our theory with the data from testers of other
companies. In other words, to increase the generality of the
theory by sampling other substantive areas. Data triangula-
tion through multiple data collection methods would also
increase the validity of findings. For example, conducting an
observational study that observes testers over a longer span
in addition to interviews would help validate the findings
from different sources. This would enable an in-depth analy-
sis of confirmation bias phenomenon, also considering its
interactions with other cognitive biases, and thus the behav-
iour of software testers. Another possible extension of this
work is to quantitatively investigate the relative importance
of the identified antecedents, in a software testing context.
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Optimization of Software Release Planning
Considering Architectural Dependencies,

Cost, and Value

Raghvinder S. Sangwan , Ashkan Negahban , Robert L. Nord , and Ipek Ozkaya

Abstract—Within any incremental development paradigm, there exists a tension between the desire to deliver value to the customer

early and the desire to reduce cost by avoiding architectural refactoring and rework in subsequent releases. What is lacking is an

analytical framework that quantifies opportunities and risks of choosing one or the other of these strategies or a blend of the two. This

article demonstrates the use of design structure and domain mapping matrices for analyzing architectural dependencies and proposes

an optimization-based decision-making technique to support effective release planning. The optimization models recommend the order

in which architectural elements and features should be implemented across different releases so as to: (a) minimize rework cost; (b)

maximize early value delivery; or (c) optimize an integrated measure of cost and value. These analytic models can be applied earlier

in the life cycle and, hence, provide timely information about the progress and changes that occur at each iteration.

Index Terms—Software release management and delivery, software architecture, nonlinear programming

Ç

1 INTRODUCTION

WITHIN any iterative incremental development paradigm,
there is a choice between two competing interests,

namely early value delivery, and avoiding architectural
refactoring and rework in subsequent releases. In certain
contexts, early delivery might be an appropriate choice, for
example, to enable the release of critically needed capabilities
or to gain market exposure and feedback. In other contexts,
delayed release in the interest of reducing later rework might
better align with project and organizational drivers and con-
cerns. What is lacking, however, is quantifiable guidance for
developers that highlights the potential opportunities and
risks of choosing one or the other of these alternatives (or a
blend of both).

In iterative release planning, developers must consider a
range of dependencies:

1). Dependencies among customer requirements or features
(discrete units of functionality desired by stakeholders):
Understanding these allows for optimization of
development activities within a given release and
ensures that a coherent and useful feature set is
released to the end user [12].

2). Dependencies among features and architectural elements
(implementation units of software that provide a coherent
set of responsibilities): Understanding these allows for
a staged implementation of the architecture and sup-
ports the delivery of customer value.

3). Dependencies among architectural elements: An architec-
ture embodies design decisions that influence a sys-
tem’s quality attributes. Changes to an architecture
involve modifying a system’s gross topology as well
as its communication and coordination mechanisms.
Therefore, analyzing these dependencies provides
insight into potential downstream rework costs that
may be incurred as a result of choosing to incremen-
tally develop and release the architectural infrastruc-
ture which may have serious implications for the
future (successful) evolution of a product [2], [25].

We posit that the ability to quantify architecture quality
with measurable criteria provides engineering guidance for
iterative release planning. We can improve the visibility of
architecture quality by providing quantifiable models of the
architecture during system development. These analytic
models can be applied earlier in the life cycle (as opposed to
using code) and, hence, provide reliable information about
the progress and changes that occur at each iteration. The
optimization models of software release planning described
in this paper provide data-driven decision support, are scal-
able, and can be applied in any real-world situation using
the following iterative process:

� Step 1: Determine the dependencies between archi-
tectural elements and features.

� Step 2: Develop an initial release plan using release
planning procedures a team currently follows.

� Step 3: Set cost, value, and resource parameters of the
optimization models based on the release plan.
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� Step 4: Solve the models under various what-if sce-
narios to understand the trade-off between cost and
early value delivery.

� Step 5: Make necessary adjustments to the release
plan based on results of the what-if scenarios; repeat
steps 3 – 5 until satisfied with the resulting plan.

We conduct a study with the goal of exploring distinct
outcomes of different development paths when contrasting
business goals are at stake: (i) maximizing early value deliv-
ery to the end user; and, (ii) minimizing development cost
due to rework. We consider three paths: value-driven, cost-
driven, and a middle ground of using both value and cost
to guide each key decision point in release planning. We
analyze how development cost changes from iteration to
iteration as we optimize for these different outcomes.
Finally, we examine the paths followed by the development
teams of the system we studied.

The structure of this article is as follows. In Section 2, we
review dependency management as manifested by design
structure and domain mapping matrices, and describe our
development path analysis approach to release planning. In
Section 3, we present the Management Station Lite (MSLite)
system that we chose as a model problem for our study.
Sections 4 and 5 present the details of our optimization anal-
ysis of the model problem. In Section 6, we discuss the
validity of our approach, and we compare it with related
work in Section 7. Last, in Section 8, we summarize conclu-
sions and future work.

2 DEPENDENCY MANAGEMENT AND PATH

ANALYSIS

In this section, we review how to capture each of the three
dependencies discussed above using design structure and
domain mapping matrices, and discuss the notion of propa-
gation ratio and path analysis.

2.1 Design Structure Matrix

A design structure matrix (DSM) [44] maps dependencies
among items in a given domain. All elements appear in
both the rows and the columns, and dependencies are sig-
naled at the intersection points of the items in the matrix.
For example, Fig. 1 shows a DSM for a software system that
has been decomposed into four modules, namely A, B, C,
and D. The rows and columns of the matrix represent the
same modules. The dependencies of a module are read
down a column. For instance, reading down the first col-
umn, we can see that Module A depends on Module C. We

also see that Module A does not depend on Modules B or D
because those cells are empty. The identity diagonal repre-
sents a dependency of a module on itself.

DSMs are single-domain square matrices, meaning that
relations are defined among instances of the same type (for
example, software modules in Fig. 1). However, dependen-
cies also occur across different domains. Examples include
dependencies among development staff technical compe-
tencies and the software components that they will develop.
Another common example is the identification of which
software components or modules satisfy which customer
requirements. Multi-domain dependencies often cause proj-
ect delays or even failure when detected too late [10]. We
discuss such dependencies next.

2.2 Domain Mapping Matrix

The term domain mapping matrix (DMM) was coined to
refer to matrices that map the relations among items in two
different product development domains; for example, task
X requires person Y’s expertise [10], [11]. The two domains
need not have the same number of items; thus, the resulting
DMM is usually a rectangular matrix. Fig. 2 illustrates an
example of a DMM applied to the analysis of dependencies
between customer requirements and software modules that
implement those requirements.

Our approach uses DSM and DMM analysis to provide
information on architecture quality during iterative release
planning. Table 1 summarizes the use of DSMs and DMM
in this context.

2.3 Propagation Ratio

Architecture quality and visibility are closely related. Rea-
soning about quality with a quantifiable model requires that
certain architectural properties be represented objectively
and in a repeatable manner across systems for the model to
work. Therefore, we use DSM and DMM analysis to provide
a representation with support for objective metrics genera-
tion. We discuss the propagation ratio metric in this context.
According to [30], this metric captures the percentage of ele-
ments that can be affected, on average, when a change is
made to a randomly chosen element. Propagation ratio (PR)
is calculated as the density of a matrix M as represented by
the ratio of the total number of filled cells due to direct or
indirect dependencies among its elements (

Pn
i¼0 M

i) to the
size of thematrix (n2):

PR ¼ Density
Xn

i¼0
Mi

� �
=n2: (1)

Fig. 1. A DSM showing dependencies among software modules.
Fig. 2. A DMM showing dependencies among customer requirements
and software modules.
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2.4 Path Analysis

Next, we describe our approach to development path analy-
sis for iterative release planning. A release can be an internal
iteration that produces a potentially shippable increment or
an external release to the customer. Each release in the path
is described by the following attributes:

� Sequence number (the release order in the path)
� Features implemented
� Architectural elements implemented
� The DSM and DMMmatrices up to that release.
We calculate end-user value at each release by adding the

value of all features supported by that release. For the pur-
pose of our study, value reflects the priority points of the
features (explained in Section 3.1). Total cost of a release r,
TCr, is calculated as follows:

TCr ¼ ICr þ RCr; (2)

where the implementation cost, ICr, is the sum of the imple-
mentation cost of all features and architectural elements
implemented in release r (and not present in an earlier
release). We assume that the implementation cost can be
estimated for all individual features and architectural ele-
ments (independent of dependencies). Rework cost (RCr) is
incurred when new features and/or architectural elements
are added to the system during a release, and one or more
preexisting features and/or architectural elements have to
be modified to accommodate the new ones. This includes
features and architectural elements with direct dependen-
cies on the new features and architectural elements as well
as those with indirect dependencies captured by the propa-
gation ratio. We compute the rework cost for release r by
adding two components:

� The rework cost associated with each new architec-
tural element implemented in release r that has
dependencies from preexisting architectural ele-
ments in release (r� 1).

� The rework cost associated with each new feature
implemented in release r that has dependencies
from preexisting features and architectural elements
in release (r� 1).

Within the context of our analysis, we use rework cost to
provide insight into the improvement or degradation of
architectural quality across releases within a given develop-
ment path.

3 MSLITE STUDY

We analyze the cost and value outcomes of alternative
release strategies using DSM and DMM-based dependency
analysis with propagation ratio. We picked the MSLite [4],
[39], [41] system for the study, a system with which we have

previous experience and access to the code, architecture, and
project-planning artifacts. The methodology used for the
study consists of first defining the system requirements and
system structure using DSM and DMM analysis. Then,
through a set of mathematical optimization models, we per-
form two types of comparisons and analyze five develop-
ment paths by which to realize the system requirements and
system structure:

(i) Comparing three development paths using what-if
scenarios to understand the space and boundaries of
decisions with respect to cost and value:
� Path 1: A cost-driven what-if scenario that focuses

onminimizing cost.
� Path 2: A value-driven what-if scenario that

focuses on maximizing early value delivery.
� Path 3: An integrated approach and what-if sce-

nario to understand trade-offs between cost and
value at key decision points in release planning.

(ii) Comparing the Planned Path and Actual Path to
understand the predictive nature of using the archi-
tecture earlier in the life cycle than code can be used:
� Planned Path: Development path of MSLite as it

was planned.
� Actual Path: Development path of MSLite as it

was actually implemented.

3.1 Goals and Requirements of the MSLite System

MSLite is a system that automatically monitors and controls
a building’s internal functions, such as heating, ventilation,
air conditioning, access, and safety. Fig. 3. shows the pri-
mary presentation of the component-and-connecter (C&C)
view [16] of the MSLite system. The accompanying catalog
in the system documentation describes the responsibilities
of the components and connectors. The components outside
the MSLite Server subsystem implement the core user func-
tionality, namely, monitoring building facilities and issuing
commands to change their properties (for example, to lower
indoor temperature). Detecting alarm conditions and auto-
mating rules for property changes are other important capa-
bilities of the system. The main purpose of the components
of the MSLite Server subsystem is to provide support for the
quality requirements. For instance, one of the main system
goals is to support multiple field systems for heating, venti-
lation, air conditioning, lighting, secure access, fire detec-
tors, etc. The Virtual FSS component handles all the field
systems (FSS) descriptions and creates appropriate events
to which the other components in the system can listen.
Other components such as Cache and Access Control explic-
itly support performance and security, respectively.

The system users are facilities managers that use it to
manage and configure a network of hardware-based field
systems used for controlling building functions triggering
alarms under life-critical situations. We express the func-
tional and quality attribute requirements for MSLite as user
stories (US) and acceptance test cases (ATC), respectively,
as shown in Table 2, and collectively refer to them as fea-
tures. On a scale of 1 to 9, we express the priorities of these
features according to their relative benefit to the end user
when implemented and the penalty incurred by the end
user if postponed. Furthermore, we assign a user value to

TABLE 1
DSM/DMM Identification

Features (F) Architectural Elements (AE)

Features (F) DSMF DMM
Architectural Elements (AE) – DSMAE
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each feature as the weighted sum of benefits and penalties,
with benefits given a weight two times that for the penalty
[49]. Given that customers value delivered functionality,
USs have been assigned a higher benefit value than ATCs.
The cost column represents relative effort required to
develop each feature. Given that ATCs are relatively more
difficult to implement, they have been assigned a higher rel-
ative cost compared to USs.

3.2 System Definition

We identify interdependencies among MSLite architectural
elements (DSMAE), its features (DSMF), and architectural
elements and features (DMM) in Fig. 4. This dependency
analysis is used to determine precedence in the implemen-
tation of capabilities.

4 OPTIMIZATION OF RELEASE PLANNING

We propose three mixed-integer nonlinear programming
(MINLP) models for three strategies:

� Minimizing total cost, i.e., sum of implementation
and rework costs (Path 1).

� Maximizing early delivery of value to the end user
(Path 2).

� Optimizing an integrated measure of cost and early
value delivery (Path 3).

The models are scalable and can handle large problem
instances in terms of number of architectural elements and

features, number of releases, and number of non-zero ele-
ments in the DSM and DMM. In this section and Section 5,
we show the applicability of our models in a real-world
project and how they provide decision support in the path
definition process.

In this section and Section 5, we show the applicability of
our models in a real-world project and how they provide
decision support in the path definition process. As shown
in Section 5, the models can also be used for performing for-
mal what-if analysis on the trade-off between early value
delivery and cost, enabling answering the important ques-
tion of “how willing is the developer to accept additional
rework cost in exchange for the early delivery of features to
the customer?” Table 3 summarizes the notations used in
the optimization models.

The main decision made by these models is the release
number r in which each architectural element j and feature
l should be implemented considering the dependency rela-
tionships so as to minimize or maximize an objective func-
tion. The primary decision variables in these models are:

AEj;r¼
1; if architectural element j is implemented in release r;

0; otherwise;

�

Fl;r ¼
1; if feature l is implemented in release r;

0; otherwise:

�

4.1 Path 1: Minimizing Total Cost

The objective function (3) is the cumulative cost of the proj-
ect calculated as the sum of total cost for each release.

Minimize TCFinal ¼
XN

r¼1

TCr: (3)

Due to the large number of constraints and to enhance
readability, we will present the constraints in groups. Con-
straints (4 – 11) pertain to the concepts described in Section 2.
Equation (4) calculates the total cost for each release r as the
sum of the implementation and rework costs in that release.
Equation (5) computes the total implementation cost for
release r by adding the implementation cost for architectural
elements and features implemented in the release (i.e., we
only addCAE

j andCF
l values for whichAEj;r ¼ 1 and Fl;r ¼ 1,

respectively). There are three types of rework cost due to: (I)
violating the dependencies between architectural elements
(computed using constraints 6 and 9); (II) violating the depen-
dencies between features (computed using constraints 7 and
10); and, (III) violating the dependencies between features and
architectural elements (computed using constraints 8 and 11).

TCr ¼ ICr þRCAE
r þRCF

r þRCAE�F
r 8r 2 1; 2; . . . ;Nf g

(4)

ICr ¼
XNAE

j¼1

AEj;rC
AE
j þ

XNF

l¼1

Fl;rC
F
l 8r 2 1; 2; . . . ; Nf g

(5)

RCAE
r ¼

XNAE

k¼1

XNAE

j¼1

AEk;rH
AE
j;r�1D

AE
j;k C

AE
j PRAE

r�1 8r 2 2; . . . ; Nf g

(6)

Fig. 3. MSLite top-level C&C architecture view.
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RCF
r ¼

XNF

l¼1

XNF

m¼1

Fl;rH
F
m;r�1D

F
m;lC

F
mPR

F
r�1 8r 2 2; . . . ; Nf g

(7)

RCAE�F
r ¼

XNAE

j¼1

XNF

l¼1

AEj;rH
F
l;r�1D

AE�F
l;j CF

l PR
AE�F
r�1 8r 2 2; . . . ; Nf g

(8)

PRAE
r ¼

XNAE

j¼1

XNAE

k¼1

HAE
j;r H

AE
k;r MAE

j;k

 !

=
XNAE

j¼1

HAE
j;r

 !2

8r 2 1; 2; . . . ; Nf g

(9)

PRF
r ¼

XNF

l¼1

XNF

m¼1

HF
l;rH

F
m;r M

F
l;m

 !

=
XNF

l¼1

HF
l;r

 !2

8r 2 1; 2; . . . ; Nf g

(10)

PRAE�F
r ¼

PNAE

j¼1

PNF

l¼1 H
AE
j;r H

F
l;r M

AE�F
j;l

� �

PNAE

j¼1 HAE
j;r

� � PNF

l¼1 H
F
l;r

� � 8r 2 1; 2; . . . ; Nf g:

(11)
To clarify how these constraints work in pairs, consider (6)

that calculates rework cost of type I for release r by summing
any rework cost incurred as a result of implementing each
new architectural element k in the release (i.e.,AEk;r ¼ 1).

For each preexisting architectural element j (HAE
j;r�1 ¼ 1),

the rework cost is calculated by multiplying three terms: (a)
number of direct and indirect dependencies that element j
has on k (DAE

j;k ) given by element (k; j) of the DSMAE in Fig. 4a;
(b) implementation cost of the preexisting element j (CAE

j );
and, (c) propagation ratio of DSMAE in release r� 1 (PRAE

r�1).
Equation (9) calculates the propagation ratio associated with
DSMAE in release r as described in Section 2.3, where the
numerator counts the number of architectural element pairs
(j; k) with direct or indirect dependencies (MAE

j;k ¼ 1) that
are both present in release r (i.e., HAE

j;r ¼ HAE
k;r ¼ 1), and the

TABLE 2
MSLite Features
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denominator is the square of the number of architectural ele-
ments implemented up until and including release r. Note
that MAE

j;k ¼ 1, if DAE
j;k � 1, and 0, otherwise. Type II and III

rework costs are calculated in a similar fashion by their
respective constraint pair. There are two important things to
note:

a) A high propagation ratio does not necessarily mean a
high rework cost (or vice versa) as Equations (6), (7),
(8) also consider the level of dependency between the
components involved, which is captured by parame-
tersDAE

j;k ,D
F
m;l, andDAE�F

l;j .
b) The cost values in the optimization should not be

interpreted as absolute dollar values, but rather as
relative measures that enable comparison of different
development paths.

Equations (12) and (13) determine the presence of archi-
tectural elements and features in each release r. In (12), if
architectural element j is implemented prior to or in release
r, HAE

j;r will be set to 1. Otherwise, HAE
j;r will be zero, indicat-

ing the absence of element j in release r. Equation (13) uses
the same logic for presence of feature l in release r. Con-
straint (14) ensures that the total amount of effort needed
for implementing architectural elements and features in
release r does not exceed the total resources available for
that release (denoted by RTotal

r ). Constraints (15) and (16)
ensure that each architectural element and feature is imple-
mented in exactly one and only one release. This is for initial
implementation and excludes any subsequent rework.

HAE
j;r ¼

Xr

n¼1

AEj;n 8r 2 1; 2; . . . ; Nf g; 8j 2 1; 2; . . . ; NAE
� �

(12)

HF
l;r ¼

Xr

n¼1

Fl;n 8r 2 1; 2; . . . ; Nf g; 8l 2 1; 2; . . . ; NF
� �

(13)
XNAE

j¼1

AEj;rR
AE
j þ

XNF

l¼1

Fl;rR
F
l � RTotal

r 8r 2 1; 2; . . . ; Nf g

(14)

XN

r¼1

AEj;r ¼ 1 8j 2 1; 2; . . . ; NAE
� �

(15)

XN

r¼1

Fl;r ¼ 1 8l 2 1; 2; . . . ; NF
� �

:(16Þ (16)

Note that an empty intermediate release will not result in
any cost savings. Therefore, it is possible that themodel finds
two (near) optimal development paths with the exact same
objective function value (total cost), where one path includes
empty intermediate releases and the other does not. To the
model, both paths perform equally well, hence it would arbi-
trarily choose one of them. Constraints (17) and (18) work
hand-in-hand to ensure every intermediate release is used
for implementing at least one architectural element or fea-
ture to prevent the model from creating empty intermediate
releases. Such casesmay occurwhen the amount of resources
(i.e., the RTotal

r values specified by the user) exceed the
amount required for completing the project.

’r ¼ NAE þNF
� ��

XNAE

j¼1

HAE
j;r þ

XNF

l¼1

HF
l;r

 !

8r 2 1; 2; . . . ; Nf g

(17)
XNAE

j¼1

AEj;r þ
XNF

l¼1

Fl;r � ’r�1

BigM þ ’r�1

8r 2 2; . . . ; Nf g:

(18)

Fig. 4. (a) MSLite architecture DSM (DSMAE) based on the architectural
view in Fig. 3, (b) features DSM (DSMF) showing interdependencies
among MSLite features, and (c) DMM of features and architectural
elements.
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Equation (17) calculates the number of remaining compo-
nents just after release r, denoted by ’r. This is done by
subtracting the total number of components in release r

(
PNAE

j¼1 HAE
j;r þPNF

l¼1 H
F
l;r) from the total number components

in the project (NAE þNF ). Then, (18) ensures that the num-
ber of components implemented in release r (calculated byPNAE

j¼1 AEj;r þ
PNF

l¼1 Fl;r) is greater than or equal to a fraction.

If the project is already completed by the previous release
(r� 1), then ’r�1 and the right-hand side of (18) will be zero,
allowing the model to leave release r empty. However, if the
project is not completed by the previous release r� 1, then
’r�1 > 0 and the right-hand side will be a small positive
value less than 1, forcing themodel to implement at least one
component in release r.

Constraint (19) specifies the binary decision variables.
Constraint (20) ensures all rework costs and propagation
ratios are nonnegative. Finally, constraint (21) specifies two
things: (i) a value of zero for all three rework costs in the

first release (r ¼ 1). This is needed because constraints (6 –
8) do not cover r ¼ 1; and, (ii) at least one component must
be implemented in the first release. This is needed because
constraint (18) does not cover the first release, so we need to
specify this requirement separately for r ¼ 1.

AEj;r; Fl;r 2 0; 1f g 8j 2 1; 2; . . . ; NAE
� �

; 8l 2 1; 2; . . . ; NF
� �

;

8r 2 1; 2; . . . ; Nf g
(19)

PRAE
r ; PRF

r ; PRAE�F
r ; RCAE

r ; RCF
r ; RCAE�F

r � 0 8r
2 1; 2; . . . ; Nf g

(20)

RCAE
1 ¼ RCF

1 ¼ RCAE�F
1 ¼ 0 and 0 � ’1 < NAE þNF :

(21)

TABLE 3
Notations Used in the Optimization Model
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4.2 Path 2: Maximizing Early Delivery of Value
to the End User

The optimization model for maximizing early value deliv-
ery can be expressed as follows:

Maximize TVb ¼
XN

r¼1

br�1TVr

Subject to

Constraints 4� 21ð Þ (22Þ

TVr ¼
XNF

l¼1

HF
l;rV

F
l 8r 2 1; 2; . . . ; Nf g (23Þ

TCFinal ¼
XN

r¼1

TCr (24Þ

TCFinal � TCFinal
UB (25Þ

XNAE

j¼1

HAE
j;1 � LBAE

1 : (26Þ

The objective (22) is to maximize the discounted total
value of the development path. The cumulative value for
release r (TVr) is computed by adding the value for all fea-
tures present in that release. For example, in the case of
MSLite, if the features in release 2 include US01, US02, and
US03 (some of which may have been implemented in
release 1), then the cumulative value for release 2 will be
TV2 ¼ 27þ 25þ 23 ¼ 75 (see Table 2 for features’ value).
The release cumulative values will then be discounted and
summed to obtain the total discounted cumulative value,
TVb. We use a discount factor b (0 < b < 1) to account for
time-value of feature delivery in release r by multiplying
TVr by br�1. This approach for computing a discounted total
value essentially means that 1 unit of value delivered in
release r is worth more than 1 unit of value delivered in
release rþ 1. This is analogous to the calculation of the net
present value (NPV) of a series of cash flows in the field of
engineering economy (see Chapter 5 in [48]). Therefore, the
model for Path 2 accounts for the cost of delay or opportu-
nity cost as a result of assigning features to later releases. In
the above example, suppose US01 is implemenetd in release
1, and US02 and US03 in release 2. Then, given b ¼ 0:8, the
discounted cumulative value up to the second release will
be: ð27Þð0:8Þ0 þ ð75Þð0:8Þ1 ¼ 87.

Equation (23) gives the cumulative value for each release r
by adding the value of individual features present in the
release – these are features for which HF

l;r¼1 as determined
by constraint (13). Constraint (24) calculates the final cost of
the project, while (25) specifies an upper bound for the final
cost. Since cost does not enter directly into the objective func-
tion, without constraint (25) the model would not make any
effort to avoid unnecessary excessive rework costs. With this
constraint, we maximize early value delivery while keeping
the total cost below a user-defined threshold TCFinal

UB .
Constraint (26) enforces a user-defined lower bound for

the number of architectural elements to be implemented in
the first release. Without this constraint, the model would
try to implement as many features as possible in the first
release. While this may be acceptable under extreme agility,
in most medium to large-scale development projects, such

an extreme approach may not be appropriate. Based on the
complexity of the situation and desired agility, the user can
set this lower bound to any number greater than or equal to
zero. Constraints (4 – 21) from the model for Path 1 also apply
to this model. In particular, Constraint (21) plays an addi-
tional role in this model. Without this constraint, the model
might assign arbitrary non-zero values to RCAE

1 ; RCF
1 , and

RCAE�F
1 as total cost does not enter the objective function.

4.3 Path 3: Optimizing an Integrated Measure
of Cost and Early Value Delivery

In this path, we combine the objective functions in Paths 1
and 2 by using a weighted function of the two, denoted by
GðTCFinal; TVbÞ. The optimization model for maximizing
this integrated measure of cost and early value delivery can
be expressed as follows:

Maximize G TCFinal; TVb

� � ¼ wvTVb � ð1� wvÞ TCFinal

Subject to

Constraints 4� 21ð Þ and 23� 26ð Þ (27Þ

TVb ¼
XN

r¼1

br�1TVr: (28Þ

The objective function in (27) is a weighted function of
the discounted cumulative value delivered and total cost,
where wv (0 � wv � 1) is a user-specified weight assigned to
the discounted cumulative value and (1� wv) is the weight
assigned to total cost (defined in equation 4), hence the two
weights add up to 1. Since a higher cost is undesirable, a
negative coefficient is used for TCFinal. Constraints (4 – 21)
and (23 – 26) from the previous models also apply to this
model. Equation (28) is discussed in Section 4.2. It is worth
noting that this model essentially reduces to the early value
maximization model in Section 4.2 when wv ¼ 1, and to the
total cost minimization model in Section 4.1 when wv ¼ 0.

4.4 Comparison of the Three Optimized Paths

In this section, we apply and compare the three models for
the MSLite system. We use the (relative) value and cost of
the features from Table 2, the (relative) cost of the architec-
tural elements from Table 4, and the dependencies from the
DSMs and DMM in Figs. 4a, 4b, 4c as the basis for our analy-
sis. Without loss of generality, we consider the case where
the amount of resources required for implementing archi-
tectural element j is the same as its direct implementation
cost (i.e., CAE

j ¼ RAE
j ).

Since the actual system was implemented in five releases,
we also use five releases in our analysis (N ¼ 5). We cali-
brate the RTotal

r , TCFinal
UB , and LBAE

1 parameters based on
resource allocation and component assignments in the
development path of MSLite as it was planned and how it
was actually implemented (the actual and planned paths
are discussed and analyzed in Section 5). As for total resour-
ces available for each release (the RTotal

r values), we use 20,
35, 30, 15, and 24 for release 1, 2, . . ., 5, respectively. This is
based on the maximum resource allocation in the planned
and actual development paths discussed in Section 5. We
set TCFinal

UB ¼ 502, which is the maximum of the final cost
calculated for the actual and planned paths, and LBAE

1 ¼ 3
as both of these paths assign three architectural elements to
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the first release. In the following analysis, we use a discount
factor of b ¼ 0:5 and assign equal weights to the discounted
cumulative value and total cost for computing the inte-
grated measure GðTCFinal; TVbÞ in Path 3, i.e., wv ¼ 0:5.

The MINLP models are coded in the GAMS optimization
software and solved using the Outer Approximation with
both Equality Relaxation and Augmented Penalty (OA/
ER/AP) algorithm [47], which is available as part of the
DICOPT solver in GAMS [18]. The GAMS models are avail-
able in a Mendeley Data repository associated with this
paper [35]. It is important to note that guaranteeing the opti-
mality of the solution may not be possible due to the nonlin-
earity and relatively large size of the model (for the MSLite
system, the model for Path 3 has 358 variables and 246 equa-
tions). Even the most efficient solution approaches cannot
guarantee that they will find “the optimal” solution in such
cases. However, OA/ER/AP is shown to be effective in
finding a near-optimal solution for complex MINLP models
in many other application areas such as those studied in
[33] and [34]. Therefore, the solutions presented here may
not be the global optimal solution, but are expected to be
near-optimal.

Table 5 provides the three optimized paths and Table 6
compares their performance with respect to the three per-
formance measures. As expected, Path 1 focuses on imple-
menting AEs early (see releases 1 and 2) to avoid excessive
future rework costs, Path 2 focuses on early feature imple-
mentation while keeping the total project cost under a
threshold/limit (TCFinal

UB ), and Path 3 strives to provide a
“balanced” plan.

5 ADDITIONAL ANALYSIS/EXPERIMENTS

This section presents the results of two sets of experiments:
(1) comparison of actual and planned paths with the opti-
mized paths in Table 5; and, (2) the effect of the discount
factor (b).

5.1 Modeling and Analysis of the Planned
and Actual Paths

We compare the planned and actual development paths of
MSLite with the three paths prescribed by the optimization
models to see how the developers made decisions about

ordering component implementation and how well the
planned and actual paths perform under the three perfor-
mance measures. The planned and actual paths shared a
common plan for features, however, there are some differen-
ces in implementation of architectural elements. Some archi-
tectural elements are enhanced over multiple releases. We
assume that implementation cost for an architectural ele-
ment occurs in the release where its first version is imple-
mented, hence the cost of subsequent enhancements is
captured through the propagation ratio and resulting rework
cost. Table 7 shows the planned and actual development
paths and the total amount of resources used in each release.

Table 8 summarizes the performance of the planned and
actual paths and Fig. 5 compares the two paths with the
three paths obtained via optimization. Note that in the anal-
ysis of the three optimized paths, we used the maximum of
the final cost for the planned and actual paths to determine
an appropriate upper bound for total cost in the models for
paths 2 and 3, hence the choice of TCFinal

UB ¼ 502. Moreover,
we used the maximum of the two resource allocation values
in Table 7 as the RTotal

r for each release, hence the choice of
20, 35, 30, 15, and 24 units of resources for releases 1, 2, . . ., 5
respectively.

In Fig. 5, each path releases five increments of the product
over the course of development. In Path 1 (cost minimiza-
tion), there is minimal value delivered to end users early on,
as the focus is on building the structural elements that
provide the foundation for those quality requirements that
cut across the entire system. These elements include Publish-
Subscribe Bus for performance and modifiability in general,
Data Persistence for keeping the state of the system and user
preferences, FSS Adapter for modifiability, Data Access for
security, and Cache for performance. Once the architecture is
in place, the model settles into a rhythm of releasing valued
features.

Path 2 (early value maximization) shows high value ini-
tially, providing more than 50 percent of the total value to
the user by release 2. However, the delivery of value tapers
off as subsequent releases require additional rework to deal
with the growing complexity of dependencies. The high
rework costs in this path are incurred as several compo-
nents needed to be reworked, for example:

� Alarm Engine: reworked when Alarm Manager and
Rule Processor are implemented.

� Alarm Notification: reworked when Alarm Engine
and AlarmManager are implemented.

� Client Update: reworked when User Sessions Man-
ager is added.

� L&R Engine: reworked due to Data Access and Per-
sistence, Publish-Subscribe Bus, Rule Processor
implementation.

� Logon: reworked when Data Access and User Ses-
sions Manager are added.

In agile projects, this type of analysis can raise awareness
of the cost associated with deciding on an implementation
path focused solely on delivering value. If it is not acceptable
to the customer, then the team and the customer can decide
together which value versus cost trade-offs they are willing
to accept. Consider the AEs implemented in Release 3, Data
Access and Cache. Based on Table 6, their implementation

TABLE 4
Implementation Cost of Each Architectural Element

Architectural Element Implementation Cost

Alarm Notification 4
L&R Engine 3
Alarm Engine 3
Alarm Manager 6
Logon 2
Client Updates 5
Rule Processor 8
Adapter Manager 5
User Sessions Manager 5
Data Access 9
Cache 3
FSS Adapter 6
Data Persistence 6
Publish-Subscribe 9
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incurs a significant rework cost (257.3). Both elements sup-
port quality requirements of medium importance: perfor-
mance and security. If the customer is dissatisfied with the
increased overall cost compared to Optimized Path 1 (cost
minimization), we can envisagemultiple scenarios for reduc-
ing costs:

1. Given that Data Access has a high cost and that Logon
already provides basic security, the customer decides
to drop the implementation ofData Access.

2. Assuming acceptance of some rework cost and that
the performance requirement is (partially) met by
Publish-Subscribe Bus and Client Updates, the cus-
tomer decides to drop the implementation of Cache.

3. Given that the customer is not willing to drop any
value but still wants to reduce cost, the Data Access

implementation is moved to an earlier release.
Although there is an extra cost incurred because
Data Access depends on Cache, the reduced cost
attributed to avoiding rework of other elements
(Logon and L&R Engine) that depend on Data Access
would compensate.

While requirements are readily accessible in a product
backlog in agile projects, additional effort would be needed
to make explicit the dependencies among these require-
ments and the architectural elements they realize.

Fig. 5 shows that Path 3 (integrated cost and value) com-
bines emphasis on early delivery of high-value features,
and the architecture to manage dependencies and make
delivery more consistent over time.

The MSLite project consisted of 7 teams across 4 conti-
nents and its development strategy focused on establishing

TABLE 5
Assignment of Features and Architectural Elements to Releases in the Three Paths
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TABLE 6
Comparison of the Cost and Value Delivery of the Three Development Paths Prescribed by the Optimization Models. RCTotal

r
Represents the Sum of all Three Types of Rework Cost for Release r, that is, RCTotal

r ¼ RCAE
r þRCF

r þRCAE�F
r

TABLE 7
Assignment of Features and Architectural Elements to Releases in the Planned and Actual Paths for Mslite

TABLE 8
Comparison of the Cost and Value Delivery of the Planned and Actual Development Paths
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the architecture of the MSLite product to achieve effective
collaboration and coordination among these geographically
distributed teams. The Actual Path follows a similar trajec-
tory as the Planned Path given that the implemented code
generally conformed to the planned architecture. Table 9
shows the absolute difference from the Actual Path for each
release in terms of cumulative cost and cumulative value.
We have also computed the average difference over all five
releases. Some of the reasons these paths performed rela-
tively poorly with respect to cost when compared to Path 1
and 3 is that they focused on mitigating the risk of under-
standing field system technology in release 1 at the expense
of extra rework, and implementation of several architectural
elements related to handling variability in field systems was
done over several iterations. Early implementation of a sub-
set of architectural elements by itself, however, is not enough
to minimize rework cost. One should consider, for the entire
system, the appropriate order in which architectural ele-
ments and the features they support are implemented. Due
to the complexity of many real-world software, however,
identifying the direct and indirect dependencies among
architectural elements and features is not trivial without a
systematic/analytical technique such as the one proposed
here. We took an overly pessimistic estimate of the extent of
rework and did not do a finer grained analysis to isolate
changes to sub-elements and dependencies within the
affected elements. Nevertheless, the results indicate the
potential to improve the planned and actual paths.

Fig. 5 and Table 9 show the initial 3 releases of the actual
development path follow the “cost minimization” path
closely in terms of delivering value. However, as discussed
in the previous paragraph, the established architecture,
while good for the features included in first three releases,
was not optimal for the remaining features. Therefore, the
last two releases of the actual development path (especially
the last one) incurred relatively high rework cost.

5.2 The Effect of the Discount Factor (bb)

One of the core principles of agile software development is
early and continuous delivery of value to the customer. Put-
ting the most essential features in front of the customer fre-
quently allows us to not only validate our assumptions and
knowledge of customer needs, but to also adapt to changing
market conditions rapidly. Therefore, the time-value of the
features can change depending on when they are released,
and there may be a cost associated with delay or lost oppor-
tunity. In our models, the discount factor (b) is used for
adjusting the value of a feature if its release is delayed.

When using the proposed analytical models for decision-
making regarding the development path, it is critical to
understand and select an appropriate value for this dis-
count factor. To better understand the effect of this parame-
ter, we vary b from 0.05 to 1.00 in 0.05 increments under
Path 2 (early value maximization) and solve the model in
each case. Interestingly, we find only five candidate optimal
paths depending on the choice of b.

Fig. 5. Comparison of the release cumulative value and cost for the planned and actual paths and the three optimized paths. The points on each line
represent the five releases for that path.

TABLE 9
Absolute Differences in Cost and Value Delivery Between the Optimized Paths and Actual Development Path
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Table 10 compares the release cumulative values (TVr)
and the total discounted cumulative value (TVb) for the five
candidate plans under each b value (looking down the col-
umns). An important practical implication of these results is
that, instead of finding the exact “correct” discount factor,
the team only needs to determine an appropriate range for b
for the situation at hand. This significantly facilitates the
decision-making process and enhances the applicability of
the optimization models in real-world situations. For the
case of MSLite, the developer needs to decide which of these
five intervals, i.e., b � [0.05, 0.15], [0.20, 0.35], [0.40, 0.45],
[0.50, 0.90], [0.95, 1.00], appropriately reflects the impor-
tance of early value delivery for their software.

It is important to note that in Step 4 of the iterative process
described in introduction, we also recommend performing a
sensitivity analysis on parameter wv, weight assigned to
early value delivery. This analysis provides additional
insight on effect of relative importance given to early value
delivery and total cost. However, space limitations preclude
inclusion of this analysis forMSLite in the current paper.

6 DISCUSSION ON THE VALIDITY

OF THE PROPOSED APPROACH

In this study, we investigated how quantifying architecture
quality can help developers understand the opportunities
and risks associatedwith the desire to deliver value to the cus-
tomer early or to minimize the cost associated with architec-
tural refactoring and rework later in the development
process. Refactoring cost is incurred when the need to deliver
value early causes a development team to defer the design
and implementation of architectural elements in order to be
expedient. Significant rework may be needed when these
architectural elements must be implemented in some later
release. Our goal was to provide a quantifiable architecture
quality model that can help in making informed decisions
when a team is faced with value versus cost trade-offs. As a
step toward this goal, we usedDSM- andDMM-based depen-
dency analysis with propagation ratio as a criterion for mea-
suring architecture quality.

Our study is based on using a real system and its artifacts
and, in retrospect, evaluating the extent to which the propa-
gation ratio and our proposed rework algorithm can assist
in predicting rework from iteration to iteration. The key var-
iables that our conclusions depend on are the propagation
ratio, value of the requirements, architectural elements, and
associated implementation costs. We keep the value of the

requirements consistent across the different paths that we
analyze to avoid biasing the results. We calculate the propa-
gation ratio based on the actual artifacts. However, there is
a possible effect from confounding instances in which
changes in cost variables may rather be attributed to the
existence of variations in the degree of other variables such
as the competence of the developers and the order in which
they implemented the elements. We minimize this impact
by basing our conclusions on relative values rather than
absolute dollar figures.

We base all of our analysis on actual, real artifacts rather
than a hypothetical study. We simulate our results by creat-
ing alternative paths for comparative analysis. In addition,
to draw consistent conclusions, we keep the resulting archi-
tecture and system value the same across all paths so that
we can compare the variations occurring in each. However,
our goal is to propose an analytical approach to evaluate the
architecture, do trade-off analysis and monitor the accumu-
lating rework. Our models enable us to do this and are scal-
able and applicable in any other real-world situation.

Overall, our study shows that architectural analysis
using DSM- and DMM-based dependency analysis with
propagation ratio integrated in an optimization framework,
can improve project monitoring by focusing on quantifying
accumulating rework and value from iteration to iteration.

7 RELATED WORK

Dependency management has been studied extensively at
the level of code artifacts and in the context of system engi-
neering [5]. Applying dependency management at the archi-
tecture level has shown promise due to increasing tool
support for using DSMs for architectural analysis [20]. DMM
analysis [10], [11] can augment DSM analyses and can be
used to represent the dependencies between capabilities and
architectural elements to further focus the goals of iterative
release planning where courses of action may change as the
project progresses. DSM and DMM models have been built
for predicting the effects of requirements and design changes
[8], [9], [19], [28], [29], [32], and [38] uses such models for
requirements traceability and analyzing change propaga-
tion. Studies use DMM to map functional requirements to
design parameters [42], [46], [52], and to map product com-
ponents to requirements [4], [14], [31].

Metrics, such as propagation ratio [30], can be extracted
from an architecture represented in the form of a DSM, and
further help with this process. Metrics associated with

TABLE 10
The Effect of Discount Factor (b) on the Optimal Release Plan in Path 2 (Early Value Delivery Maximization)

The Highlighted cells denote the candidate plan with the maximum discounted cumulative value (TTVV bb) under the corresponding b.
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dependency provide data for inferring the likely costs of
change propagation, especially when dependencies between
architectural elements are considered. Carriere et. al [7] dis-
cuss one such example, where the value of re-architecting
decisions needs to be understood to determine if the expense
to implement them is justified.

More recently, technical debt analysis has been used
increasingly to determine the need for and cost of refactor-
ing a system as it evolves. There is a key difference between
debt that results from employing bad engineering practices
and debt resulting from intentional decision-making in pur-
suit of a strategic goal. Fowler [15] details this distinction by
describing technical debt using four quadrants, as shown in
Table 11.

Technical debt resonates with maintenance and evolu-
tion challenges. Lehman [27] observes that for systems to
remain useful they must change, and that change will
increase their complexity, leading to software decay if refac-
toring is not done as needed. Parnas [36] calls this phenome-
non “software aging,” reflecting the failure of a product
owner to modify it to meet changing needs. Lehman’s
observations about system evolution still apply in projects
that follow agile software development approaches [43].
They provide insight into the inevitability of and need for
re-architecting (and the high potential of debt that can accu-
mulate), emulating the cost minimization path as our study
demonstrates.

An empirical study conducted with architects at IBM
concluded that the ability to assess debt does matter [23].
Yet there is a significant gap in achieving this goal. The
interviews found that the following experiences were com-
mon: induced and unintentional debts are significant chal-
lenges, decisions are managed in an ad hoc manner, and
stakeholders lack effective ways to communicate and reason
about debt [23]. What makes this challenging are invisible
aspects of software evolution and quality [13], [24].

The ability to elicit and improve the visibility of the state
of the project from both a project-management perspective
and a system-quality perspective is an area of practical
interest since it can help provide guidance for adjusting the
course of action as the system is being developed and recog-
nizing debt as it accumulates. The concept of a technical
debt item is emerging as a systematic way of capturing and
bringing visibility to atomic elements of technical debt. A
technical debt item connects the development artifact in the
code or design with consequences for the quality, value,
and cost of the system [25].

Static code analysis tools and plug-ins do provide
insights into technical debt analysis and architectural
rework [17], [21], [26], [37], [45]. Some of these tools do also
include use of DSMs as a way to visualize architectural
dependencies, but they do not provide trade-off analysis

capabilities [26], [45]. The Object Management Group codi-
fies the best practices of source code analysis technologies
which have implemented the CISQ Quality Characteristic
measures to establish a standard for automating a measure
of technical debt [1]. However, approaches based on code
quality have their limits and do not support architecture-
level analysis [6].

8 CONCLUSION AND FUTURE WORK

The main contribution of this paper lies in: (1) developing an
analytical framework to quantify cost of architecture refac-
toring and a decision support tool for release planning; and,
(2) providing managerial insights on the trade-offs between
early value delivery and costs. We propose the following
general iterative process for applying our framework:

� Step 1: Determine the DSM and DMM dependencies
� Step 2: Use current procedures/practice to develop a

planned development path
� Step 3: Parameterize the optimization models based

on the planned path (similar to what we did for
RTotal

r , TCFinal
UB , and LBAE

1 parameters)
� Step 4: Solve the models for various b and wv values
� Step 5: Make necessary adjustments to the initial

planned path based on the experimental results and
repeat the steps above until satisfiedwith the planned
path.

The optimization models recommend the order in
which architectural elements and features should be
implemented across different releases so as to: (a) mini-
mize rework cost; (b) maximize early value delivery; or,
(c) optimize an integrated measure of cost and value. The
ability to quantify the potential for future rework cost dur-
ing iterative release planning is a key aspect of managing
rework strategically [3]. Our approach facilitates reasoning
about the economic implications and perhaps deliberately
allowing rework cost in the short term to achieve some
greater business goal, all the while continuing to monitor
architectural dependencies and looking for the opportune
time to improve. Our goal was to provide an empirical
basis on which to chart and adjust course. As the project
evolves, the requirements are subject to change, introducing
an element of uncertainty that needs further consideration.
Since MSLite is a retrospective study, this uncertainty aspect
is not clear. We intend to look at uncertainty in our future
research.

In planning our releases, we made assumptions concern-
ing the acceptability of splitting the delivery of functional
and quality attribute capabilities across releases. In future
applications, we plan to expand the concept of “minimum
marketable features” [12] to the broader construct of
“minimum releasable capabilities” to ensure that interde-
pendent functional and quality attribute requirements are
released in batches that deliver acceptable end-user value.

We accounted for rework using a simple cash flowmodel
in which cost is incurred at the time of the rework. There are
economic models that include rework cost that is predicted
in future releases. These models become more complex
since there are more choices for when to account for the
future debt. We intend to explore such models in the future.

TABLE 11
Fowler’s Technical Debt Taxonomy [14]

Reckless Prudent

Deliberate We don’t have time
for design.

We must ship now and deal
with the consequences.

Inadvertent What’s layering? Now we know how we
should have done it.
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These future research directions will also offer us further
opportunities to concomitantly validate the applicability of
our approach and its extensions in real-world applications.
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CODIT: Code Editing With Tree-Based
Neural Models

Saikat Chakraborty , Yangruibo Ding , Miltiadis Allamanis , and Baishakhi Ray

Abstract—Theway developers edit day-to-day code tends to be repetitive, often using existing code elements. Many researchers have

tried to automate repetitive code changes by learning from specific change templateswhich are applied to limited scope. The advancement

of deep neural networks and the availability of vast open-source evolutionary data opens up the possibility of automatically learning those

templates from the wild. However, deep neural network basedmodeling for code changes and code in general introduces some specific

problems that needs specific attention from research community. For instance, compared to natural language, source code vocabulary can

be significantly larger. Further, good changes in code do not break its syntactic structure. Thus, deploying state-of-the-art neural network

models without adapting themethods to the source code domain yields sub-optimal results. To this end, we propose a novel tree-based

neural network system tomodel source code changes and learn code change patterns from thewild. Specifically, we propose a tree-based

neural machine translationmodel to learn the probability distribution of changes in code.We realize ourmodel with a change suggestion

engine, CODIT, and train themodel withmore than 24k real-world changes and evaluate it on 5k patches. Our evaluation shows the

effectiveness of CODIT in learning and suggesting patches. CODIT can also learn specific bug fix pattern from bug fixing patches and can fix

25 bugs out of 80 bugs inDefects4J.

Index Terms—Code change, tree-2-tree translation, code synthesis, neural machine translator, empirical software engineering

Ç

1 INTRODUCTION

DEVELOPERS edit source code to add new features, fix
bugs, or maintain existing functionality (e.g., API

updates, refactoring, etc.) all the time. Recent research has
shown that these edits are often repetitive [1], [2], [3]. More-
over, the code components (e.g., token, sub-trees, etc.) used
to build the edits are often taken from the existing code-
base [4], [5]. However, manually applying such repetitive
edits can be tedious and error-prone [6]. Thus, it is impor-
tant to automate code changes, as much as possible, to
reduce the developers’ burden.

There is a significant amount of industrial and academic
work on automating code changes. For example, modern
IDEs support specific types of automatic changes (e.g.,
refactoring, adding boiler-plate code [7], [8], etc). Many
research tools aim to automate some types of edits, e.g., API
related changes [9], [10], [11], [12], [13], [14], refactoring [15],
[16], [17], [18], frequently undergone code changes related
to Pull Requests [19], etc. Researchers have also proposed to
automate generic changes by learning either from example
edits [20], [21] or from similar patches applied previously to
source code [2], [3], [19], [22]. Automated Code Change1 task

is defined as modification of existing code (i.e., adding,
deleting, or replacing code elements) through applying
such frequent change patterns [19], [23], [24], [25]

While the above lines of work are promising and have
shown initial success, they either rely on predefined change
templates or require domain-specific knowledge: both are
hard to generalize to the larger context. However, all of
them leverage, in someway, common edit patterns. Given
that a large amount of code and its change history is avail-
able thanks to software forges like GitHub, Bitbucket, etc., a
natural question arises: Can we learn to predict general code
changes by learning them in the wild?

Recently there has been a lot of interest in using Machine
Learning (ML) techniques to model and predict source code
from real world [26]. However, modeling changes is differ-
ent from modeling generic code generation, since modeling
changes is conditioned on the previous version of the code.
In this work, we investigate whether ML models can cap-
ture the repetitiveness and statistical characteristics of code
edits that developers apply daily. Such models should be
able to automate code edits including feature changes, bug
fixes, and other software evolution-related tasks.

A code edit can be represented as a tuple of two code
versions:< prev,target> . To model the edits, one needs to
learn the conditional probability distribution of the target
code version given its prev code version. A good probabilistic
model will assign higher probabilities to plausible target ver-
sions and lower probabilities to less plausible ones. Encoder-
decoder Neural Machine Translation models (NMT) are a
promising approach to realize such code edit models, where
the previous code version is encoded into a latent vector
representation. Then, the target version is synthesized
(decoded) from the encoded representation. Indeed some
previous works [19], [27], [28] use Seq2Seq NMT models to
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capture changes in token sequences. However, code edits
also contain structural changes, which need a syntax-aware
model.

To this end, we design a two step encoder-decoder model
that models the probability distribution of changes. In the
first step, it learns to suggest structural changes in code using
a tree-to-tree model, suggesting structural changes in the
form of Abstract Syntax Tree (AST) modifications. Tree-
based models, unlike their token-based counterparts, can
capture the rich structure of code and always produce
syntactically correct patches. In the second step, the model
concretizes the previously generated code fragment by pre-
dicting the tokens conditioned on the AST that was gener-
ated in the first step: given the type of each leaf node in the
syntax tree, ourmodel suggests concrete tokens of the correct
type while respecting scope information. We combine these
two models to realize CODIT, a code change suggestion
engine, which accepts a code fragment and generates poten-
tial edits of that snippet.

In this work, we particularly focus on smaller changes as
our previous experience [3] shows that such changes mostly
go through similar edits. In fact, all the previous NMT-based
code transformationworks [19], [27], [28] also aim to automate
such changes. A recent study by Karampatsis et al. [29]
showed that small changes are frequent—our analysis of the
top 92 projects of their dataset found that, on average, in each
project, one line changes take place around 26.71 percent of
the total commits and account for up to 70 percent for the bug
fix changes. Our focus in this work is primarily to automati-
cally change small code fragments (often bounded by small
AST sizes and/or few lines long) to reflect such repetitive pat-
terns. Note that, in theory, our approach can be applied to any
small fragment of code in the project repository with any pro-
gramming language. However, for prototyping, we designed
CODIT to learn changes that belong to methods of popular java
project inGithub.

In this work, we collect a new dataset— Code-Change-Data,
consisting of 32,473 patches from48 open-sourceGitHubproj-
ects collected fromTravis Torrent [30]. Our experiments show
CODIT achieves 15.94 percent patch suggestion accuracy in the
top 5 suggestions; this result outperforms a Copy-Seq2Seq
baseline model by 63.34 percent and a Tree2Seq based model
by 44.37 percent.

We also evaluate CODIT on Pull-Request-Data proposed by
Tufano et al. [19]. Our evaluation shows that CODIT suggests
28.87 percent of correct patches in the top 5 outperforming
Copy-Seq2Seq-based model by 9.26 percent and Tree2Seq
based model by 22.92 percent. Further evaluation on CODIT’s
ability to suggest bug-fixing patches in Defects4J shows that
CODIT suggests 15 complete fixes and 10 partial fixes out of
80 bugs in Defects4J. In summary, our key contributions are:

– We propose a novel tree-based code editing machine
learning model that leverages the rich syntactic
structure of code and generates syntactically correct
patches. To our knowledge, we are the first to model
code changes with tree-based machine translation.

– We collect a large dataset of 32k real code changes.
Processed version of the dataset is available at
h t tp s ://dr ive .goog l e . com/file/d/1wSl_
SN17tbATqlhNMO0O7sEkH9gqJ9Vr.

– We implement our approach, CODIT, and evaluate the
viability of using CODIT for changes in a code, and
patching bug fixes. Our code is available at https://
git.io/JJGwU.

2 BACKGROUND

Modeling Code Changes. Generating source code using
machine learning models has been explored in the past [31],
[32], [33], [34]. These methods model a probability distribu-
tion pðcjkÞwhere c is the generated code and k is any contex-
tual information upon which the generated code is
conditioned. In this work, we generate code edits. Thus, we
are interested in models that predict code given its previous
version. We achieve this using NMT-style models, which are
a special case of pðcjkÞ, where c is the new and k is the previ-
ous version of the code. NMT allows us to represent code
edits with a single end-to-end model, taking into consider-
ation the original version of a code and defining a conditional
probability distribution of the target version. Similar ideas
have been explored inNLP for paraphrasing [35].

Grammar-Based Modeling. Context Free Grammars (CFG)
have been used to describe the syntax of programming lan-
guages [36] and natural language [37], [38]. A CFG is a tuple
G ¼ ðN;S; P; SÞ where N is a set of non-terminals, S is a set
of terminals, P is a set of production rules in the form of a !
b and a 2 N , b 2 ðN [ SÞ�, and S is the start symbol. A sen-
tence (i.e., sequence of tokens) that belongs to the language
defined byG can be parsed by applying the appropriate deri-
vation rules from the start symbol S. A common technique
for generation of utterances is to expand the left-most,
bottom-most non-terminal until all non-terminals have been
expanded. Probabilistic context-free grammar (PCFG) is an
extension of CFG, where each production rule in associated
with a probability, i.e., is defined as ðN;S; P;P; SÞ where P
defines a probability distribution for each production rule in
P conditioned on a.

Neural Machine Translation Models. NMT models are usu-
ally a cascade of an encoder and a decoder. The most common
model is sequence-to-sequence (seq2seq) [39], where the
input is treated as a sequence of tokens and is encoded by a
sequential encoder (e.g., biLSTM). The output of the
encoder is stored in an intermediate representation. Next,
the decoder using the encoder output and another sequence
model, e.g., an LSTM, generates the output token sequence.
In NMT, several improvements have been made over the
base seq2seq model, such as attention [39] and copying [40].
Attention mechanisms allow decoders to automatically
search information within the input sequence when predict-
ing each target element. Copying, a form of an attention
mechanism, allows a model to directly copy elements of the
input into the target. We employ both attention and copying
mechanisms in this work.

3 MOTIVATING EXAMPLE

Fig. 1 illustrates an example of our approach. Here, the origi-
nal code fragment return super.equals(object) is
edited to return object == this. CODIT takes these two
code fragments along with their context, for training. While
suggesting changes, i.e., during test time, CODIT takes as
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input the previous version of the code and generates its
edited version.

CODIT operates on the parse trees of the previous (tp) and
new (tn) versions of the code, as shown in Fig. 1a (In the rest
of the paper, a subscript or superscript with p and n corre-
spond to previous and new versions respectively). In Fig. 1,
changes are applied only to the subtree rooted at the
Method call node. The subtree is replaced by a new subtree
(tn) with Bool_stmt as a root. The deleted and added sub-
trees are highlighted in red and green respectively.

Whilemodeling the edit, CODIT first predicts the structural
changes in the parse tree. For example, in Fig. 1a CODIT first
generates the changes corresponding to the subtrees with
dark nodes and red edges. Next the structure is concretized
by generating the token names (terminal nodes). This is real-
ized by combining two models: (i) a tree-based model pre-
dicting the structural change (see Section 4.1) followed by a
(ii) a token generation model conditioned on the structure
generated by the tree translationmodel (see Section 4.2).

Tree Translator. The tree translator is responsible for gener-
ating structural changes to the tree structure. A machine
learning model is used to learn a (probabilistic) mapping
between tp and tn. First, a tree encoder, encodes tp computing
a distributed vector representation for each of the production
rules in tp yielding the distributed representation for the
whole tree. Then, the tree decoder uses the encoded repre-
sentations of tp to sequentially select rules from the language
grammar to generate tn. The tree generation starts with the
root node. Then, at each subsequent step, the bottom-most,
left-most non-terminal node of the current tree is expanded.
For instance, in Fig. 1a, at time step t, node Stmt is
expanded with rule Stmt ! Bool_Stmt SC. When the tree
generation process encounters a terminal node, it records the
node type to be used by the token generation model and

proceeds to the next non-terminal. In this way, given the
LHS rule sequences of Fig. 1b the RHS rule sequences is
generated.

Token Generator. The token generator predicts concrete
tokens for the terminal node types generated in the previous
step. The token generator is a standard seq2seq model with
attention and copying [39] but constrained on the token
types generated by the tree translator. To achieve this, the
token generator first encodes the token string representation
and the node type sequence from tp. The token decoder at
each step probabilistically selects a token from the vocabu-
lary or copies one from the input tokens in tp. However, in
contrast to traditional seq2seq where the generation of each
token is only conditioned on the previously generated and
source tokens, we additionally condition on the token type
that has been predicted by the tree model and generate only
tokens that are valid for that toke type. Fig. 1c shows this
step: given the token sequence of the original code < super

. equals ( object ) > and their corresponding token
types (given in dark box), the new token sequence that is
generated is < object == this >.

4 TREE-BASED NEURAL TRANSLATION MODEL

We decompose the task of predicting code changes in two
stages: First, we learn and predict the structure (syntax tree)
of the edited code. Then, given the predicted tree structure,
we concretize the code. We factor the generation process as

P ðcnjcpÞ ¼ P ðcnjtn; cpÞP ðtnjtpÞP ðtpjcpÞ; (1)

and our goal is to find ĉn such that ĉn ¼ argmaxcnP ðcnjcpÞ.
Here, cp is the previous version of the code and tp is its parse
tree, whereas cn is the new version of the code and tn its
parse tree. Note that parsing a code fragment is unambigu-
ous, i.e., P ðtpjcpÞ ¼ 1. Thus, our problem takes the form

ĉn ¼ arg max
cn;tn

P ðcnjtn; cpÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
M token

: P ðtnjtpÞ|fflfflfflffl{zfflfflfflffl}
M tree

: (2)

Equation (2) has two parts. First, it estimates the changed
syntax tree P ðtnjtpÞ. We implement this with a tree-based
encoder-decoder model (Section 4.1). Next, given the pre-
dicted syntax tree tn, we estimate the probability of the con-
crete edited code with pðcnjtn; cpÞ (Section 4.2).

4.1 Tree Translation Model (M tree)

The goal of M tree is to model the probability distribution of a
new tree (tn) given a previous version of the tree (tp). For
any meaningful code the generated tree is syntactically cor-
rect. We represent the tree as a sequence of grammar rule
generations following the CFG of the underlying program-
ming language. The tree is generated by iteratively applying
CFG expansions at the left-most bottom-most non-terminal
node (frontier_node) starting from the start symbol.

For example, consider the tree fragments in Fig. 1a. Fig. 1b
shows the sequence of rules that generate those trees. For
example, in the right tree of Fig. 1a, the nodeRet_Stmt is first
expanded by the rule: Ret_Stmt!Return Stmt. Since,
Return is a terminal node, it is not expanded any further.
Next, node Stmt is expanded with rule: Stmt!Bool_Stmt

SC. The tree is further expanded with Bool_Stmt!LHS EQ

Fig. 1. Motivating example.
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RHS, LHS!Var, and RHS!Var. During the tree generation
process, we apply these rules to yield the tree fragment of the
next version.

In particular, the tree is generated by picking CFG rules
at each non-terminal node. Thus, our model resembles a
Probabilistic Context-Free Grammar, but the probability of
each rule depends on its surroundings. The neural network
models the probability distribution, P ðRn

k jRn
1 ; . . .R

n
k�1; tpÞ:

At time k the probability of a rule depends on the input tree
tp and the rules Rn

1 ; . . .R
n
k�1 that have been applied so far.

Thus, the model for generating the syntax tree tn is given by

P ðtnjtpÞ ¼
Yt

k¼1

P ðRn
k jRn

1 ; . . .R
n
k�1; tpÞ: (3)

Encoder. The encoder encodes the sequence of rules that con-
struct tp. For every rule Rp

i in tp; we first transform it into a
single learnable distributed vector representation rrRp

i
. Then,

the LSTM encoder summarizes the whole sequence up to
position i into a single vector hhp

i .

hhp
i ¼ fLSTMðhhp

i�1; rrRp
i
Þ: (4)

This hidden vector contains information about the particular
rule being applied and the previously applied rules. Once
all the rules in tp are processed, we get a final hidden rep-
resentation (hhp

t). The representations at each time step
(hhp

1; hh
p
2; . . . ; hh

p
tÞ are used in the decoder to generate rule

sequence for the next version of the tree. The parameters of
the LSTM and the rules representations rrRp

i
are randomly ini-

tialized and learned jointlywith all other model parameters.
Decoder.Our decoder has an LSTMwith an attentionmech-

anism as described by Bahdanau et al. [39]. The decoder
LSTM is initialized with the final output from the encoder,
i.e., hhn

0 ¼ hhp
t . At a given decoding step k the decoder LSTM

changes its internal state in the followingway,

hhn
k ¼ fLSTMðhhn

k�1;cckÞ; (5)

where cck is computed by the attention-based weighted sum
of the inputs hhp

j as [39] in , i.e.,

cck ¼
Xt

j¼1

softmaxðhhn
k�1

Thhp
j Þhhp

j : (6)

Then, the probability over the rules at the kth step is

P ðRn
k jRn

1 ; . . .R
n
k�1; tpÞ ¼ softmaxðWtree � hhn

k þ btreeÞ:
(7)

At each timestep, we pick a derivation rule Rn
k following

Equation (7) to expand the frontier_node (nt
f ) in a depth-

first, left-to-right fashion. When a terminal node is reached, it
is recorded to be used in M token and the decoder proceeds to
next non-terminal. In Equation (7),Wtree and btree are parame-
ters that are jointly learned along with the LSTM parameters
of the encoder and decoder.

4.2 Token Generation Model (M token)

We now focus on generating a concrete code fragment c, i.e.,
a sequence of tokens ðx1; x2; . . .Þ. For the edit task, the proba-
bility of an edited token xn

k depends not only on the tokens

of the previous version (xp
1; . . . ; x

p
m) but also on the previ-

ously generated tokens xn
1 ; . . . ; x

n
k�1. The next token xn

k also
depends on the token type (u), which is generated by M tree.
Thus,

P ðcnjcp; tnÞ ¼
Ym0

k¼1

P ðxn
k jxn

1 ; . . . ; x
n
k�1; fxp

1; . . . ; x
p
mg; unkÞ:

(8)

Here, unk is the node type corresponding to the generated ter-
minal token xn

k . Note that, the token generation model can be
viewed as a conditional probabilistic translationmodel where
token probabilities are conditioned not only on the context
but also on the type of the token (u��). Similar to M tree, we use
an encoder-decoder. The encoder encodes each token and cor-
responding type of the input sequence into a hidden represen-
tation with an LSTM (Fig. 1c). Then, for each token (xp

i ) in the
previous version of the code, the corresponding hidden repre-
sentation (spi ) is given by: sspi ¼ fLSTMðsspi�1; encð½xp

i ; u
p
i �ÞÞ. Here,

upi is the terminal token type corresponding to the generated
token xp

i and encðÞ is a function that encodes the pair of xp
i ; u

p
i

to a (learnable) vector representation.
The decoder’s initial state is the final state of the encoder.

Then, it generates a probability distribution over tokens
from the vocabulary. The internal state at time step k of the
token generation is ssnk ¼ fLSTMðssnk�1; encðxn

i ; u
n
kÞ; ��kÞÞ, where

��k is the attention vector over the previous version of the
code and is computed as in Equation (6). Finally, the proba-
bility of the kth target token is computed as

P ðxn
k jxn1 ; . . . ; xnk�1; fxp

1; . . . ; x
n
mg; unk Þ

¼ softmax Wtoken � ssnk þ bbtoken þmaskðunkÞ
� �

:
(9)

Here, Wtoken and bbtoken are parameters that are optimized
along with all other model parameters. Since not all tokens
are valid for all the token types, we apply a mask that deter-
ministically filters out invalid candidates. For example, a
token type of boolean_value, can only be concretized
into true or false. Since the language grammar provides
this information, we create a mask (maskðunkÞ) that returns a
�1 value for masked entries and zero otherwise. Similarly,
not all variable, method names, type names are valid at
every position. We refine the mask based on the variables,
method names and type names extracted from the scope of
the change. In the case of method, type and variable names,
CODIT allows M token to generate a special<unknown> token.
However, the <unknown> token is then replaced by the
source token that has the highest attention probability (i.e.,
the highest component of ��k), a common technique in NLP.
The mask restricts the search domain for tokens. However,
in case to variable, type, and method name M token can only
generate whatever token available to it in the vocabulary
(through masking) and whatever tokens are available in
input code (through copying).

5 IMPLEMENTATION

Our tree-based translation model is implemented as an edit
recommendation tool, CODIT. CODIT learns source code
changes from a dataset of patches. Then, given a code frag-
ment to edit, CODIT predicts potential changes that are likely
to take place in a similar context. We implement CODIT
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extending OpenNMT [41] based on PyTorch. We now dis-
cuss CODIT’s implementation in details.

Patch Pre-Processing. We represent the patches in a parse
tree format and extract necessary information (e.g., gram-
mar rules, tokens, and token-types) from them.

Parse Tree Representation. As a first step of the training
process, CODIT takes a dataset of patches as input and parses
them. CODIT works at method granularity. For a method
patch Dm, CODIT takes the two versions of m: mp and mn.
Using GumTree, a tree-based code differencing tool [42], it
identifies the edited AST nodes. The edit operations are rep-
resented as insertion, deletion, and update of nodes w.r.t.
mp. For example, in Fig. 1a, red nodes are identified as
deleted nodes and green nodes are marked as added nodes.
CODIT then selects the minimal subtree of each AST that cap-
tures all the edited nodes. If the size of the tree exceeds a
maximum size of max change size, we do not consider the
patch. CODIT also collects the edit context by including
the nodes that connect the root of the method to the root of
the changed tree. CODIT expands the considered context until
the context exceed a tree size threshold (max tree size). Dur-
ing this process, CODIT excludes changes in comments and lit-
erals. Finally, for each edit pair, CODIT extracts a pair
ðASTp;ASTnÞ where ASTp is the original AST where a
change was applied, and ASTn is the AST after the changes.
CODIT then converts the ASTs to their parse tree representa-
tion such that each token corresponds to a terminal node.
Thus, a patch is represented as the pair of parse trees (tp, tn).

Information Extraction. CODIT extracts grammar rules,
tokens and token types from tp and tn. To extract the rule
sequence, CODIT traverses the tree in a depth-first pre-order
way. From tp, CODIT records the rule sequence ðRp

1; . . . ; R
p
tÞ

and from tn, CODIT gets ðRn
1 ; . . . ; R

n
t0 Þ (Fig. 1b). CODIT then tra-

verses the parse trees in a pre-order fashion to get the aug-
mented token sequences, i.e., tokens along with their
terminal node types: ðxp

�; u
p
�Þ from tp and ðxn� ; un� Þ from tn.

CODIT traverses the trees in a left-most depth-first fashion.
When a terminal node is visited, the corresponding aug-
mented token ðx�

�; u
�
�Þ is recorded.

Model Training. We train the tree translation model (M tree)
and token generationmodel (M token) to optimize Equations (3)
and (8) respectively using the cross-entropy loss as the objec-
tive function. Note that the losses of the two models are inde-
pendent and thus we train each model separately. In our
preliminary experiment, we found that the quality of the gen-
erated code is not entirely correlated to the loss. To mitigate
this, we used top-1 accuracy to validate our model. We train
themodel for a fixed amount of nepoch epochs using early stop-
ping (with patience of validpatience) on the top-1 suggestion
accuracy on the validation data. We use stochastic gradient
descent to optimize themodel.

Model Testing. To test the model and generate changes,
we use beam-search [43] to produce the suggestions from
M tree and M token. First given a rule sequence from the previ-
ous version of the tree, CODIT generatesKtree rule sequences.
CODIT subsequently use these rule sequence to build the
actual AST. While building the tree from the rule sequence,
CODIT ignores the sequence if the rule sequence is infeasible
(i.e., head of the rule does not match the frontier_node,
nt
f ). Combining the beam search in rule sequence and the

tree building procedure, CODIT generate different trees
reflecting different structural changes. Then for each tree,
CODIT generates Ktoken different concrete code. Thus, CODIT

generates Ktree � Ktoken code fragments. We sort them based
on their probability, i.e., logðP ðcnjcp; tpÞÞ ¼ logðP ðcnjcp; tnÞ �
P ðtnjtpÞÞ. From the sorted list of generated code, we pick the
topK suggestions.

6 EXPERIMENTAL DESIGN

We evaluate CODIT for three different types of changes that
often appear in practice: (i) code change in the wild, (ii) pull
request edits, and (iii) bug repair. For each task, we train
and evaluate CODIT on different datasets. Table 1 provides
detailed statistics of the datasets we used.

(i) Code Change Task. We collected a large scale real code
change dataset (Code-Change-Data) from 48 open-source proj-
ects from GitHub. These projects also appear in TravisTor-
rent [30] and have aat least 50 commits in Java files. These
project are excludes any forked project, toy project, or unpop-
ular projects (all the projects have at least 10 watchers in
Github). Moreover, these projects are big and organized
enough that they use Travis Continuous integration system
for maintainability. For each project, we collected the revision
history of the main branch. For each commit, we record the
code before and after the commit for all Java files that are
affected. In total we found java 241,976 file pairs. We then use
GumTree [42] tool to locate the change in the file and check
whether the changes are inside a method in the correspond-
ing files. Most of the changes that are outside a method in a
java class are changes related to import statements and
changes related to constant value. We consider those out of
CODIT’s scope.We further remove any pairs,where the change
is only in literals and constants. Excluding suchmethod pairs,
we got 182,952 method pairs. We set max change size ¼ 10
and max tree size ¼ 20. With this data collection hyper-
parameter settings, we collected 44,382 patches.

We divide every project based on their chronology. From
every project, we divide earliest 70 percent patches into train
set, next 10 percent into validation set and rest 20 percent
into test set based on the project chronology. We removed
any exact test and validation examples from the training set.

TABLE 1
Summary of Datasets Used to Evaluate CODIT

Dataset # Projects # Train # Validtion # Test # Tokens # Nodes

Examples Examples Examples Max Average Max Average

Code-Change-Data 48 24,072 3,258 5,143 38 15 47 20
Pull-Request-Data [28] 3 4,320 613 613 34 17 47 23
Defects4J-data [44] 6 22,060 2,537 117 35 16 43 21
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We also removed intra-set duplicates. After removing such
duplicate patches, we ended up with 32,473 patches in total,
which are then used to train and evaluate CODIT.

(ii)Pull Request Task. For this task, we usePull-Request-Data,
provided by Tufano et al. [19] which contains source code
changes from merged pull requests from three projects from
Gerrit [45]. Their dataset contains 21,774method pairs in total.
Similar to theCode-Change-Data, we setmax change size ¼ 10
andmax tree size ¼ 20 to extract examples that are in CODIT’s
scope from this dataset. We extracted 5546 examples patch
pair.

(iii) Bug Repair Task. For this task, we evaluate CODIT on
Defects4J [44] bug-fix patches. We extract 117 patch pairs
across 80 bug ids in Defect4j dataset with the same
max change size ¼ 10 and max tree size ¼ 20 limit as Code
Change Task. These are the bugs that are in CODIT’s scope.
To train CODIT for this task, we create a dataset of code
changes from six projects repositories in Defects4J dataset
containing 24,597 patches. We remove the test commits
from the training dataset.

6.1 Evaluation Metric

To evaluate CODIT, we measure for a given code fragment,
how accurately CODIT generates patches. We consider CODIT

to correctly generate a patch if it exactly matches the devel-
oper produced patches. CODIT produces the top K patches
and we compute CODIT’s accuracy by counting how many
patches are correctly generated in topK. Note that this met-
ric is stricter than semantic equivalence.

For the bug fix task, CODIT takes a buggy line as input and
generates the corresponding patched code. We consider a
bug to be fixed if we find a patch that passes all the test
cases. We also manually investigate the patches to check the
similarity with the developer provided patches.

6.2 Baseline

We consider several baselines to evaluate CODIT’s perfor-
mance. Our first baseline in a vanilla LSTM based Seq2Seq
model with attention mechanism [39]. Results of this base-
line indicate different drawbacks of considering raw code
as a sequence of token.

The second baseline, we consider, is proposed by Tufano
et al. [27]. For a given code snippet (previous version),
Tufano et al. first abstracted the identifier names and stored
the mapping between original and abstract identifiers in a
symbol table. The resultant abstracted code (obtained by
substituting the raw identifiers with abstract names) is then
translated by an NMT model. After translation, they con-
cretize the abstract code using the information stored in the
symbol table. The patches where the abstract symbols pre-
dicted by the model are not found in the symbol table
remian undecidable. Such patches, although can be useful
to guide developers similar to our M tree, cannot be automat-
ically concretized, and thus, we do not count them as fully
correct patches.

Both the vanilla Seq2Seq and Tufano et al.’s model con-
sider the before version of the code as input. Recently,
SequenceR [28] proposed way to represent additional context
to help the model generate concrete code. We design such a
baseline, where we add additional context to cP . Following

SequenceR, we add copy attention, where the model learns to
copy from the contexed code.

To understand the tree encoding mechanism, we used
several tree encoders. First method we considered is similar
to DeepCom [46], where the AST is represented as a sequen-
tial representation called Structure Based Traversal (SBT).
Second tree encoding method we consider is similar to
Code2Seq, where code AST is represented by a set of paths
in the tree. While these tree encoding methods are used for
generating Code comment, we leverage these encoding
methods for code change prediction. We design a Seq2Seq
method with DeepCom encoder (Tree2Seq), and Code2Seq
encoder. We also enable the copy attention in both of these
baselines.

We also did some experiment on Kommrusch et al. [47]’s
proposed Graph2Seq network, which they provided imple-
mentation as an add on in OpenNMT-Py framework.2 How-
ever, their implementation is assumed upon a very restricted
vocabulary size. To understand better, we modified their
code to fit into our context, but neither their original model,
nor our modified model works in program change task.
When we increase the vocabulary size in their version of the
model, it does not scale and quickly exhaust all the memory
in the machine (we tried their model on a machine with 4
Nvidia TitanX GPU and 256 GB RAM). When we tested our
modification of their code, themodel does not converge even
after 3 days of training, eventually resulting in 0 correct
predictions.

The basic premise of CODIT is based on the fact that code
changes are repetitive. Thus, another obvious baseline is to
see how CODIT performs w.r.t. to code-clone based edit rec-
ommendation tool [3]. In particular, given a previous ver-
sion (cp) of an edit, we search for the closest k code
fragments using similar bag-of-words at the token level sim-
ilar to Sajnani et al. [48]. In our training data of code edits,
this step searches in the previous code versions and use the
corresponding code fragments of the next version as sug-
gested changes.

Bug-Fixing Baselines. For the bug fix task, we compare
CODIT’s performance with two different baselines. Our first
baseline is SequenceR [28], we compare with the results
they reported. We also compare our result with other non-
NMT based program repair systems.

7 RESULTS

We evaluate CODIT’s performances to generate concrete
patchesw.r.t. generic edits (RQ1) and bug fixes (RQ3). In RQ2,
we present an ablation study to evaluate our design choices.

RQ1. How accurately can CODIT suggest concrete edits?
To answer this RQ, we evaluate CODIT’s accuracyw.r.t. the

evaluation dataset containing concrete patches. Table 2
shows the results: for Code-Change-Data, CODIT can success-
fully generate 201 (3.91 percent), 571 (11.10 percent), and 820
(15.94 percent) patches at top 1, 2, and 5 respectively. In con-
trast, at top 1, SequenceR generates 282 (5.48 percent) correct
patches, and performs the best among all themethods.While
SequenceR outperforms CODIT in top 1, CODIT outperforms
SequenceRwith significant margin at top 2 and top 5.

2. https://opennmt.net/OpenNMT-py/ggnn.html
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In Pull-Request-Data, CODIT generates 57 (9.3 percent), 134
(21.86 percent), and 177 (28.87 percent) correct patches at top 1,
2, and 5 respectively. At top 1, Tufano et al.’s [27] method pro-
duces 81 patches. At top 2, CODIT produces 134 (21.86 percent)
patches, which is comparable with SequenceR’s result 137
(22.35 percent). At top 5, CODIT outperforms all the other base-
lines achieving 9.2 percent gain over SequenceR baseline.

The main advantage point of CODIT is that, since it consid-
ers the structural changes separate from the token changes,
it can learn the structural change pattern well instead of
being dominated by learning the code token changes. How-
ever, being a two stage process, CODIT has two different
hinge point for failure. If M tree does not generate the correct
tree, no matter how good M token performs, CODIT is unable
to generate correct patch. We conjecture that, this is the rea-
son for CODIT’s failure at top 1.

Among the baselines we compared here, SequenceR, and
Tree2Seq takes the advantage of copy attention. Tufano et al.’
s model takes the advantage of reduced vocabulary through
identifier abstraction. Tufano et al.’s model works best when
the code is mostly self contained i.e., when there is always a
mapping from abstract identifier to concrete identifier in the
symbol table, their method can take full advantage of the
vocabulary reduction. to When the input code is mostly self
contained (i.e., most of the tokens necessary to generate a
patch are inside the input code cp or appears within the con-
text limit in as presented to SequenceR).

In code change task with NMT, the deterministic posi-
tions of code tokens are important to put attention over dif-
ferent parts of code. While Code2Seq [49]’s representation
of input code as random collection of paths in the code
showed success for code comprehension, it does not gener-
alize well for code change due to the stochastic nature of the
input. Additionally, copy attention cannot be trivially
applied to Code2Seq since, like attention, copy also rely on
the defined positions of tokens in the input.

While CODIT replaces any <unknown> prediction by the
token with highest attention score (see Section 4.2), unlike
SequenceR, CODIT does not learn to copy. The rationale is,
unlike SequenceR, CODIT’s input code (cp) is not enhanced
by the context. Instead, we present the context to the CODIT

through the token mask (see Equation (9)). If we enable
copy attention, CODIT becomes highly biased by the tokens
that are inside cp.

Note that, “vocabulary explosion” still remains an open
problem for code generation. Neither CODIT nor any other
baselines we discussed here solve this problem. CODIT

presents a way to learn the structural change and restricts
the search domain for token names through a mask. For
instance, where M token needs to generate a token of primitive
data type (M token knows the token type because M tree already
generated a tree with terminal node types), it can restrict
the search over the primitive types only. While it is expected
that the decoder of an ideal Seq2Seq model would inher-
ently learn appropriate tokens at appropriate positions as it
implicitly learns code structure, in reality, because of its
unrestricted search space, they tend to mispredict more
tokens than CODIT.

In general, CODIT along with all the baselines perform bet-
ter when generating small patches. For example, a large
majority of the correctly generated patches have size of one
(i.e., Dt = 1, the tree distance between tp and tn [50]). How-
ever, a non-trivial number of larger patches are also cor-
rectly generated. Fig. 2 shows the histogram of the size of
correctly predicted patches. For example, there are 202 and
51 correct patches with Dt � 3 generated by CODIT for Code-
Change-Data and Pull-Request-Data respectively.

For qualitative evaluation, we show some non-trivial
patches that CODIT can successfully generate. CODIT can learn
a wide range of patch patterns. Table 3 shows few examples
of different category of patches that CODIT can generate.
CODIT also shows promise in generating non-trivial struc-
ture based changes. Consider Example 4 where x is
renamed to session both the formal parameter and the
usage in the body. Note that, since CODIT uses a tree-based
model it is good at capturing long-distance dependencies

TABLE 2
Performance of CODIT Suggesting Concrete Patches

Method Code Change Data Pull Request Data

Number of examples : 5143 Number of examples : 613

Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

Token Based Seq2Seq 107 (2.08%) 149 (2.9%) 194 (3.77%) 45 (7.34%) 55 (8.97%) 69 (11.26%)
Tufano et al. 175 (3.40%) 238 (4.63%)) 338 (6.57%) 81 (13.21%) 104 (16.97%) 145 (23.65%)
SequenceR 282 (5.48%) 398 (7.74%) 502 (9.76%) 39 (6.36%) 137 (22.35%) 162 (26.43%)

Tree Based Tree2Seq 147 (2.86%) 355 (6.9%) 568 (11.04%) 39 (6.36%) 89 (14.52%) 144 (23.49%)
Code2seq 58 (1.12%) 82 (1.59%) 117 (2.27%) 4 (0.65%) 7 (1.14%) 10 (1.63%)
CODIT 201 (3.91%) 571 (11.10%) 820 (15.94%) 57 (9.3%) 134 (21.86%) 177 (28.87%)

IR based B ir 40 (0.77%) 49 (0.95%) 61 (1.18%) 8 (1.30%) 8 (1.30%) 9 (1.46%)

For Token Based models, predominant source of information in the code are token sequences. For Tree Based models information source is code AST. For IR based
method, information retrieval model is used on code.

Fig. 2. Patch size (Tree Edit-distance) histogram of correctly generated
patches in different datasets.
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allowing the token-level model to focus on predicting
tokens, e.g., such that it can rename the same variable simi-
larly. Another interesting example where CODIT can success-
fully generate patches is shown in example 6, where CODIT

does not only add the abstract keyword in the method
signature, but also removes the body. Since CODIT is aware
of code syntax, it learns that method declarations with an
abstract keyword have a high probability of an empty
method body.

Table 4 shows some additional examples where CODIT can
successfully generate patches. In these examples, different
exception/error types (i.e., Exception, Error, Runti-

meException) are changed to EOFException although
their usage differs. In the first three examplesEOFException

is used as a class reference, while for the others EOFExcep-
tion is used to initialize an object. These examples also illus-
trate CODIT’s ability to generalize to different contexts and
use-cases. Other structural transformation that CODIT include,
but not limited to, include scoping (example 7 in Table 3),
adding/deleting method parameters (example 3 in Table 3),
changing method/variable access modifiers (example 9, 10
in Table 3), etc.

Result 1: CODIT suggests 15.94 percent correct patches for
Code-Change-Data and 28.87 percent for Pull-Request-Data
within top 5 and outperforms best baseline by 44.37 and 9.26
percent respectively.

Next, we evaluate CODIT’s sub-components.
RQ2. How do different design choices affect CODIT’s

performance?
This RQ is essentially an ablation study where we investi-

gate in three parts: (i) the token generation model (M token),
(ii) the tree translation model (M tree), and (iii) evaluate the
combined model, i.e., CODIT, under different design choices.
We further show the ablation study on the data collection
hyper-parameters (i.e.,max change size, andmax tree size)
and investigate the cross project generalization.

Evaluating Token Generation Model. Here we compare
M token with the baseline SequenceR model. Note that M token

generates a token given its structure. Thus, for evaluating
the standalone token generation model in CODIT’s frame-
work, we assume that the true structure is given (emulating
a scenario where a developer knows the kind of structural
change they want to apply). Table 5 presents the results.

While the baseline Seq2Seqwith copy-attention (SequenceR)
generates 9.76 percent (502 out of 5,143) and 26.43 percent (162
out of 613) correct patches for Code-Change-Data and Pull-
Request-Data respectively at top 5, Table 5 shows that if the
change structure (i.e., tn) is known, the standaloneM token model
of CODIT can generate 39.57 percent (2,035 out of 6,832) and
61.66 percent (378 out of 613) for Code-Change-Data and Pull-
Request-Data respectively. This result empirically shows that if
the tree structure is known, NMT-based code change predic-
tion significantly improves. In fact, this observation led us build
CODIT as a two-stagemodel.

Evaluating Tree Translation Model. Here we evaluate how
accurately M tree predicts the structure of a change —
shown in Table 6. M tree can predict 56.78 and 55.79 percent
of the structural changes in Code-Change-Data and Pull-
Request-Data respectively. Note that, the outputs that are
generated by M tree are not concrete code, rather structural

TABLE 3
Examples of Different Types of Concrete

Patches Generated by CODIT

Every cell shows an example of correctly suggested patches by CODIT. Top line
is the patch category, followed by the actual patch. In the patch, Red tokens/
lines are deleted and Green tokens/lines are added.

TABLE 4
Examples of CODIT’s Ability to Generalize in Different Use Cases

Exception, Error, RuntimeException are modified to EOFExcep-

tion under different context.
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abstractions. In contrast, Tufano et al.’s [27] predicts 38.56
and 39.31 percent correct patches in Code-Change-Data and
Pull-Request-Data respectively. Note that, their abstraction
and our abstraction method is completely different. In their
case, for some of the identifiers (those already exist in the
symbol table), they have a deterministic way to concretize
the code. In our case, M token in CODIT augments M tree by
providing a stochastic way to concretize every identifier by
using NMT.

Note that, not all patches contain structural changes (e.g.,
when a single token, such as a method name, is changed).
For example, 3,050 test patches of Code-Change-Data, and
225 test patches of Pull-Request-Data do not have structural
changes. When we use these patches to train M tree, we
essentially train the model to sometimes copy the input to
the output and rewarding the loss function for predicting
no transformation. Thus, to report the capability of M tree to
predict structural changes, we also train a separate version
of M tree using only the training patches with at least 1 node
differing between tn and tp. We also remove examples with
no structural changes from the test set. This is our filtered
dataset. In the filtered dataset, M tree predicts 33.61 and
30.73 percent edited structures from Code-Change-Data and
Pull-Request-Data respectively. This gives us an estimate of
how well M tree can predict structural changes.

Evaluating CODIT. Having M tree and M token evaluated sep-
arately, we will now evaluate our end-to-end combined
model (M tree þ M token) focusing on two aspects: (i) effect of
attention-based copy mechanism, (ii) effect of beam size.

First, we evaluate contribution of CODIT’s attention-based
copy mechanism as described in Section 4.2. Table 7 shows
the results. Note that, unlike SequenceR, CODIT is not trained
for learning to copy. Our copy mechanism is an auxiliary
step in the beam search that prohibits occurrence of
<unknown> token in the generated code.

Recall that M token generates a probability distribution over
the vocabulary (Section 4.2). Since the vocabulary is generated
using the training data, any unseen tokens in the test patches
are replaced by a special <unknown> token. In our experi-
ment, we found that a large number (about 3 percent is

Code-Change-Data and about 4 percent is Pull-Request-Data)
of patches contain <unknown> tokens; this is undesirable
since the generated code will not compile. When we do
not replace <unknown> tokens, CODIT can predict 742
(14.42 percent), and 163 (26.59 percent) correct patches in
Code-Change-Data and Pull-Request-Data respectively. How-
ever, if all the <unknown> tokens could be replaced per-
fectly with the intended token, i.e., upper bound of the
number of correct patches goes up to 898 (17.46 percent)
and 191 (31.16 percent) correct patches in Code-Change-Data
and Pull-Request-Data respectively. This shows the need for
tackling the <unknown> token problem. To solve this, we
replace <unknown> tokens predicted by M token with
the source token with the highest attention probability
following Section 4.2. With this, CODIT generates 820
(15.94 percent), and 177 (28.87 percent) correct patches from
Code-Change-Data andPull-Request-Data respectively (Table 7).

Second, we test two configuration parameters related to
the beam size, Ktree and Ktoken i.e., the number of trees gen-
erated by M tree and number of concrete token sequences
generated by M token per tree (Section 5). While Table 2
shows the effect of different values of Ktoken (e.g.,, 1, 2, 5),
here we investigate the effect of Ktree for a given Ktoken.
Fig. 3 shows the parameter sensitivity of Ktree when Ktoken

is set 5. Recall from Section 5, CODIT first generates Ktree

number of trees, and then generates Ktoken number of code
per tree. Among those Ktree �Ktoken generated code, CODIT

chooses topKtoken number of code to as final output. In both
Code-Change-Data (CC data in Fig. 3), and Pull-Request-Data
(PR data in Fig. 3), CODIT performs best when Ktree = 2.
When Ktree = 2, total generated code is 10, among which
CODIT chooses top 5. With increasing number of Ktree, CODIT

has to choose from increasing number of generated code,
eventually hurting the performance of CODIT.

Next, we move onto ablation study of our data collection
hyper-parameters (i.e., max change size, and max tree size).
For Code-Change-Data, we only collected examples patches
where max change size ¼ 10, and max tree size ¼ 20. For
this ablation study, we created 6 different version Pull-Request-
Data with respective data parameters (see Table 8 for details).
As we increase the max tree size parameter, the length of the
code increases causing the performance to decrease. With the
increment of max change size, CODIT’s performance also
decreases. Furthermore, Fig. 4 shows histogram of percentage
of correctly predicted examples by CODIT w.r.t. size of the tree
(in terms of nodes). While CODIT performs well in predicting
smaller trees (� 10 nodes), CODIT also works comparably well
in larger tree sizes. In fact, CODIT produces 21.97 percent correct
code in Pull-Request-Data, and 16.48 percent correct code in
Code-Change-Datawhere the tree size is larger than 30 nodes.

TABLE 5
Correct Patches Generated by the Standalone Token

Generation Model When the True Tree Structure is Known

Dataset Total Correct Patches

SequenceR standalone M token

Code-Change-Data 502 (9.76%) 2035 (39.57%)
Pull-Request-Data 162 (26.43%) 378 (61.66%)

TABLE 6
M tree Top-5 Performance for Different Settings

Dataset # Correct Abstract Patches�

Tufano et al. CODIT

Code-Change-Data 1983 / 5143 (38.56%) 2920 / 5143 (56.78%)
Pull-Request-Data 241 / 613 (39.31%) 342 / 613 (55.79%)

* Each cell represents correctly predicted patches / total patches (percentage of
correct patch) in the corresponding setting.

TABLE 7
CODIT Performance w.r.t. to the Attention Based Copy

Mechanism@top-5 (Ktree =2,Ktoken =5)

Dataset lower bound upper bound CODIT

Code-Change-Data 742 (14.42%) 898 (17.46%) 820 (15.94%)
Pull-Request-Data 163 (26.59%) 191 (31.16%) 177 (28.87%)

Lower bound is without copy. The upper bound evaluates with oracle copying
predictions for <unknown>. For CODIT each <unknown> token is replaced
by the source token with the highest attention.
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To understand how CODIT generalizes beyond a project,
we do a cross-project generalization test. Instead of chrono-
logical split of examples (see Section 6), we split the exam-
ples based on projects, i.e., all the examples that belongs to a
project falls into only one split (train/validation/test). We
then train and test CODIT based on this data split. Table 9
shows the result in this settings w.r.t. to intra-project split.
While M tree in intra-project and cross-project evaluation set-
ting achieves similar performance, full CODIT performance
deteriorate by 68 percent. The main reason behind such
deterioration is diverse choice of token name across differ-
ent projects. Developer tend to use project specific naming
convention, api etc. This also indicates that the structural
change pattern that developers follow are more ubiquitous
across different projects than the token changes.

Result 2: CODIT yields the best performance with a copy-based
attention mechanism and with tree beam size of 2. M tree

achieves 58.78 and 55.79 percent accuracy and M token achieves
39.57 and 61.66 percent accuracy in Code-Change-Data and
Pull-Request-Data respectively when tested individually.

Finally, we evaluate CODIT’s ability to fixing bugs.
RQ3. How accurately CODIT suggests bug-fix patches?
We evaluate this RQ with the state-of-the-art bug-repair

dataset, Defects4J [44] using all six projects.
Training. We collect commits from the projects’ original

GitHub repositories and preprocess them as described
in Section 5. We further remove the Defects4J bug fix patches
and use the rest of the patches to train and validate CODIT.

Testing.We extract the methods corresponding to the bug
location(s) from the buggy-versions of Defects4J. A bug can
have fixes across multiple methods. We consider each

method as candidates for testing and extract their ASTs. We
then filter out the methods that are not within our accepted
tree sizes. In this way, we get 117 buggy method ASTs cor-
responding to 80 bugs. The rest of the bugs are ignored.

Here we assume that a fault-localization technique
already localizes the bug [51]. In general, fault-localization is
an integral part of program repair. However, in this paper,
we focus on evaluating CODIT’s ability to produce patches
rather than an end-to-end repair tool. Since fault localization
and fixing are methodologically independent, we assume
that bug location is given and evaluate whether CODIT can
produce the correct patch. Evaluation of CODIT’s promise as a
full-fledged bug repair tool remains for futurework.

For a buggymethod, we extract cp. Then for a given cp, we
run CODIT and generate a ranked list of generated code frag-
ments (cn). We then try to patch the buggy codewith the gen-
erated fragments following the rank order, until the bug-
triggering test passes. If the test case passes, we mark it a
potential patch and recommend it to developers. We set a
specific time budget for the patch generation and testing. For
qualitative evaluation, we additionally investigate manually
the patches that pass the triggering test cases to evaluate the
semantic equivalence with the developer-provided patches.
Here we set the maximum time budget for each buggy
method to 1 hour. We believe this is a reasonable threshold
as previous repair tools (e.g., Elixir [52]) set 90 minutes for
generating patches. SimFix [53] set 5 hours as their time out
for generating patches and running test cases.

CODIT can successfully generate at least 1 patch that
passes the bug-triggering test case for 51 methods out of 117
buggy methods from 30 bugs, i.e., 43.59 percent buggy
methods are potentially fixed. Fig. 5 shows the number of
patches passing the bug-triggering test case w.r.t. time. We
see that, 48 out of 51 successful patches are generated within
20 minutes.

We further manually compare the patches with the devel-
oper-provided patches: among 51 potential patches, 30
patches are identical and come from 25 different bug ids (See
Table 10). The bugs marked in green are completely fixed by
CODIT with all their buggy methods being successfully fixed.

Fig. 3. Performance of CODIT @top-5 (Ktoken = 5) for differentKtree.

Fig. 4. Percentage of correct prediction by CODIT with respect to number
of nodes in the tree.

TABLE 9
Cross Project Generalization Test for CODIT

(% of Correct at @top-5)

Settings CODIT full M tree only

Intra-Project Split 15.94 56.78
Cross Project Split 9.48 59.65

TABLE 8
Ablation Study ofmax change sizeðmaxcÞ, and

max tree sizeðmaxtÞ

# Train # Valid # Test maxc maxt % correct

3,988 593 593 10 10 34.06
4,320 613 613 10 20 32.63
4,559 622 627 10 30 28.07

7,069 948 932 20 20 31.55
7,340 993 948 20 30 29.32

9,361 1,227 1,213 30 30 24.48
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For example, Math-49 has 4 buggy methods, CODIT fixes all
four. For the bugs marked in bluey, CODIT fixes all the meth-
ods that are in scope. For example, for Lang-4, there are 2
methods to be fixed, 1 of them are in CODIT’s scope, and CODIT

fixes that. However, for two other bugs (marked in orange*),
CODIT produces only a partial fix. For example, in the case of
Math-46 and Mockito-6, although all the methods are within
scope, CODIT could fix 1 out of 2 and 2 out of 20 methods
respectively. The ‘Patch Type’ column further shows the
type of change patterns.

SequenceR [28] is a notable NMT based program repair
tool which takes the advantage of learning to copy in NMT.
They evaluated on 75 one line bugs in Defects4J dataset and
reported 19 plausible and 14 fully correct successful
patches. Among those 75 bugs, 38 are in CODIT’s scope. Out
of those 38 bugs, CODIT can successfully generate patches for
14 bugs. Note that, we do not present CODIT as full fledged
automated program repair tool, rather a tool for guiding
developers. Thus, for automatic evaluation, we assumed the
correct values of constants (of any data type) given.

One prominent bug repair approach [52], [54], [55] is to
transform a suspicious program element following some
change patterns until a patch that passes the test cases is
found. For instance, Elixir [52] used 8 predefined code trans-
formation patterns and applied those. In fact, CODIT can gener-
ate fixes for 8 bugs out of 26 bugs that are fixed by Elixir [52].

Nevertheless, CODIT can be viewed as a transformation
schema which automatically learns these patterns without
human guidance. We note that CODIT is not explicitly
focused on bug-fix changes since it is trained with generic
changes. Even then, CODIT achieves good performance in
Defects4J bugs. Thus, we believe CODIT has the potential to
complement existing program repair tools by customizing
the training with previous bug-fix patches and allowing to
learn from larger change sizes. Note that, current version of
CODIT does not handle multi-hunk bugs. Even if a bug is
multi-hunk, in current prototype, we consider each of the
hunk as separate input to CODIT. For instance, consider
Math-46, which is a 2-hunk bug. While all 2 methods are in
CODIT’s scope, CODIT can only fix one. Currently we do not
consider interaction between multiple hunks [56]. We leave
the investigation of NMT in such scenario for future work.

Result 3: CODIT generates complete bug-fix patches for 15 bugs
and partial patches for 10 bugs in Defects4J.

8 THREATS TO VALIDITY

External Validity. We built and trained CODIT on real-world
changes. Like all machine learning models, our hypothesis

is that the dataset is representative of real code changes. To
mitigate this threat, we collected patch data from different
repositories and different types of edits collected from real
world.

Most NMT based model (or any other text decoder based
models) faces the “vocabulary explosion” problem. That
problem is even more prominent in code modeling, since
possible names of identifiers can be virtually infinite. While
this problem is a major bottleneck in DL base code genera-
tion, CODIT does not solve this problem. In fact, similar to
previous researches (i.e., SequenceR [28]), CODIT cannnot
generate new identifiers if it is not in the vocabulary or in
the input code.

Internal Validity. Similar to other ML techniques, CODIT’s
performance depends on hyperparameters. To minimize
this threat, we tune the model with a validation set. To check
for any unintended implementation bug, we frequently
probed our model during experiments and tested for desir-
able qualities. In our evaluation, we used exact similarity as
an evaluation metric. However, a semantically equivalent
code may be syntactically different, e.g., refactored code. We
will miss such semantically equivalent patches. Thus, we
give a lower bound for CODIT’s performance.

9 RELATED WORK

Modeling Source Code. Applying ML to source code has
received increasing attention in recent years [26] across many
applications such as code completion [11], [31], bug predic-
tion [57], [58], [59], clone detection [60], code search [61], etc.

Fig. 5. Patches passing the bug-triggering tests v.s. time.

TABLE 10
CODIT’s Performance on Fixing Defects4J [44] Bugs

Green rows are bug ids where CODIT can produce complete patch. Bluey rows
are where CODIT can fix all the methods that are in CODIT’s scope. Orange*
rows are where CODIT could not fix all that are in CODIT’s scope.
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In these work, codewas represented inmany form, e.g., token
sequences [31], [32], parse-trees [62], [63], graphs [59], [64],
embedded distributed vector space [65], etc. In contrast, we
aim to model code changes, a problem fundamentally differ-
ent frommodeling code.

Machine Translation (MT) for Source Code. MT is used to
translate source code from one programming language into
another [66], [67], [68], [69]. These works primarily used
Seq2Seq model at different code abstractions. In contrast, we
propose a syntactic, tree-based model. More closely to our
work, Tufano et al. [19], [27], and Chen et al. [28] showed
promising results using a Seq2Seq model with attention and
copymechanism.Our baseline Seq2Seqmodel is very similar
to thesemodels. However, Tufano et al. [19], [27] employed a
different form of abstraction: using a heuristic, they replace
most of the identifiers including variables, methods and
types with abstract names and transform previous and new
code fragments to abstracted code templates. This vaguely
resembles CODIT’s M tree that predicts syntax-based tem-
plates. However, the abstraction method is completely dif-
ferent. With their model, we achieved 39 percent accuracy at
top 5. As Table 6, our abstract prediction mechanism also
predicts 55-56 percent accurately on different datasets. Since,
our abstraction mechanism differs significantly, directly
comparing these numbers does not yield a fair comparison.
Gupta et al. used Seq2Seq models to fix C syntactic errors in
student assignments [70]. However, their approach can fix
syntactic errors for 50 percent of the input codes i.e., for rest
of the 50 percent generated patches were syntactically incor-
rect which is never the case for CODIT because of we employ a
tree-based approach. Other NMT application in source code
and software engineering include program comprehen-
sion [46], [49], [71], [72], commit message generation [73],
[74], program synthesis [62], [75] etc.

Structure Based Modeling of Code. Code is inherently struc-
tured. Many form of structured modeling is used in source
code over the years for different tasks. Allamanis et al. [76],
[77] proposed statistical modeling technique for mining
source code idioms, where they leverages probabilistic Tree
Substitution Grammar (pTSG) for mining code idioms.
CODIT’s M tree is based on similar concept, where we model
the derivation rule sequence based on a probabilistic Context
Free Grammar. Brockschmidt et al. [78], Allmanis et al. [59]
proposed graph neural network for modeling source code.
However, their application scenario is different from CODIT’s
application, i.e., their focus is mainly on generating natural
looking code and/or identify bugs in code. Recent researches
that are very close to CODIT include Yin et al. [79]’s proposed
graph neural network-based distributed representation for
code edits but their work focused on change representation
than generation. Other recent works that focus on program
change or program repair include Graph2Diff by Tarlow
et al. [80], Hoppity by Dinella et al. [81]. These research
results are promising and may augment or surpass CODIT’s
performance, but problem formulation between these
approach are fundamentally different.While these technique
model the change only in the code, we formulate the problem
of code change in encoder-decoder fashion, where encoder-
decoder implicitly models the changes in code.

Program Repair. Automatic program repair is a well-
researched field, and previous researchers proposed many

generic techniques for general software bugs repair [55],
[82], [83], [84], [85]. There are two differnt directions in
program repair research : generate and validate approach,
and sysnthesis bases approach. In generate and validate
approaches, candidate patches are first generated and then
validated by running test cases [52], [55], [86], [87], [88]. Syn-
thesis based program repair tools synthesizes program ele-
ments through symbolic execution of test cases [89], [90].
CODIT can be considered a program generation tool in gener-
ate and validate based program-repair direction. Arcuri
et al. [91], Le Goues et al. [86] built their tool for program
repair based on this assumption. Both of these works used
existing code as the search space of program fixes. Elixir [52]
used 8 predefined code transformation patterns and applied
those to generate patches. CapGen [88] prioritize operator in
expression and fix ingredients based in the context of the fix.
They also relied on predefined transformation patterns for
program mutation. In contrast, CODIT learns the transforma-
tion patterns automatically. Le et al. [92] utilized the devel-
opment history as an effective guide in program fixing.
They mined patterns from existing change history and used
existing mutation tool to mutate programs. They showed
that the mutants that match the mined patterns are likely to
be relevant patch. They used this philosophy to guide their
search for program fix. The key difference between Le et al.
and this work, is that we do not just mine change patterns,
but learn a probabilistic model that learns to generalize
from the limited data.

Automatic Code Changes. Modern IDEs [7], [8] provide
support for automatic editings, e.g., refactoring, boilerplate
templates (e.g., try-catch block) etc. There are many research
on automatic and semi-automatic [93], [94] code changes as
well: e.g., given that similar edits are often applied to simi-
lar code contexts, Meng et al. [20], [22] propose to generate
repetitive edits using code clones, sub-graph isomorphisms,
and dependency analysis. Other approaches mine past
changes from software repositories and suggest edits that
were applied previously to similar contexts [2], [3]. In con-
trast, CODIT generates edits by learning them from the
wild—it neither requires similar edit examples nor edit con-
texts. Romil et al. [21] propose a program synthesis-based
approach to generate edits where the original and modified
code fragments are the input and outputs to the synthesizer.
Such patch synthesizers can be thought of as a special kind
of model that takes into account additional specifications
such as input-output examples or formal constraints. In con-
trast, CODIT is a statistical model that predicts a piece of code
given only historical changes and does not require addi-
tional input from the developer. Finally, there are domain-
specific approaches, such as error handling code genera-
tion [95], [96], API-related changes [9], [10], [11], [12], [13],
[14], [97], automatic refactorings [15], [16], [17], [18], etc.
Unlike these work, CODIT focuses on general code changes.

10 DISCUSSION AND FUTURE WORK

Search Space for Code Generation.Synthesizing patches (or
code in general) is challenging [98]. When we view code
generation as a sequence of token generation problem, the
space of the possible actions becomes too large. Existing sta-
tistical language modeling techniques endorse the action
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space with a probability distribution, which effectively
reduces the action space significantly since it allows to con-
sider only the subset of probable actions. The action space
can be further reduced by relaxing the problem of concrete
code generation to some form of abstract code generation,
e.g., generating code sketches [97], abstracting token
names [27], etc. For example, Tufano et al. reduce the effective
size of the action space to 3:53 � 1010 by considering abstract
token names [27]. While considering all possible ASTs
allowed by the language’s grammar, the space size grows to
1:81 � 1035. In this work, a probabilistic grammar further
reduces the effective action space to 3:18 � 1010, which is sig-
nificantly lower than previous methods. Such reduction of
the action space allows us to search for codemore efficiently.

Ensemble Learning for Program Repair. The overall perfor-
mance of pre-trained deep-learning models may vary due
to the different model architectures and hyper-parameters,
even if they are trained on the same training corpus. More-
over, bug fixing patterns are numerous and highly depen-
dent on the bug context and the bug type, so a single pre-
trained model may only have the power to fix certain kinds
of bugs and miss the others. To overcome this limitation,
ensemble learning can be a potential approach to leverage
the capacities of different models and learn the fixing pat-
terns in multiple aspects [99]. In future work, we plan to
conduct researches on exploring the potentials of ensemble
model to improve the performance of CODIT.

Larger Code Edits. Our work has focused on generating
small code changes (single-line or single-hunk) since such
changes take a non-trivial part of software evolution. How-
ever, predicting larger (multi-line and multi-hunk) code
changes is important and always regarded as a harder task
for current automated program repair techniques. Generat-
ing larger code snippets will significantly increase the diffi-
culty of repairing bugs for pure sequence-to-sequence
model, since any wrongly predicted token along the code
sequence will lead to meaningless patches. CODIT can
address this problem as it takes language grammar into con-
sideration. Specifically, the tree translation model could
maintain its power when dealing with larger code changes,
because the structural changes are much simpler and more
predictable than token-level code changes. Given the tree
structure of the patch, CODIT will not widely search for
tokens in the whole vocabulary, but rather, only possible
candidates corresponding to a node type will be considered.
Therefore, such hierarchical model may have potential to
generate larger edits. We plan to investigate CODIT’s ability
to multi-line and multi-hunk code edits in the future.

11 CONCLUSION

In this paper, we proposed and evaluated CODIT, a tree-based
hierarchical model for suggesting eminent source code
changes. CODIT’s objective is to suggest changes that are simi-
lar to change patterns observed in the wild. We evaluate our
work against a large number of real-world patches. The
results indicate that tree-based models are a promising tool
for generating code patches and they can outperform popular
seq2seq alternatives. We also apply our model to program
repair tasks, and the experiments show that CODIT is capable
of predicting bug fixes aswell.
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Watch Out for Extrinsic Bugs! A Case Study of
Their Impact in Just-In-Time Bug Prediction
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Abstract—Intrinsic bugs are bugs for which a bug-introducing change can be identified in the version control system of a software.

In contrast, extrinsic bugs are caused by external changes to a software, such as errors in external APIs; thereby they do not have an

explicit bug-introducing change in the version control system. Althoughmost previous research literature has assumed that all bugs are of

intrinsic nature, in a previous study, we show that not all bugs are intrinsic. This paper shows an example of how considering extrinsic bugs

can affect software engineering research. Specifically, we study the impact of extrinsic bugs in Just-In-Time bug prediction by partially

replicating a recent study byMcIntosh and Kamei on JITmodels. Thesemodels are trained using properties of earlier bug-introducing

changes. Since extrinsic bugs do not have bug-introducing changes in the version control system, wemanually curateMcIntosh and

Kamei’s dataset to distinguish between intrinsic and extrinsic bugs. Then, we address their original research questions, this time removing

extrinsic bugs, to studywhether bug-introducing changes are amoving target in Just-In-Time bug prediction. Finally, we study whether

characteristics of intrinsic and extrinsic bugs are different. Our results show that intrinsic and extrinsic bugs are of different nature.When

removing extrinsic bugs the performance is different up to 16 percent AreaUnder theCurve points. This indicates that our JITmodels

obtain amore accurate representation of the real world.We conclude that extrinsic bugs negatively impact Just-In-Timemodels.

Furthermore, we offer evidence that extrinsic bugs should be further investigated, as they can significantly impact how software

engineers understand bugs.

Index Terms—Bugs, extrinsic bugs, intrinsic bugs, mislabeled bugs, bug-introducing changes, just-in-time, bug prediction

Ç

1 INTRODUCTION

RECENT studies show that bugs do not have the same ori-
gin [1], [2]. While some bugs have their origin in explicit

changes recorded in the version control system (VCS) of the
software, other bugs are due to external changes that are
not recorded in the VCS, e.g., changes in external APIs, com-
patibility changes or even changes in the specifications.

Rodr�ıguez-P�erez et al. distinguish between intrinsic bugs
and extrinsic bugs. Intrinsic bugs are those bugs that have an
explicit bug-introducing change (BIC) in the VCS. On the other
hand, extrinsic bugs do not have a BIC recorded in the VCS
because there is no explicit change in the VCS of the project
that introduced the bug [2]. This may be because the bugwas
caused (i) by a change in the environmentwhere the software
is used, (ii) because requirements changed, (iii) in an external
library used by the project, or (iv) by an external change to
the VCS of the project, among other reasons.

In the case of extrinsic bugs, it is not possible to identify a
BIC in the VCS for a given bug; therefore we cannot link the
bug-fixing change (BFC) to a BIC. This finding can put in jeop-
ardy the results of previous studies as software engineering
research has always considered all bugs to be intrinsic. For
instance, Just-In-Time (JIT) bug prediction models [3], which
are built at change-level, can be affected as they are built
with the assumption that for each bug there is always a BFC
and a BIC in the VCS [4], [5], [6].

Researchers have proposed different bug prediction tech-
niques [7], [8], [9], [10], [11]. But, JIT bug prediction has
many advantages over other bug predictions techniques [12].
For example, JIT models allow developers to review risky
changes at the time of being produced and they are built at a
finer-granularity as changes are often smaller thanmodules.

To build JIT models and predict bugs before they are dis-
covered in a software component, it is necessary to train
these models using historical data of that software compo-
nent and learn when a bug occurred in the past. During the
training phase, JIT models use datasets that connect bug
reports with the code changes that fixed the bug (the BFC),
and with previous code changes that introduced the bug in
the software (the BIC).

Then, to predict future bugs, JIT models use code change
properties of BICs and BFCs, such as the size of the change,
the number of files modified by the change, or the experi-
ence of the developer. Since extrinsic bugs cannot be linked
to a BIC, we hypothesize that in JIT models the incorrect
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identification of BICs in extrinsic bugs may impact the qual-
ity of datasets used to train JIT models, and ultimately may
impact JIT models themselves.

JIT models must be trained using reliable datasets to
improve their performance and increase their trustworthi-
ness [11], [13]. To do so, we need to identify extrinsic bugs
and remove them from the dataset. Therefore, we can obtain
reliable dataset that only contains intrinsic bugs, i.e., bugs
for which we can identify a BIC.

To study the impact of extrinsic bugs in JIT models, we
partially replicated a recent paper by McIntosh and Kamei
that analyzed the performance of JIT models [14]. Through
this paper, we will refer to McIntosh and Kamei’s paper as
Mc&K’s paper to improve readability. As in previous research,
Mc&K’s paper considered all bugs to be intrinsic. To quantify
the impact of extrinsic bugs on JIT models, we removed
extrinsic bugs from their dataset.

Methodologically, to classify bugs as intrinsic or extrin-
sic, we followed the approach proposed in [1], [2], which
requires manually analyzing the bugs and their textual
information. As this is a very labor-intensive task, we have
focused only on one of the projects used as case study in
Mc&K’s paper: OpenStack. We first manually curated their
dataset and classified 1,880 bugs as intrinsic or extrinsic. We
then used this curated dataset to train JIT models removing
extrinsic bugs and computed their performance when iden-
tifying future BICs. Finally, we compared Mc&K’s results
with our results and deepened in the differences regarding
intrinsic and extrinsic bugs.

Thus, we analyze whether our manually curated dataset
is different from Mc&K’s dataset (RQ1). We have therefore
added a constraint (i.e., “when extrinsic bugs are removed”)
to Mc&K original research questions to study the impact of
extrinsic bugs in JIT models, (RQ2-RQ4). As we found a sig-
nificant share of mislabeled bugs in Mc&K’s dataset, we
also analyze what their impact is as well (RQ5). Mislabeled
bugs refer to issue reports that have been considered as bug
reports when, in fact, they are not reporting a bug but
another software maintenance activities, e.g., enhancements
or refactoring. Finally, we study if intrinsic, extrinsic, and
mislabeled bugs have different characteristics (RQ6).

Our results indicate that (1) intrinsic and extrinsic bugs are
different, (2) our manually curated dataset differs, in terms of
number of bugs, over 40 percent from an automatic extracted
dataset, (3) JIT models obtain different performance in terms
of Area Under the Curve (AUC) (up to 16 percent AUC
points) when they consider only intrinsic bugs, and (4) AUC
scores aremore stable after removing extrinsic bugs.

The remainder of this paper is organized as follows.
Section 2 presents the research questions. Section 3 dis-
cusses related work. Section 4 describes the design of our
case study, and Section 5 presents how the model is con-
structed and analyzed. Section 6 presents the results. Section 7
discusses the findings, while Section 8 contains the threats to
their validity. Finally, Section 9 draws conclusions.

2 RESEARCH QUESTIONS

The research questions addressed in this work are:

� RQ1: How does our manually curated dataset differ
from the one by McIntosh and Kamei?

Motivation: JIT models should use as input intrin-
sic bugs, as BICs of extrinsic bugs cannot be identi-
fied in the VCS. Thus, we are interested in studying
how different our manually curated dataset is com-
pared to the dataset obtained automatically and
used in McIntosh and Kamei.

Results: Over 40 percent of bugs could not be
linked to a BIC: 11.3 percent of the bugs in McIntosh
and Kamei’s dataset were classified as extrinsic bugs
and 29.1 percent as mislabeled issues.

� RQ2: Do JIT models lose predictive power over time
when extrinsic bugs are removed?

Motivation: McIntosh and Kamei found that JIT
models that were trained with old source code prop-
erties of BICs lose predictive power. With this ques-
tion we want to see how only considering intrinsic
bugs affects the predictive power of the models.

Results: JIT models also lose predictive power
after one year of being trained when only intrinsic
bugs are considered. However, our JIT models ob-
tained a different performance in terms of AUC val-
ues (up to 16 percent AUC points) and a minor loss
of predictive power for each period (up to 15 percent
AUC points).

� RQ3: How does the relationship between code
change properties and the likelihood of BICs evolve
in terms of time when extrinsic bugs are removed ?

Motivation: If code change properties1 of BICs
change over time, the properties of prior and future
BICs are different. McIntosh and Kamei studied this
relationship and found that properties of BICs
change through the evolution of project. However,
as the dataset they used contained extrinsic bugs as
well, we think that prior and future events may not
have similar properties. Thereby the impact of code
change properties might fluctuate.

Results: We have found that the impact of code
change properties is indeed different than the one
reported in McIntosh and Kamei. When extrinsic
bugs are removed, the code change properties related
to the magnitude of the change (Size) increase up to
18 percent AUC points and the code changes proper-
ties related to the code review process (Review)
decrease up to 36 percent AUC points.

� RQ4: How accurately do current importance scores
of code change properties represent future ones
when extrinsic bugs are removed?

Motivation: McIntosh and Kamei found that the
importance scores for some of the most impactful
code change properties are consistently under/over-
estimated. However, we think that the importance
score of some properties might change over time
when removing extrinsic bugs.

Results: We found that the importance scores for
some of the most impactful code change properties
are consistently under/overestimated as well. How-
ever, the stability of property importance score
remains similar in both short and long JIT period

1. Code change properties are described in Table 3.
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models – in McIntosh and Kamei this only applies to
short-termmodels.

� RQ5: How do mislabeled bugs affect JIT models?
Motivation: While manually curating the dataset

in McIntosh and Kamei, we found a considerable
share of mislabeled bugs. In RQ2-RQ4, we consid-
ered them as part of the input data for the JIT mod-
els. With this RQ we want to quantify how they
affect the JIT models. As reported in recent research
literature [15], we expect mislabeled bugs to have a
low effect on the results.

Results: Contrary to our expectations, we have
found that mislabeled bugs also impact JIT models.
When comparing the results of including mislabeled
and intrinsic bugs in the dataset that fed JIT models
with the best results that these models can obtain,
we saw that they lose up to 4 percent AUC points.

� RQ6: Are the properties of BFCs and BICs linked to
extrinsic, intrinsic, and mislabeled bugs different?

Motivation: The results from RQ2-RQ5 show an
improvement in terms of AUC in JIT models when
removing extrinsic bugs. To ensure that these results
can be considered statistically significant, we need to
analyze howdifferent code change properties of BFCs
and BICs linked to extrinsic and intrinsic bugs are.

Results: Intrinsic and Extrinsic bugs present statisti-
cally significant differences in the code change prop-
erties of BFCs and BICs linked to them. Furthermore,
these properties are more similar between extrinsic
andmislabeled than between intrinsic andmislabeled
bugs.

3 RELATED WORK

In this section, we contextualize our work with past studies
on bug origins, JIT bug prediction models and mislabeling
issues.

3.1 Origin of Bugs

JIT bug prediction models need to identify bug-fixing changes
(BFCs) and bug-introducing changes (BICs) from historical
data, and then use the code change properties of those BFCs
and BICs to train the JIT bug prediction models. That way
JIT models can point out buggy changes before they are dis-
covered in the software.

Traditionally, JIT bug prediction models use the algo-
rithm proposed by Sliwersky, Zimmermann, and Zeller
(SZZ) [4] to identify past BFCs and BICs. SZZ is a popular
algorithm in bug prediction [16]. It assumes the last change
that touched the line(s) fixed in a BFC introduced the bug [4],
[5], [6], [17]. In short, SZZ is an algorithm that links the VCS
and the issue tracking (ITS) system of a project to identify
the BFCs and their associated BICs.

Some authors have highlighted the limitations of linking
BFCs with BICs, since the origin of some bugs might not
be related to the lines modified in the BFC that fix the bug.
German et al. investigated bugs that manifest themselves in
unchanged parts of the software and their impact across the
whole system [18]. Chen et al. studied the impact of dor-
mant bugs (i.e., bugs that were introduced in a version of
the software system, but they were not found until much

later) on bug localization [19]. Prechelt and Pepper observed
that BFCs may touch non-buggy lines, and even when they
touched those lines, the actual BIC may have been made
earlier [20]. Ahluwalia et al. investigated the extend to
which defect datasets ignore some defects because they
have not been fixed [21]

Recently, Rodr�ıguez-P�erez et al. have analyzed in detail
the origin of bugs and found that some BICs cannot be iden-
tified in the VCS of a project because the change that caused
the bug was not recorded in the VCS. The authors identified
two types of bugs: (1) intrinsic bugs, i.e., bugs caused by
explicit changes recorded in the VCS, and (2) extrinsic bugs,
i.e., bugs caused by external factors or changes to the soft-
ware, as for instance changes in an external API, or changes
in the requirements [1], [2].

3.2 Just In Time Bug Prediction Models

JIT bug prediction models identify risky software changes
instead of risky files or packages. Kamei et al. proposed for
the first time the JIT quality assurance technique that pre-
dicts defects at change-level [3]. Recent studies have dem-
onstrated that JIT models obtain sufficient prediction
accuracy to be applied in practice [22], [23].

JIT bug prediction models assume that code change
properties of past BICs are similar to code properties of
future BICs. Therefore, we can use JIT models to learn from
the past and predict the future. To achieve good prediction
accuracy in JIT models, researchers rely on a variety of code
changes properties to predict future BICs. These properties
can be derived from the changes themselves [13], [24], from
VCSs and ITSs [3], [25], [26], or from code review sys-
tems [27], [28].

These properties have been used in previous studies [3],
[26], [28] and can be grouped into six families of code
change properties according to McIntosh and Kamei [14]: (i)
the Size family measures the magnitude of the change, (ii)
the Diffusion family measures the dispersion of the changes
across each modified file, (iii) the History family measures
the bug proneness of prior changes to the modified files,
(iv) the Author Experience family measures the experience of
the author of the change, (v) the Reviewer Experience family
measures the experience the code reviewer(s) of the change,
and (vi) the Review family measures characteristics of
change in the code review process.

We decided to study JIT bug prediction models because
(1) they present many advantages over other bug prediction
techniques [12], (2) they perform with high prediction accu-
racy [22], and (3) they are a more practical alternative to tra-
ditional bug prediction techniques [29]. Nowadays, JIT bug
prediction models are the best models yielding actionable
results in the current state of the art.

3.3 Mislabeling Issues

As far as we know, there are two approaches to distinguish
mislabeled bugs from real bugs. The first one is a manual
analysis using the classification rules proposed by Herzig
et al. [30]. The second one is an automatic approach that
uses regular expressions to identify (real) bugs from the
commit messages of the BFCs. The SZZ algorithm imple-
ments this approach, so it has been widely used in previous
research [5], [14], [31].
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Although the automatic approach can be quicker and
easier than the manual analysis, it may lead to noise in the
dataset as some issue reports can be mislabeled, i.e., issue
reports that describe defects but were not classified as such
(or vice versa). Previous studies have shown the importance
of correctly collecting data from VCS. Aranda and Venolia
found that VCS and ITS hold incomplete or incorrect
data [32], which cause mislabeling data. Some studies have
demonstrated that 33.8 [30] to 40 percent [33] of the bugs in
the ITS are mislabeled.

This mislabeling might impact the performance of bug
prediction models. Kim et al. found that bug prediction
models are considerably less accurate when they are trained
using datasets that have a 20-35 percent mislabeling rate [34].
Herzig et al. observed that 33.8 percent of all issue reports
were mislabeled, and that this impacted the prioritization of
files in bug prediction [30]. Seiffert et al. carried out a com-
prenhensive study [35] that confirmsKim et al.’s findings [34].

More recent studies suggest that mislabeled issues might
not be a severe threat in bug prediction models since the
mislabeling may not be necessarily random. For example, it
is more likely that a novice developer mislabels an issue
than an experience developer. Tantithamthavorn et al.
found that precision is rarely impacted by mislabeled issues
but recall is often impacted [15]. They claim that the differ-
ences with Herzig et al. [30] may be explained by the differ-
ences in their defect prediction experiments. Rahman et al.
found that the number of buggy modules has a higher
impact on bug model performance than the mislabeling
data [36]. However, both studies agree that cleaning the
data before training the models allows to achieve a better
identification of indeed buggy modules.

Thus, to shed some lights on this topic, we decided to
study how mislabeled bugs impact JIT bug prediction mod-
els. While previous studies looked at mislabeling in bug
prediction models at the file or module level, our study
focuses on the change level.

As far as we know, all previous studies about mislabel-
ing have not differentiated between extrinsic and intrinsic
bugs, considering them together. Therefore, there is no
overlapping between what they considered as mislabeled
bugs and what we refer to as extrinsic bugs in this work.

4 CASE STUDY AND METHOD

In this section, we describe our rationale for selecting the
studied system and the data extraction process.

4.1 Studied System: OpenStack

A qualitative analysis is required to ensure the correct iden-
tification of extrinsic bugs. The output of this analysis is a
manually curated dataset. Creating this dataset is very labor
intensive, since for every issue it is necessary to understand
either the textual information in the issue report and the
source code in the bug-fixing change, if not both. Given this
considerable effort, we selected one of the two case studies
from Mc&K’s paper to partially replicate their study and
understand the impact that extrinsic bugs have on JIT bug
prediction models.

We chose OpenStack because we are more familiar with
OpenStack –in our previous study [1] we investigate Nova,

a component of OpenStack– than with Qt. Furthermore, we
believe that OpenStack is an interesting and worthwhile
project to study the impact of extrinsic bugs in JIT bug pre-
diction models because it has more than 10,300 contributors
with significant industrial support from several major IT
companies such as Red Hat, Huawei, and IBM. Currently,
OpenStack has more than 330K commits with more than
48M lines of code and around 8,400 active developers.2 All
its history is available and saved in a VCS (git), an ITS
(Launchpad3), and a source code review system (Gerrit4).

4.2 Data Extraction

To study the impact of extrinsic bugs on JIT bug prediction
models, we used the replication package5 provided by
Mc&K’s paper [14]. With the information of the issues in
the ITS and the VCS, we were able to manually annotated
bugs on whether they were intrinsic or extrinsic. We also
found many issues that were wrongly considered bugs.

Fig. 1 provides an overview of the phases followed to
obtain our final dataset. In the remainder of this section, we
describe each phase in detail.

4.2.1 Obtaining the Issue-VCS Dataset

The replication package only provides the final dataset to
feed the JIT models studied in Mc&K’s paper. We identified
which of these changes were related to intrinsic or extrinsic
bugs, and then removed the property of being a BIC when
the change was an extrinsic bug. For that, we required
access to the issues in the ITS and their links to the changes
in the VCS. To ensure that we could address our research
questions with the same dataset as Mc&K, we asked them
for the Issue-VCS dataset and obtained it.

The Issue-VCS dataset contains unique identifiers
(issueIDs) of the issues and the timestamp when they were
reported. The issueIDs were used to link issues to code
changes (changeIDs). Thus, for each issueID there is one BFC
and one or more changeIDs flagged as BICs. In total, the
Issue-VCS dataset contains 1,880 issueIDs linked to 1,904
changeIDs identified as BFCs, and 3,486 changeIDs identified
as possible BICs. Note that issueIDs and BFCs do not have to
be related one-to-one, since an issueID can be fixed by more
than one changeID.

4.2.2 Classifying Issues

During the manual analysis, we noticed that the data used
by Mc&K not only contained extrinsic bugs, but issues that

Fig. 1. Overview of the steps followed to curate the dataset.

2. http://stackalytics.com
3. https://launchpad.net/openstack
4. https://review.openstack.org/
5. https://github.com/software-rebels/JITMovingTarget
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in fact were not bugs (e.g., other kind of issues such as
request for new features or maintenance activities [30]).

Thus, first, following the guidelines provided by Herzig
et al. [30], we manually classified the 1,880 issueIDs into bug
report, or not a bug report (i.e., mislabeled). Table 1 shows the
rules used in this first step. Then, we manually classified the
issues identified as bug reports as intrinsic or extrinsic bugs.
For doing so, we used the approach by Rodr�ıguez-P�erez [1].
Table 2 offers the specific rules used in this second step.

To remove subjectivity and bias in the classification, two
raters having at least a master’s degree in Computer Science
manually classified the issueIDs. The raters were individu-
ally trained in different stages, in each of them analyzing 100
random issueIDs from the data until they reached a near per-
fect agreement (0.81 - 1). The ratio agreement between both
raters was computed using Krippendorff’s alpha, and the
disagreements were resolved with online meetings. After
each stage, the raters discussed the discordance and added
additional rationale to the guidelines.

Once the raters reached a near perfect agreement, they
individually analyzed 25 percent (470) of the issueIDs. At this
point, the raters obtained a Krippendorff’s alpha of 0.974 clas-
sifying issueIDs as a bug or not a bug, and a Krippendorff’s
alpha of 0.823 classifying bugs reports as extrinsic or intrinsic.
We considered that the raters’ agreement was high enough to
analyze the remaining 1,410 issueIDs only by one rater (i.e.,
each rater classified 705 of the issueIDs).

The result of the classification procedure is a dataset
where issues are labeled as (1) intrinsic bug, (2) extrinsic
bug, or (3) not a bug (mislabeled).

4.2.3 Characteristics of the Changes

Mc&K extracted several code and review properties for
each change from the VCS of OpenStack. The properties
were grouped in six families: Size, Diffusion, History, Author
Experience, Reviewer Experience, and Review. We use this
information “as is”. The complete list of properties can be
found in Table 3.

4.2.4 Final Dataset

To obtain the final dataset that fed the JIT bug predictionmod-
els, Mc&Kmerged the Issue-VCS dataset using changeID and
issueID. This merging filtered the dataset and mitigated false
positives. In addition, the dataset provided by Mc&K (1)
ignores potential BICs that only updated code comments or
white spaces (an improvement to SZZ by Kim et al. [5]); (2) fil-
ters out potential BICs that appear after the date that the impli-
cated bug was reported [4]; and (3) ignores suspicious BFCs
and suspicious BICs using the framework proposed by
da Costa et al. [31].

Our goal is to study the impact of extrinsic bugs. Thus,
we removed the changeIDs that were not BICs. Since extrin-
sic bugs do not have BICs, we removed the link between
issueIDs classified as extrinsic bugs and their BICs follow-
ing the recommendation of Rodr�ıguez-P�erez et al. [2].
Besides, we ignored changes that modified either at least
10,000 lines (“too much churn”) or 100 files (“too many fil-
es”) as they were likely no BICs. The dataset obtained at this
point is what we have called the final dataset. Finally, to
study whether properties of BICs are consistent, we strati-
fied the final dataset into periods of three and six months as
Mc&K’s paper recommend [14]. Table 4 shows the number
of issues and BICs after each filtering phase.

Furthermore, in RQ5 (see Section 6.5) we discuss what
the impact of removing mislabeled issues is. Thus, we
added an additional filter to remove the links between
issueIDs that were classified as mislabeled with their
changeIDs identified as BFCs and BICs.

5 MODEL CONSTRUCTION AND ANALYSIS

In this section, we describe the model construction and anal-
ysis approach. Since we were partially replicating Mc&K’s
paper, we exactly followed their model construction proce-
dure. Thus, we used Mc&K’s design decisions with our final
dataset, i.e., we did not modify any design decision from
Mc&K for the construction or analysis of the model.

5.1 Model Construction

5.1.1 Handling Collinear Properties

Before constructing JIT models, we removed collinear code
change properties to avoid distorting the modeled relation-
ship between these code change properties and the likeli-
hood of introducing bugs.

We used the Spearman rank correlation tests r to remove
code change properties that were highly correlated with one

TABLE 1
First Step: Classification Rules for Classifying Issues as Bug

Report or not a Bug Report (Mislabeled)

An issue is classified as not a bug report (Mislabeled) if ...
(1) It reports a bug in test files. We assume that these bugs are
caused by how developers understand and test the code.
Thus, there is no change introducing buggy code to source
code of the project.
(2) It reports a clean up in the source code that does not
interfere with the performance of the software.
(3) It reports a misspelling or typo in the inline comments.
(4) It reports a change in the source code to prevent future bugs.
(5) The report has discordance in the comments between
developers.
(6) The report does not have a BFC.

An issue is classified as bug report if ...
(1) It reports a misspelling or typo in the source code.
(2) It reports that a previous change to the source code caused
the bug.
(3) It reports a buggy functionality implemented that should
be known at the time of coding.
(4) It reports an omission in the original code that should be
considered at the time of coding.

TABLE 2
Classification Rules for Classifying Bug Reports

as Intrinsic or Extrinsic

A bug report is classified as extrinsic if ...
(1) It reports a bug caused by a change in the environment
where the software is used.
(2) It reports a bug because requirements have changed.
(3) It reports a bug caused by an external change to the VCS of
the project.
(4) It reports a bug in an external library used by the project.

A bug report is classified as intrinsic if ...
(1) There is no evidence to be classified as an extrinsic bug.
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another. For code changepropertieswith correlation jrj > 0:7,

we only included one of the properties in themodels.
Then, we fit preliminary models that explain each prop-

erty using the others to remove redundant code change prop-
erties. For that purpose, we used the redun function available
in the rmsR package.

5.1.2 Fitting Regression Model

Software Engineering researchers often use a nonlinear
variant of multiple regression modeling to understand the
relationship between software quality and software devel-
opment practices [37], [38]. We fit JIT models using this
technique as it relaxes the assumption of a linear relation-
ship between the likelihood of introducing bugs and the
code change properties; thus we can achieve a more accu-
rate fit of the data. We used restricted cubic splines, which

fit smooth transitions at the points where curves change in
direction, to fit our curves.

5.2 Model Analysis

To answer our research questions, we analyzed the output
of the JIT models using the different datasets.

5.2.1 Analyzing the Performance of the Models (RQ2)

The performance of JIT prediction models was assessed
using two metrics: the Area Under Curve (AUC) and the
Brier score.

The AUC is an evaluation metric for assessing the dis-
criminatory power of a model, i.e., in our case its ability to
differentiate between a BIC and not a BIC. AUC is calcu-
lated by measuring the area under the curve that plots the
true positive rate of BICs against the false positive rate of
BICs. Its values range from 0 to 1; thus, the higher the AUC,
the better the model is at predicting a BIC or not a BIC.
When AUC is approximately 0.5, the model has no discrimi-
nation capacity, and it performs as random guessing.

The Brier score measures the calibration of the model. It
is computed by measuring the mean squared difference
between the predicted probability assigned to the possible
outcomes (being a BIC or not) for a change and its actual
outcome. The Brier score can range from 0 to 1; 0 indicates a
perfect calibrated model, while 1 indicates the worst possi-
ble calibration for a model.

5.2.2 Analyzing Property Importance (RQ3)

Each of the six change properties families is comprised of
several properties, and each property has been allocated
with three degrees of freedom. A model term represents
each degree of freedom. Thus, to estimate the impact that
each family has on the explanatory power of the JIT models
we jointly tested the set of model terms for each family
using the Wald x2 maximum likelihood tests [38]. We nor-
malized the Wald x2 values by the total Wald x2 score of the
JIT model to compare multiple models. The larger the nor-
malized Wald x2 score, the more significant the impact a
particular family of code change properties has on the
explanatory power of our JIT models.

5.2.3 Analyzing Property Stability (RQ4)

To evaluate the stability of the importance scores for each
family of code change properties f over time, we calculated
the difference between the importance scores of f in a
model that is trained using a period n and a future model
that is trained using a period nþ xwhere x > 0.

TABLE 3
Taxonomy of Changes Provided by McIntosh and Kamei [14]

Property Description Acron.

Size Lines added Number of lines added by the
change.

la

Lines deleted Number of lines deleted by
the change.

ld

Diff. Subsystems Number of modified
subsystems.

ns

Directories Number of modified
directories.

nd

Files Number of modified files. nf
Entropy Spread of modified lines

across files.
ent

Hist. Unique
Changes

Number of prior changes to
the modified files.

nuc

Developers Number of developers who
have modified the file in the
past.

ndev

Age Time interval between the last
and the current change.s

age

Author/
Reviewer
Exp.

Prior Changes The number of prior changes
that an actor6 has
participated7 in.

aexp

Recent Changes The number of aexpweighted
by the age of the changes.

arexp

Subs.Changes Number of prior changes to
the ns that an actor has
participated in.

asexp

Awareness Proportion of aexp to ns hat an
actor has participated in.

asawr

Review Iterations Number of times that a change
was revised before
integration.

nrev

Reviewers Number of reviewers who
have voted on integrating a
change.

app

Comments Number of non-automated,
non-owner comments during
the review of a change.

hcmt

Review
Window

Time length between creation
of a request and its final
approval for integration.

rtime

TABLE 4
Number of Unique Issues and Unique BICs That Survive

Each Step of the Filtering Process

# Filter Issues BICs

F0 Issue-VCS dataset 1,880 3,486
F1 Extrinsic Bugs 1,668 2,925
F2 Too much Churn 1,668 2,920
F3 To many Files 1,668 2,911
F4 No lines added 1,668 2,907
F5 Period 1,668 2,506

6. Either the author or reviewer of a change.
7. Either authored or reviewed.
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6 RESULTS

6.1 RQ1: How Does Our Manually Curated Dataset
Differ From the One by McIntosh and Kamei?

Approach. Our manually curated dataset distinguishes among
intrinsic bugs, extrinsic bugs, andmislabeled bugs, butMc&K’s
dataset does not. Thus, to further understand the differences
between our manually curated dataset and an automatically
extracted dataset (Mc&K’s paper), we computed the distri-
butions and the probability density of the 1,880 issues in the
two datasets. We used a kernel plot to present the distribu-
tion shape of the datasets. In kernel plots, wider sections repre-
sent a higher probability that members of the population will
take on the given value; skinnier sections represent a lower
probability.

Results. While manually curating the dataset, we identi-
fied 1,120 intrinsic bugs, 212 (11.3 percent) extrinsic bugs,
and 548 (29.1 percent) mislabeled bugs. We found that in
Mc&K’s dataset, there are 1,413 BFCs linked to extrinsic
bugs, 3,690 BFCs linked to intrinsic bugs, and 3,147 BFCs
linked to mislabeled bugs.

Fig. 2 shows a violin plot with the distribution of the
number of commits identified as BICs for each category.
This figure offers evidence that (1) extrinsic, intrinsic, and
mislabeled bugs have different distribution shapes; (2)
Mc&K’s bugs (All) and intrinsic bugs have similar distribu-
tion shapes; and (3) the distribution shapes of extrinsic and
mislabeled bugs differ from the one of intrinsic bugs.

Answer to RQ1: Over 40 percent of the McIntosh and
Kamei [14]’s dataset are not intrinsic bugs. Extrinsic and
mislabeled bugs show different distribution shapes than
intrinsic bugs.

6.2 RQ2: Do JIT Models Lose Predictive Power Over
Time When Extrinsic Bugs are Removed?

To study howquick JITmodels lose their predictive powerwe
follow the same methodology as McIntosh and Kamei [14].
We split the data into periods, i.e., three-month and six-month
periods of data. Then, we train the JIT models for each period
andmeasure their performance on future periods.

Approach. Since older changes may have different charac-
teristics than more recent ones, we used a short period
model to train each period. Short period models are JIT
models trained only using changes that occurred during

one time period, the latest one before the test period. Since
some studies suggest that the more training data, the better
the results in bug detection models [36], [39], we also used
long period models to train each period. These long period
models are JIT models trained using all the changes that
occurred during or prior to the test period.

After training our JIT models in short and long periods,
we measured their performance when they were applied in
the test period. The performance of our JIT models was
measured using the AUC and the Brier score, as explained
in Section 5.2. For example, for training period 4, the short
period model was trained using the changes in this period,
and was tested using changes from period 5 onward; while
the long period model was trained using changes in periods
1, 2, 3, and 4 and tested using period 5. In both cases, the
AUC and Brier measures were computed for each testing
period individually.

Results. Fig. 3 shows heat-maps with the trend in AUC
and Brier performance scores for each period tested for our
short and long period JIT models. The shade of the box indi-
cates the performance value (from 0 to 1): Blue colors stand
for strong performance, white colors for random guessing
performance, and red colors for weak performance.

The columns of Fig. 3a show that the values tend to
improve as the training period increases. For instance, column
4 of the long period model has 0.66 of AUC score when the
model was trained using period 1. However, the AUC score is
0.71, an improvement of 5 percent points, when it was trained
using period 3. All in all, the long period model in Fig. 3a
presents a steady AUC score improvement of 5-9 percent
points when we trained the models using the most recent
data instead of data from period 1. While the short period
model presents a AUC score improvement of 6-10 percent
points. The columns in Fig. 3c also show a rise in Brier scores
of 1-5 percent points for the long period and 1-4 percent points
for the short period. The six-month period models have
almost the same performance, Figs. 3b and 3d showAUC and
Brier improvements that reach 7-8 and 3-8 percent points for
the long period, respectively.

The columns of Fig. 3a show aswell an improving trend in
AUC scores that is more stable in long than in short period
models. For instance, columns 5, 6, and 7 show that the AUC
improvement gained by adding themost recent period to the
long period is 2 percentage point in column 5 (0.72 and 0.74
for training periods 3 and 4), 1 in column 6 (0.70 and 0.71 for
training periods 4 and 5) and 0 in column 7 (0.71 and 0.71 for
training periods 5 and 6). While the improvement gained by
adding the most recent period to periods 5, 6, and 7 in the
short period models is 0, 2 and -1 respectively. Fig. 3b shows
a similar tendency for six-month periods. Figs. 3c and 3d
indicate that the improving trend in the Brier score is stable
in both, short and long periodmodels.

When comparing these results with Mc&K’s paper, we
noticed a considerable increase in the blue shades, which
points out that our models perform stronger in terms of
AUC scores. For three-month periods, JIT models without
extrinsic bugs improved the AUC score from 1-16 percent
AUC points for testing periods 3-9 in the short and long
periods. This improvement is for example noticeable in test-
ing periods 3, 4, and 5 with training periods 1 and 2. While
Mc&K’s models obtain almost the performance of a random

Fig. 2. Distributions of the commits identified as BICs per bug report for
each category of bug.
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guess, our models obtain an AUC score improvement of
6-16 percent points for both short and long periods.

Furthermore, after removing extrinsic bugs, our JIT mod-
els increase their stability by reducing two points in the
short and long period (after period 5), while Mc&K’s mod-
els obtain a stability of -5.2 and -1.2 percent points for the
short and long period, respectively; our models obtain -2.1
and 0.2 percent points for both periods respectively.

Fig. 4 shows a heat-maps of the difference in AUC and
Brier performance scores between training and testing

periods over time of our short and long period JIT models.
The shade of the box offers information about the differ-
ence: blue colors stand for improvements performance,
white colors for unchanged performance, and red colors for
drops in performance in the testing period.

The analysis of the rows in Fig. 4 offers evidence that our
models lose predictive power after 12 months of being
trained. Figs. 4a and 4b show that our short and long period
models lose 8-19 and 10-19 percent AUC points 12 months
after being trained (i.e., testing period = training period + 4)
respectively. Both figures show that after 12 months there is
(often) a drop in the AUC. At the same time we can observe
a boost in Brier scores (see Figs. 4c and 4d respectively).

Thus, similar toMc&K’s results, we lose predictive power
in our JIT models after one year of being trained. However,
our models lose less amount of predictive power in each
period when using testing periods 1, 2, 3, and 4. Also, AUC
scores are more stable after removing extrinsic bugs. For
example, Mc&K’s models lose 3-34 percent AUC points
in short period models after one year, while our models
only lose 8-19 percent AUC points. Thus, our models lose
15 percent AUC points less and gained stability up to
20 percent AUC points.

To observe the predictive power of long and short period
JIT models, we focus on the data from period 2 and later
since the AUC and Brier values of period 1 are identical in
both periods. This is because there is no additional data
added when training the long period model. The rows of
Figs. 4a and 4b show that the short period models of periods
3 and later retain more predictive power than their long
period counterparts in terms of AUC, i.e., the drop in the
AUC values is smaller since these values are close to 0.
Fig. 4a shows that when the long period model is trained
using period 3, it drops 10 percent AUC points when it is
tested in period 4, while it only drops 7 percent AUC points
in the short period model under the same circumstances.

Fig. 4b offers evidence that with six-month periods, both
models retain similar predictive power; period 5 drops
8 percent AUC points in both models. Figs. 4c and 4d show
that there is also an improvement in the retention of Brier
score in short period models. Furthermore, Fig. 4 indicates
that short period JIT models retain more predictive power
than long periods.

Answer to RQ2: When removing extrinsic bugs, JIT
models obtain better performance in terms of AUC (up
to 16 percent AUC points). Models that only consider
intrinsic bugs also lose predictive power 12 months after
being trained, but they lose up to 15 percent AUC points
less and are up to 20 percent AUC points more stable.

6.3 RQ3: How Does the Relationship Between Code
Change Properties and the Likelihood of BICs
Evolve in Terms of Time When Extrinsic Bugs
are Removed?

Approach. To answer this question, we followed Mc&K’s
approach [14] and computed the normalized Wald x2 impor-
tance score (see Section 5.2) for each family of code change
properties, and for short and long period JITmodels. Further-
more, we computed the r-values associatedwith these scores.

Fig. 3. The predictive performance of JIT models as the studied system
age.
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Results. Fig. 5 offers a series of heat-maps with the impor-
tance score of the six code change property families. The
darker the shade of the box, the more important the family
is to our model.

Fig. 5a shows that in both short and long period models of
three-month periods, the families of code changes that con-
tribute themost are Size,Diffusion, andReview for the last peri-
ods. Size accounts for 20-49 percent,Diffusion for 0-39 percent,
and Review for 6-26 percent of the explanatory power in
the short period models. In the long period models, Size
accounts for 21-33 percent, Diffusion for 3-18 percent, and
Review for 10-25 percent of the explanatory power.

The six-month period models present similar results.
Fig. 5b shows that the Size and Review families account for
more of the explanatory power in both short and long
period models. Size accounts for 21-43 and 22-33 percent,
and Review for 9-24 and 14-21 percent.

For the six-month periods models, Fig. 5 shows that the
Size family is the top contributor in all periods of both short
and long period models. For the three-month periods mod-
els, Fig. 5 shows that, in both short and long period models,
the Size family is the top contributor in 8 out of 9 periods. The
Review family is the top contributor in the remaining periods.

The contributed explanatory power of the Size family is
statistically significant (r < 0:01, r < 0:001) in all of the
periods for our long and short period models in the three-
month and six-month periods. The Review family’s explana-
tory power is also statistically significant (r < 0:01, r <
0:001) in all of the periods in the long period model of the
three-month periods and for both models of the six-month
periods. However, in the short period models of the three-
month periods, the Review family’s explanatory power is
statistically significant only in 6 out of 9 periods.

Compared to Mc&K’s paper, when removing extrinsic
bugs in both short period models of three- and six-month

periods, the explanatory power of the Size family increases
from 3-37 to 20-49 percent, and from 16-25 to 24-43 percent.
However, the explanatory power of the Review family
decreases considerably from 2-59 to 6-26 percent, and from
8-38 to 9-24 percent. In both long period models of three-
and six-month periods, when removing extrinsic bugs,
the explanatory power of the Size family also increases from
11-37 to 21-33 percent, and from 15-19 to 22-33 percent, but
the explanatory power of the Review family decreases con-
siderably from 15-43 to 10-25 percent, and from 24-37 to
14-21 percent. This may indicate that extrinsic bugs have
different characteristics affecting the Review family. More-
over, the statistical significance power of the Review and Size
families also increases when removing extrinsic bugs. Our
models increase the number of periods with statistical signif-
icance of the Diffusion family in both long and short periods
of the three-months periods and six-months periods.

Furthermore, our models increase the number of the sig-
nificant periods in Diffusion for both long and short six-
month and three-month period models. However, the num-
ber of significant periods of the History family decreases for
both long and short three- and six-month period models.

Finally, fluctuations of the properties of BICs are more sta-
ble in our JITmodels. This suggests that although properties of
intrinsic bugs tend to evolve as projects age, the properties of
extrinsic bugs fluctuatemore drastically fromperiod to period.

Answer to RQ3: When removing extrinsic bugs, the
importance of the Size family increases (up to 18 percent
AUC points), but the importance of the Review family
decreases (up to 36 percent AUC points). Furthermore, the
importance of most families of code changes are more sta-
ble through periods, suggesting that the properties of BICs
tend to evolve less drasticallywith the project over time.

Fig. 4. The delta in the estimate performance of JIT models as the studied system age.
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6.4 RQ4: HowAccurately do Current Importance
Scores of Code Change Properties Represent
Future OnesWhen Extrinsic Bugs are Removed?

Approach. As Mc&K’s paper, we used the Family Impor-
tance Score (FIS) metric to study the stability of the impor-
tance scores of each family of code change properties. FIS(f,
n) is the jointly tested model terms for all metrics belonging
to a family f in the model of period n.

These periods can be the training periods which are rep-
resented by i, or the testing periods –or future periods–
which are represented by j. Thus, for each one of the JIT
models (short and long period) and for each family f , we
computed the differences between the importance scores of
each family in the training periods i and future periods j
using FISDiff(f; i; j) = FIS(f; i) - FIS(f; j).

When the difference between the importance scores of a
family f in periods i and j is higher than 0, this family has a
larger importance in period i (training) than in period j
(future). In such cases, the JIT model (trained using period
i) overestimates the future importance of family f . On the
contrary, when that difference is lower than 0, it indicates
that family f has smaller importance in period i (training)
than in period j (future). If this occurs, the JIT model
(trained using period i) underestimates the future importance
of family f .

When the model overestimates the future importance of
a family f , the impact of that family at the end of the period

might be smaller than anticipated. On the other hand, when
the model underestimates the future importance of a family
f , the impact of that family at the end of the period might
be bigger than anticipated. Software Quality Assurance
(SQA) teams can use these importance scores to estimate
quality improvements for future periods.

Results. Fig. 6 presents a series of heat-maps with the dif-
ferences between the importance score in period i and j for
each of the six code change property families. Furthermore,
each cell reports the statistical significance of the impor-
tance score.

In the three-month period models, Fig. 5a shows that the
Size family spikes in period 5 with a score of 0.49. Training
periods 1, 2, 3, and 4 in Fig. 6a show that the importance of
Size is underestimated by 22, 24, 29, and 18 percent AUC
points respectively for testing period 5 in short periods. In
the long period models, the underestimation of the impor-
tance of Size for testing period 5 has similar values. When
period 5 becomes the training period in Fig. 6a, the impor-
tance of the Size family is overestimated in the short period
model by up to 29 percent AUC points. However, in the
long period model, the maximum overestimation is signifi-
cantly smaller: 9 percent AUC points.

The short period models of Fig. 6a shows several fluctua-
tions in the importance score of each family over the peri-
ods. In the six-month period models, Fig. 6b shows the
same trend for the Size family but with less severe overesti-
mation or underestimation.

Thus, similar to Mc&K’s paper, the importance of the Size
family is underestimated while the Review family is overes-
timated when removing extrinsic bugs, especially in train-
ing periods 1, 2, and 3. However, we found that either long
or short period models perform similar. The fluctuations in
importance in long period models are not smoother than
the fluctuations in short periods.

Answer to RQ4: When removing extrinsic bugs, long-
period models do not outperform short periods when
analyzing the stability of the importance scores. Larger
amounts of training data will not smooth the impact or
fluctuations between periods.

6.5 RQ5: HowdoMislabeled BugsAffect JITModels?

Approach. Although we manually identified mislabeled
bugs, we decided to include them into the dataset that fed
JIT bug prediction models, i.e., we just removed extrinsic
bugs in answers RQ2-RQ4. The reason for doing this is
because Tantithamthavorn et al. recently found that misla-
beled bugs do not have much impact in defect prediction
when analyzing whether a file will be buggy or not [15], so
we expected it to be the same for JIT models. With RQ5, we
want to evaluate if this is true.

We created a ground truth dataset by removing extrinsic
and mislabeled bugs from Mc&K’s dataset. Since this data-
set only contains intrinsic bugs, the most accurate JIT bug
prediction models are to be obtained when using this data-
set for training the models. Therefore, to study the impact
of mislabeled bugs on JIT bug prediction models, we com-
pared the results obtained after training JIT models using

Fig. 5. Evolution of the importance scores of the six studied families of
code change properties over time. Shades indicates magnitude while
asterisks indicate significance according to Wald x2 test, where:* r <
0:05; **r < 0:01; ***r < 0:001.
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the ground truth dataset with the results obtained after
training JIT models using intrinsic and mislabeled bugs.

Finally, to obtain a complete picture, we compared the
results using the ground truth dataset (i.e., only intrinsic
bugs) with the results of (1) intrinsic and mislabeled bugs,
(2) intrinsic and extrinsic bugs, and (3) intrinsic, extrinsic,
and mislabeled bugs (i.e., Mc&K’s results).

Results. While manually curating the dataset, we have
identified 548 mislabeled bugs (29.1 percent) and 212 extrin-
sic bugs (11 percent) in Mc&K’s dataset. The percentage of
mislabeled bugs is similar to the percentage reported in pre-
vious studies, ranging from 33 to 40 percent [30], [33]. Fur-
thermore, the percentage of extrinsic bugs is also similar to
the one reported in previous studies (9-21 percent) [2].

Extrinsic bugs were removed in RQ2 and RQ3. To obtain
the ground truth dataset, we removed the 548 mislabeled
bugs from our dataset. Since mislabeled bugs are not bugs,
they do not have a BIC. But, they have a BFC. So, we
removed the link between issueIDs classified as mislabeled
bugs and their BICs, and we trained again the JIT models,
this time using this new dataset (i.e., using the ground truth
dataset, composed of 1,120 issues and 1,571 BICs).

We followed the procedures described in RQ2 and RQ3
to analyze the most accurate performance that JIT models
can have using the ground truth dataset. We compared
these results with (1) the performance of JIT models when
mislabeled bugs are included in the dataset; (2) the perfor-
mance of JIT models when extrinsic bugs are included in
the dataset; and (3) the performance of JIT models when
mislabeled and extrinsic bugs are included in the dataset.
We will report the results of this RQ in textual form, due to
space constraints. All figures corresponding to the ones in
RQ2-RQ4 for the scenarios under study in RQ5 can be found
in the online Appendix.8

Table 5 shows the delta comparison between the ideal
results (only intrinsic bugs) and the results of the different

JIT models implemented for this RQ. We obtain a complete
picture of how extrinsic bugs and mislabeled bugs affect the
performance of JIT bug prediction models. A score of 0 in
the table means that for that particular case, the JIT model
performs as good as the ideal JIT model.

Training JIT Models With Intrinsic and Mislabeled Bugs.
when the datasets contain intrinsic bugs and mislabeled
bugs, the performance of themodels decrease up to 4 percent
AUC points for both short and long periods of the three
month period models. Furthermore, the performance also
decreases 2 percent AUC points for both short and long
periods of the six month period models. These models are
almost as stable as the models trained with only intrinsic
bugs.

The importance of the studied families differ from the
ideal scenario. Although the importance of the Size family is
sightly overestimated, the importance of the Diffusion and
the History families are overestimated up to 14 percent AUC
and 12 percent AUC points for the three month short peri-
ods. Moreover, the History family is underestimated up to
13 percent AUC points for the three month long periods.

Training JIT Models With Intrinsic and Extrinsic Bugs. the
performance of these models decreases up to 3 percent
AUC points for both short and long periods of the three
month period models. However, the performance of both
long periods of the three and six month period models
increases up to 3 percent AUC points. This means that these
models are over-fitted. These models are as stable as the
models trained with only intrinsic bugs for the three month
long periods and the six month short periods.

The importance of the Rev.Exp. family is overestimated up
to 12percentAUCpoints, but underestimatedup to 10 percent
AUC points for the three month long periods and six month
short periods, respectively. There are sightly no differences in
the importance of the remaining families.

Training JIT Models With Intrinsic, Mislabeled, and Extrinsic
Bugs. theperformance of thesemodels increasesup to 15percent
AUC points and 9 percent AUC points for both short and long
periods of the three- and six-month periodmodels respectively.

Fig. 6. The stability of the importance scores of the studied families of code change properties (FISDiff(f,i,j)).

8. http://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/
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Therefore, thesemodels are over-fitted,whichmay cause a poor
predictive performance.

The importance of the Size, Diffusion, and History families
is either overestimated or underestimated for the three and
six month periods. The importance of the Review family is
overestimated up to 20 percent AUC points for the three
short period models.

Answer to RQ5:Mislabeled bugs affect JIT models reduc-
ing their performance up to 4 percent AUC points and
underestimating the importance of the History family.
Extrinsic bugs affect JIT models reducing their perfor-
mance up to 3 percent AUC points and overestimating
the importance of theRev.Exp. family.

6.6 RQ6: Are the Properties BFCs and BICs Linked
to Extrinsic, Intrinsic, and Mislabeled Bugs
Different?

Approach. During the manual classification, we found that
Mc&K’s dataset not only contained extrinsic bugs, but also
mislabeled bugs. Thus, to further understand whether code
change properties are different among these categories, we
analyzed the distributions and probability density of the six
families of code change properties (see Table 3) of (1) the
commit identified as BFCs and (2) the commits identified as
BICs. Notice that, although extrinsic bugs and mislabeled
bugs cannot be linked to a BIC, in this RQ we analyze
whether there are differences between the BICs linked to
intrinsic bugs and those BICs (incorrectly) linked to extrin-
sic bugs and mislabeled bugs.

We then compute whether the differences between these
three groups were statistically significant across the six fam-
ilies of code change properties for BFCs and BICs. For that,
we used the the Kruskal-Wallis test [40]. This test is a non-
parametric statistical test that assesses the differences
among three or more independently sampled groups on a
single, non-normally distributed continuous variable.9

Finally, we analyze how different these three groups are
when they are paired in two groups i.e., Extrinsic-Intrinsic,

Extrinsic-Mislabeled, and Intrinsic-Mislabeled. For that, we
used the Wilcoxon Signed Rank test [41] which is a non-
parametric test that statistically compares the average of two
dependent samples and assesses for significant differences.

Results a) Code Change Properties of BICs for intrinsic, extrin-
sic, and mislabeled bugs

Fig. 7 shows violin plots with the distribution for each
family of code change properties of the manually classified
intrinsic, extrinsic, and mislabeled issues. The kernel plot
indicates the distribution shape of the data. Wider sections
represent a higher probability that members of the popula-
tion will take on the given value; skinnier sections represent
a lower probability.

Fig. 7 shows the distribution shape among the three
groups per family of code change properties. Fig. 7a shows
a bimodal distribution for extrinsic bugs. The distribution
shape of intrinsic and mislabeled bug is however uni-
modal. Besides, Fig. 7b shows that the distribution fre-
quency of intrinsic bugs are concentrated in lower values
while the distribution frequency for extrinsic and misla-
beled bugs is more uniform.

Fig. 7 offers evidence that (1) intrinsic and extrinsic bugs
have different distributions and medians for all the six fami-
lies; (2) intrinsic and mislabeled bugs also have a different
distribution and medians; and (3) extrinsic and mislabeled
bugs are more similar than intrinsic and mislabeled bugs in
terms of distributions shape and median.

After computing the Kruskal-Wallis test for the six fami-
lies of code change properties, we obtained p� values <
0:05 in five of them. Thus, the Size (1.9E.-014), Diffusion
(2.2E.-16), Reviewer (1.6E.-06), Author (2.6E.-05), and Review
(0.0005) families can be considered different for BICs linked
to extrinsic, intrinsic and mislabeled bugs.

Table 6 shows which pairs of groups are different for the
six families of BIC code change properties. This table offers
evidence that the differences between intrinsic bugs and
extrinsic bugs or mislabeled bugs are statistically significant
for five out of six families. Furthermore, this table also points
out that extrinsic bugs andmislabeled bugs are similar in four
out of six families, i.e., Author, Reviewer, History, and Review.
This finding illustrates that (1) intrinsic, extrinsic, and misla-
beled bugs are not the same; and (2) extrinsic bugs andmisla-
beled bugs have code change properties that are very similar.

TABLE 5
Comparison of the Results of the Different JIT Prediction Models Implemented in This Study

With Respect to the Ideal JIT Bug Prediction Model (Only Intrinsic Bugs)

“[Intrinsic+Mislabeled] Bugs” stands for the models after removing extrinsic bugs. “[Intrinsic+Extrinsic] Bugs” stands for the models after removing mislabeled
bugs. “[Intrinsic+Mislabeled+ Extrinsic] Bugs” stands for McIntosh and Kamei’s models [14].

9. We found that the final dataset contained skewed data using the
function skewnesswith the e1071 package in R.
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Results b) Code Change Properties of BFCs for intrinsic,
extrinsic, and mislabeled bugs

After computing the Kruskal-Wallis test for the six families
code change properties of BFCs, we obtained p� values <
0:05 in three of them. Thus, the Size (4:8�016), Reviewer
(0.0003), and Author (0.002) families can be considered differ-
ent for BFCs linked to extrinsic, intrinsic andmislabeled bugs.

Table 7 shows which pairs of groups are different for the
six families of BIC code change properties. This table offers
evidence that (1) the differences between intrinsic and extrin-
sic bugs are statistically significant for Size andAuthor, (2) the
differences between intrinsic and mislabeled bugs are statis-
tically significant for Size, Author, Reviewer and Review; and
(3) the differences between extrinsic bugs and mislabeled
bugs are statistically significant for the Size family.

Answer to RQ6: Intrinsic and extrinsic bugs have differ-
ent code change properties. When analyzing mislabeled
bugs as well, we have found that the nature of extrinsic
bugs is closer to them than to intrinsic bugs. These differ-
ences are statistically significant in five out of six families
for BICs. For BFCs, half of code change families are sta-
tistically different.

7 DISCUSSION AND FURTHER RESEARCH

In this section, we discuss the impact of our results first on
JIT models and then on software engineering practice in

general. We also discuss the implications of our results for
researchers and practitioners.

7.1 Impact on JIT

Our results show that JIT models fed exclusively with
intrinsic bugs obtain a more accurate representation of the
real world; issues that are mislabeled bugs and bug reports
that are due to extrinsic bugs should be removed.

The impact of this finding is significant, as over the past
15 years many studies have used automatic techniques to
collect bug datasets which are formed by bug reports, bug-
fixing commits, and bug-introducing changes. These dataset
are then used to train bug prediction models [9], [26], [29],
[42], [43], [44], [45].

Hence, the results of hundreds of studies on bug predic-
tion [11] may be not as accurate as they could, as they have
not discriminated between intrinsic and extrinsic bugs
when training their models.

On the other hand, our results support some of Mc&K’s
results for JIT models. When JIT models are trained without
extrinsic bugs, we found that (1) they lose a large amount of
predictive power one year after being trained; (2) when
trained using periods that are closer to the testing period
tend to outperform models that are trained using older peri-
ods; (3) long period JIT models do not always retain more
predictive power for longer than short period JIT models;
and (4) the Size family is consistently the top contributor in
our JIT models, and fluctuations in short period JIT models
are more common than in long period JIT models.

Fig. 7. Distribution of intrinsic bugs, extrinsic bugs, mislabeled bugs and all bugs for the six families of code change properties. The families of code
change properties are shown in Table 3.

TABLE 6
p-Values Between Bug-Introducing Changes Linked to

Different Kind of Bugs (Wilcoxon Rank Sum Test)

Size Diffusion Author Reviewer History Review

Int.-Ext. 2.4E.-09 1.4E.-13 0.001 0.0002 0.9 0.005
Int.-Mis. 4.8E.-08 3.1E.-02 0.002 0.002 0.9 0.012
Ext.-Mis. 2.7E.-01 4.8E.-14 0.6 0.5 0.9 0.7

TABLE 7
p-Values Between Bug-Fixing Changes Linked to
Different Kind of Bugs (Wilcoxon Rank Sum Test)

Size Diffusion Author Reviewer History Review

Int.-Ext. 0.02 0.15 0.043 0.05 0.15 0.113
Int.-Mis. 4.9E.-16 0.71 0.005 0.0004 0.17 0.03
Ext.-Mis. 0.005 0.15 0.95 0.61 0.38 0.96
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As already mentioned, there is a debate in the research
literature on the impact of mislabeled bugs. Some authors
found that they introduce noise in the results of prediction
models [30], [34], while others contradict this finding [15].
Our paper sheds more light on this topic, as it offers evi-
dence that JIT models that used only intrinsic bugs obtained
a more accurate representation of bugs, as intrinsic code
change metrics fit better in JIT models. We believe that
researchers should be aware of the noise that mislabeled
bugs introduce in their dataset. Furthermore, we believe
that a necessary criteria to assess the quality of the dataset is
to select projects based on their policies to distinguish
between bugs and non-bugs.

While mislabeled bugs have been widely studied in pre-
vious works [30], [33], [46], extrinsic bugs have been
recently discovered [2] and we still do not understand them
fully. In our opinion, further research should be devoted to
them. It should be noted that in our case study the effect on
212 extrinsic bugs is similar to the one of 568 mislabeled
bugs. Future research lines should continue studying how
the characteristics of extrinsic bugs impact not just JIT bug
prediction models, but also other bug prediction techniques.

7.2 Impact on Software Engineering

We knew that not all the bugs are the same; they could be
intrinsic or extrinsic depending of their origin [1], [2]. In this
paper, we offer evidence that intrinsic and extrinsic have
different code change properties.

We have also found more similarity between extrinsic
bugs and mislabeled bugs in the patterns shown in Fig. 7.
This result is also supported by Tables 6 and 7 which indi-
cate similar code changes properties between mislabeled
bugs and extrinsic when analyzing BFCs and BICs linked to
these bugs. Furthermore, we have observed that some code
change properties, i.e., Author, History, Review, and Reviewer
of the BFC linked to extrinsic bugs and mislabeled bugs are
similar. This finding might suggest that fixing a bug which
does not have a BIC in the VCS can be compared to develop-
ing other kind of issues such as a mislabeled bug. In short,
extrinsic bugs have similar characteristics than non-buggy
changes. We find this evidence worth further research in
order to understand the different natures of bugs, and in
particular extrinsic bugs.

We think our findings might have a broader impact than
just improving bug prediction models.

Practices and Processes. In the paper we have seen that,
when removing extrinsic bugs, the explanatory power of the
Size family increases from 11-43 percent to 20-49 percent, but
the explanatory power of the Review family decreases consid-
erably from 2-59 percent to 6-21 percent (see RQ3). This points
out that review practices may affect extrinsic and intrinsic
bugs in a different manner, and thus should be addressed dif-
ferently. In this regard, it would be interesting to see if there
are practices that minimize the number (or at least the effect)
of extrinsic bugs. We imagine as well that some software
architectures could bemore robust than others.

Education. We believe that there is currently a strong bias
towards training future software engineers exclusively on
intrinsic bugs when identifying the origin of bugs as previ-
ous studies do not consider the extrinsic nature of bugs [1],
[2]. Our findings suggest that we should educate students

in the fact that software bugs do not always have their ori-
gin in a change in the VCS. If tools and practices to support
bug fixing of extrinsic bugs appear, we should incorporate
them to the curriculum.

7.3 Implications

Besides the impact that our results have on JIT models and
Software Engineering, we discuss the implications for
developers, researchers, and practitioners.

Data Awareness. If researchers include all bugs in their
datasets, they are using a dataset which has not been conve-
niently prepared, and the results could differ from reality.
Thus, if developers are aware of the type of bug they are fix-
ing and start labeling them accordingly in bug tracking sys-
tems or commit messages, researchers could obtain better
datasets for bug prediction models and foster research on
this issue. We hypothesize that software projects will benefit
from this as well in the long run.

In the past, we had a similar situation when developers
started to indicate the ITS bug id in the BFC; this helped
considerably in the improvement of the SZZ algorithm [47].
ITSs also offer the possibility to categorize issues as misla-
beled bugs. At this point, we do not if our results may lead
to a drastic changes for developers because with one case
study we are not able generalize. But, in the case of Open-
Stack the models without extrinsic bugs perform usually
slightly better, sometimes much better.

Furthermore, researchers should be aware of their data
and put more attention in the data collection process. They
must ensure that when gathering data the ITSs selected for
the study distinguish between bug reports and other kind
of issues. Therefore, data validation is recommended [30].

Tools. The curation of bugs is a labor-intensive task that
requires expert knowledge of the software system, which
makes it a very costly process. Thus, the development of
tools that help in the classification of bugs might be useful
for researchers. In the same manner as tools have been
developed that help to lower mislabeling [47], [48], [49],
new tools could automatically detect intrinsic and extrinsic
bugs. These tools can help practitioners and researchers to
ensure the maintainability of software systems, nonetheless
the quality of the datasets used to train bug prediction mod-
els. For example, a new search could be how to use natural
language processing techniques in combination with deep
learning techniques to classify bugs as extrinsic or intrinsic
based on the textual information from the bug reports. Also,
another research line could study different techniques to
automate as much as possible the theoretical model pro-
posed by Rodr�ıguez-P�erez et al. [2] to identify extrinsic and
intrinsic bugs. We envision that these tools might be of ben-
efit in other fields of software engineering such as testing/
verification, software analytics and software maintenance
and evolution.

Research. The different nature of extrinsic bugs compared
to intrinsic ones demands as well further research; based on
our previous work [1], [2], we conjecture that previous stud-
ies have focused much on the latter, but there is a lack of
understanding, research and tools on the former. We call
for more investigations on the topic. We need to know more
about extrinsic bugs. We know very little about them. Are
there different types of extrinsic bugs? Are they more costly
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than intrinsic bugs? Are they re-opened more often? Can we
write software that is less prone to contain extrinsic bugs?
Our aim with this paper has been not to focus only on the
impact on extrinsic bugs on JIT bug prediction, but to draw
attention to the fact that there is a new field of research in
knowing more about extrinsic bugs.

8 THREATS TO VALIDITY

The validity of this study is described in terms of the three
main threats to validity that affect empirical software engi-
neering research: construct, internal, and external [50].

Construct Validity. Since we are using the replication
package provided in Mc&K’s paper [14], this study suffers
from the same construct validity threats reported in Mc&K’s
study. We have attempted to mitigate some of these threats.
For example, they used the SZZ algorithm to identify BICs
without further refinement. SZZ is widely used algorithm
in bug prediction research [3], [26], [42], but it is well-known
that it suffers from several limitations [16], [31]. In this
work, we manually identify those issues that are not related
to a bug and then discriminate between extrinsic and intrin-
sic bugs. Only for the latter the use of SZZ makes sense. The
classification of 705 issues by only a single rater can be a
threat to the validity. However, we tried to minimize the
impact of this threat by training the two raters until they
achieved a near perfect agreement before they starting clas-
sifying the 705 issues. This training include the analysis of
470 issues (25 percent).

Internal Validity. Although we have experience in Open-
Stack from investigating it for several years, we have no
advanced development expertise in this system. This fact
may have influenced the manual classification of bugs into
the different types. To mitigate this threat, we discussed the
unclear cases, and when no agreement was reached, we
treated these cases as Mc&K’s paper did (i.e., we considered
that these bug reports were “true” bug reports and not other
kind of issues).

External Validity. A notable difference between Mc&K’s
study and ours is that they had two case studies (OpenStack
and Qt), while we have only one (OpenStack). The rationale
for this is that our study is very labor-intensive; while Mc&K
apply directly SZZ to the dataset of 1,880 issues, we have
curated them manually. The curation procedure requires to
understand the bug in its very detail, which is a non-trivial
task. In total, raters have devoted over 250 hours carrying
out the task of classifying these 1,880 issues. The study of just
one case study prevents us to generalize our findings to other
systems. However, our goal was not claim that our results
would stand to all systems, but rather to show the exception,
we have found that extrinsic bugs can have a significant
impact on bug prediction models, at least in one project. We
think that our research is successful in this regard, as we
demonstrate that intrinsic and extrinsic bugs show different
characteristics. In the particular case of JIT models, we offer
sufficient evidence that researchers and practitioners should
be aware of extrinsic bugs (in addition to mislabeled bugs).
Case studies contribute to increase knowledge and gain a
deep understanding of particular phenomenon [51]. Also,
some theorist argument that case studies help to draw atten-
tion to things that need change [52].

9 CONCLUSION

Previous studies on Just In Time (JIT) bug prediction have
not only assumed that future BICs are similar to past
ones, but also that all bugs from the project can be linked
to explicit BICs. As the research literature has shown [1],
this does not always happen. Often it is not possible to
find a BIC for a bug fix. Those bugs are referred to as
extrinsic bugs, and are mainly caused by external factors
to the project, such as changes to APIs or changes in the
requirements.

Through a case study of the OpenStack system, we have
investigated whether extrinsic bugs have an impact on JIT
models. Our results indicate the negative role that extrinsic
bugs have on the performance of JIT approaches. When
removing extrinsic bugs from the trained data used in
OpenStack, JIT models obtain a more accurate representa-
tion of the real world as indicated by their different (often
higher) AUC values in their performance. These models
capture change properties better. Therefore, JIT models that
are fitted only with intrinsic bugs obtain more stable AUC
scores and lose less predictive power.

Our findings also support in part McIntosh and Kamei’s
results [14]. We found that after removing extrinsic bugs,
the values of the importance score of the six source code
change families fluctuate as the system evolves and that
these fluctuations can lead to underestimate or overestimate
the future impact of those families.

Researchers and practitioners should be aware of the
data that feed JIT bug prediction models. They should per-
form data validation to ensure that only intrinsic bugs are
considered when training their models. Although with the
current state of the art data validation might be tedious and
very labor-intensive to achieve, at least researchers should
be aware that considering extrinsic bugs during the training
of the models might impact bug prediction results.

All in all, we show evidence that extrinsic bugs are of
different nature than intrinsic bugs. Actually, they are
more similar to issues that are not bugs than to intrinsic
bugs. We think that this finding is not only relevant for
JIT bug prediction models, but that it may impact many
other areas of software engineering practice and research,
and would like to call for further research on extrinsic
bugs.

A future line of research will be the semi-automation of
the process to identify extrinsic bugs. Our experience shows
that this will not be an easy process because researchers
have to understand at least the bug description (in natural
language) and the change (code). We envision that a semi-
automated process will require the combination of different
techniques and tools. For example, to understand the bug
description researchers can implement natural language
processing; and to understand the source code they can use
tools that help researchers to backtrack the evolution of
source code lines from their introduction in the file until
their modification in the bug fixing commit. More details
can be found in our replication package.

Replication Package. We have set up a replication pack-
age10 including data sources, intermediate data, and scripts.

10. http://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/
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Efficient Summary Reuse for Software

Regression Verification

Fei He , Qianshan Yu, and Liming Cai

Abstract—Software systems evolve throughout their life cycles. Many revisions are produced over time. Verifying each revision of the

software is impractical. Regression verification suggests reusing intermediate results from the previous verification runs. This paper

studies regression verification via summary reuse. Not only procedure summaries, but also loop summaries are proposed to be reused.

This paper proposes a fully automatic regression verification technique in the context of CEGAR. A lazy counterexample analysis

technique is developed to improve the efficiency of summary reuse.We performed extensive experiments on two large sets of industrial

programs (3,675 revisions of 488 Linux kernel device drivers). Results show that our summary reuse technique saves 84 to 93 percent

analysis time of the regression verification.

Index Terms—Regression verification, program verification, abstraction refinement, summary reuse

Ç

1 INTRODUCTION

ALONG with the widespread use of software in our daily
life, there is a growing concern for software reliability.

At the same time, market pressure demands quick product
introductions. The software companies are required to
introduce new features to their software products in shorter
release cycles. Since errors may be introduced with new fea-
tures, the new products must be reverified to ensure their
correctness.

Software verification [1] has made great success in recent
years. However, it is still very time-consuming. Verifying
every revision of the software is impractical. Inspired by the
success of regression testing [2], [3], researchers in formal
verification community proposed the technique of regres-
sion verification [4], [5], [6], [7], [8]. Taking into consideration
that many intermediate results are produced during the veri-
fication, and the computation of these results is costly,
regression verification aims to make use of these intermedi-
ate results in the verification of new program revisions.

Different intermediate results have been proposed for
reuse, including abstract precisions, state-space graphs, con-
straint solver solutions, and interpolation-based procedure
summaries. Beyer et al. [7] proposed to record the final
abstract precision in the previous verification run, and reuse
it in the current verification. Henzinger et al. [9] proposed to
reuse the state-space graph for incremental checking of tem-
poral safety properties. Visser et al. [10] noticed the impor-
tant role of constraint solving in software verification, and
proposed to reuse the constraints solving results.

Procedure summaries, representing input/output behav-
iors of procedures, have been proposed in [11] to be reused
in incremental upgrade checking. Note that procedure sum-
maries are reasonably small to store, technically easy to pro-
cess, and do not require much extra computation effort to
be reused. Therefore, reusing procedure summaries is a
good choice for regression verification.

Inspired by [11], this paper studies the summary-based
regression verification for predicate analysis. In [11], the
procedure summaries are mainly constructed by interpola-
tions. In this paper, we consider the summaries constructed
using abstract states of predicate analysis. Note that these
abstract states are by-products of program analysis [12],
[13], [14]. Thus, it does not require additional computational
effort to generate these summaries. Moreover, different
from existing techniques, our approach considers the reuse
of not only procedure summaries, but also loop summaries.
We build a unified framework for reusing both of them.

Moreover, we consider regression verification in the con-
text of counter-example guided abstraction refinement
(CEGAR) [15]. Summary reuse techniques need to be adapted
to the CEGAR framework (see Section 5). A lazy counterex-
ample analysis technique is further proposed to address the
effectiveness issue of summary reuse (see Section 5.3). Con-
sidering that CEGAR is a widely-adopted technique in soft-
ware verification [16], [17], [18], [19], [20], our approach can
be applied to most state-of-the-art software verifiers. To the
best of our knowledge, our approach represents a novel
attempt to the regression verificationwith CEGAR.

We implemented our approach on top of CPAchecker
[17]. We have performed extensive experiments on two
large sets of industrial programs. The first set of programs
contains 1,119 real-world program revisions of 62 Linux
device drivers, and the second contains 2,556 artificial pro-
gram revisions (by mutation) of 426 Linux device drives. In
total, there are 6,749 verification tasks, among which 6,064
are regression verification tasks. Experimental results show
a very promising performance of our approach. With the set
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of real-world programs, in comparison to the standalone
verification without reuse, our approach solves 216 more
regression verification tasks and saves 93.1 percent of analy-
sis time. With the set of artificial programs, our approach
solves 10 more regression verification tasks and saves 84.2
percent of analysis time.

The main technical contributions of this paper are sum-
marized as follows:

� We propose a unified framework for reusing both
procedure summaries and loop summaries.

� We propose a fully automatic regression verification
technique in the context of counterexample-guided
abstraction refinement. A novel lazy counterexample
analysis technique is developed to improve the effi-
ciency of summary reuse.

� We implement our approach in the software verifica-
tion tool CPAchecker. Experimental results show the
promising performance of our approach.

The remainder of this paper is organized as follows. Section 2
introduces the necessary backgrounds. Section 3 motivates our
approach using a simple example. Section 4 reviews the
CEGAR-based program verification and the definition of pro-
gram summaries. Section 5 presents our CEGAR-based regres-
sion verification framework. Section 6 reports evaluation
results on our approach. Section 7 discusses related work and
Section 8 concludes this paper.

2 BACKGROUNDS

2.1 Abstraction and Refinement

Abstraction plays a central role in software verification.
Abstraction omits details of the system behaviors, resulting
in a simpler model. We call the model before and after
abstraction the concrete and the abstract model, respectively.
An abstraction is conservative [21] iff it does not omit any
behavior of the concrete model. Conservative abstraction
guarantees that the properties (more precisely, the ACTL�

properties [21]) established on the abstract system also hold
on the concrete system. The reverse, however, is not guaran-
teed: if the abstract model falsifies the property, the concrete
model does not necessarily falsify this property.

The abstract precision [7] (for short, precision) defines the
level of abstraction of an abstract model. The precision must
be at a proper level. A too-coarse precision may fail to verify
the property; a too-fine precision, however, may lead to
state space explosion. Finding a proper precision appears to
require ingenuity.

Counterexample-guided abstraction refinement [15] provides a
framework for automatically finding proper precisions. Start-
ing from an initial abstract precision, it iteratively checks if the
corresponding abstract model satisfies the desired property.
If the property is satisfied, it must also hold on the concrete
model, the algorithm terminates and reports “correct”. Other-
wise, the checker returns a path on the abstract model that fal-
sifies the desired property. The algorithm then checks if the
returned path is valid on the concrete model or not. If it is, the
algorithm finds a real bug, it thus terminates and reports
“incorrect”. Otherwise, the precision is too coarse, and needs
to be refined with the counterexample. Then the above pro-
cess repeats, until either “correct” or “incorrect” is reported.

The abstract precision does not necessarily keep the same
throughout the program [22]. To simplify the discussion, we
assume in this paper that the abstract precisions are defined
at the level of procedures, i.e., each procedure is associated
with a unique abstract precision.

2.2 Software Verification

Model checking and program analysis are two major
approaches for software verification. Comparing these two
techniques, model checking is more precise with fewer false
positives produced, while program analysis is compara-
tively more efficient and can be applied to more programs.
An increasing tendency to software verification is to inte-
grate these two techniques together [23], to get a good bal-
ance between accuracy and efficiency.

Predicate abstraction [22], [24] is a widely-adapted abstrac-
tion technique [1], [19] for software verification. It creates an
abstract model with respect to a set of predicates defined on
the program variables. This predicate set defines an abstract
precision for predicate abstraction. The state space of the
abstract model is only related to the number of predicates in
the abstract precision. Finding proper predicates is the key
problem for predicate abstraction. One popular technique is
based on interpolation computation on the counterexam-
ples [25], [26].

Interprocedural analysis deals with programs with multi-
ple procedures. One simple way of interprocedural analysis
is to inline a copy of the callee procedure at each of its call
sites. The inlining technique is, however, very expensive
and may lead to context explosion for recursive procedures.
Another interprocedural analysis technique is to use sum-
maries [12], [13]. A procedure summary (or shortly, a sum-
mary) describes the input/output behaviors of a procedure.
This technique plugs summaries at each call site of the pro-
cedure. Re-analysis of the procedure body at each of its call
sites can be avoided using this technique, the efficiency is
therefore improved.

There are at least two kinds of procedure summaries in
literature: the state-based summaries [12], [13], where each
summary is a pair of input and output states of the proce-
dure; and the interpolation-based summaries [11], where
the summary is an overapproximation of the procedure’s
behaviors.

In this paper, we assume a deterministic, single-threaded
program and a safety property. To specify the property, a
special error location is introduced in the program. We
say the program is correct if and only if the error location
is not reachable.

3 A MOTIVATING EXAMPLE

Fig. 1 shows a simple program that consists of two proce-
dures: main and inc. A while loop is implemented in the
main procedure, and in the loop body the inc procedure is
invoked. The inc procedure takes two input parameters: a
and sign, and outputs either aþ 1 (if sign! ¼ 0), or a� 1 (if
sign ¼ 0Þ. We want to verify that the error location (at line
6) is not reachable in any execution of this program.

Consider an invocation to the inc procedure (at line 3)
with parameters a ¼ 0 and sign ¼ 1, the returned value is
rv ¼ 1. The pair of this entry state (i.e., a ¼ 0 ^ sign ¼ 1)
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and the exit state (i.e., rv ¼ 1) summarizes this execution of
the inc procedure. Later, when the inc procedure is
invoked again, if its entry state is again a ¼ 0 ^ sign ¼ 1,
then without entering the inc procedure, we can immedi-
ately determine its exit state as rv ¼ 1.

The execution of a loop can also be summarized by a pair
of an entry state and an exit state. Consider the while loop
in the main procedure, its entry state (i.e., the state exactly
before the program enters the loop at line 1) is i ¼ 0 ^ x ¼ 0,
and its exit state (i.e., the state when the program exits the
loop at line 6) is x ¼ 6 ^ i ¼ 10. Similar to the procedure
summary, the pair of these two states also summarizes an
execution of this loop, and is called a loop summary.

Assume that the original program evolves to a new revi-
sion. Apparently, this new revision needs also to be checked
to guarantee its correctness. Assume that in the new revi-
sion, the inc procedure does not change, then the summa-
ries of this procedure, which were generated in the
previous round of verification, can be reused in the new
round of verification. Similarly, if the while loop does not
change in the new revision, the previous-generated summa-
ries for this loop can also be reused. How to efficiently reuse
the previously-generated summaries in regression verification is
the main research problem we want to solve in this paper.

Moreover, in the above discussions, the program is ana-
lyzed by tracking its concrete states. The concrete state
space of a program is, however, considerably huge and
often infinite. A practical verification technique (including
the regression verification) needs to be performed on the
abstract state space.How to efficiently combine regression verifi-
cation and abstraction techniques, especially the counterexample-
guided abstraction refinement, is another research target of
this paper.

4 CEGAR-BASED VERIFICATION

In this section, we first review the CEGAR-based program
verification, upon which our regression verification scheme
is based. We then propose a unified definition for procedure
summaries and loop summaries.

4.1 Preliminaries

We begin by introducing the necessary preliminaries for
program verification.

Control-Flow Automata (CFA) [22], [23] were adopted in
many software verification techniques (for example, BLAST
and CPAchecker ) for representing programs. Given a pro-
gram P , let L be the set of program locations and St be the
set of statements of P , respectively. The CFA of P is a pair
ðL; GÞ, where L is the set of program locations, and G � L�
St�L is the set of control flow edges. The CFA is different
from the control flow graph with program statements label-
ing the edges rather than the vertices. For example, CFA of
the main procedure in Fig. 1 is shown in Fig. 2, where lerr
represents the error location, and l0, lret represent the entry
and exit locations of the main procedure, respectively.

A state of a program is a configuration of the program
location and the set of facts that we know about the program
at that location. Formally, a concrete state of the program P is
a pair ðl; uÞ, where l 2 L is a program location and u is a full
assignment to all variables of P . The assignment u is also
called the concrete data state of P . Let � be a set of predicates,
representing the current abstract precision. An abstract state
is a pair ðl; sÞ, where l is a program location, and s is a valua-
tion to all predicates in �. The valuation s is also called the
abstract data state of P . In the remainder of the paper, we
denote P� the abstract model of P with respect to �.

Consider the CFA of the main procedure in Fig. 2, with
the abstract precision �main ¼ fi < 10; x � 5; x < 5g. An
abstract data state is a valuation to the three predicates in
�main. During the procedure of the analysis, the value of a
predicate may be true (abbreviated by 0), false (abbreviated
by 1) or non-deterministic (abbreviated by �). We use a vec-
tor to denote an abstract data state. For example, the
abstract data state at l0 is ½�; �; �� (for short, written � � �),
indicating that all predicates’ values are non-deterministic
at this location. And when the program transits from l0 to l1,
the abstract data state at l1 is 111, since executing the state-
ments i=0 and x=0 can make the three predicates all true.

A path p of the program is an alternating sequence of
states and program statements, i.e.,

p ¼ ðl0; s0Þ
st0
�!ðl1; s1Þ

st1
�!	 	 	 stn�1���!ðln; snÞ:

A path p is a concrete path of P (or an abstract path of P�) iff
all states on p are concrete states of P (or abstract states of

Fig. 1. An example program.

Fig. 2. CFA of the main procedure in Fig. 1.
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P�). A path p is called a CFA path if l0 is the entry location of
the program, and for each i with 0 � i < n there exists a
CFA edge g ¼ ðli; sti; liþ1Þ. In other words, a CFA path rep-
resents a syntactical walk through the CFA. A counterexam-
ple of P (or P�) is a CFA path of P (or P�) that ends at the
error location.

Consider the CFA in Fig. 2 with the abstract precision
�main ¼ fi < 10; x � 5; x < 5g. A possible counterexample
is shown in Fig. 3, where the abstract data states are labelled
beside the corresponding program locations.

We use the strongest post-condition operator SP to define
the semantics of a CFA path. For a formula ’ and a state-
ment st, SPstð’Þ represents the set of data states that are
reachable from any of the states that satisfy ’ after the exe-
cution of st. Let st0; st1; . . . ; stn�1 be the sequence of pro-
gram statements passed by the CFA path p. The semantics of
p is the successive application of the SP operator to each
statement of p, i.e., SPpð’Þ ¼ SPstn�1ð. . . ðSPst0ð’Þ . . .Þ.
Definition 1. A CFA path p starting from the abstract state
ðl; sÞ is feasible iff SPpðsÞ is satisfiable.
Note that a feasible path is always a CFA path. Let ðl0; s0Þ

be the initial state of P�. An abstract state ðl; sÞ of P� is reach-
able iff there exists a feasible path p of P� that ends at the
location l such that s 
 SPpðs0Þ.
Definition 2. The abstract model P� is correct iff the error

location is not reachable in P�.

4.2 CEGAR

We next describe the scheme of the standalone program ver-
ification (i.e., without reuse) via predicate abstraction and
CEGAR [22], [23].

Let � be an abstract precision, and P� be the abstract
model with respect to �. Since the predicate abstraction is
conservative [24], to verify the program P , it is sufficient to
find a proper abstract precision � such that P� is correct.
This can be achieved by the scheme of the counterexample-
guided abstraction refinement (Fig. 4). Initially, the abstract

precision is set to empty. The abstract precision is then itera-
tively refined by adding new predicates, until the program
is verified.

Each iteration consists of two phases: a model validation
phase and a counterexample analysis phase. During the
model validation phase, we check if the abstract model P�

is correct or not. If P� is correct, we immediately conclude
that P is also correct. Otherwise, we get a counterexample p
that is a CFA path of P� ending at the error location.

During the counterexample analysis phase, the counter-
example p is semantically analyzed to determine whether it
is feasible or not. If it is feasible, we find a real execution of
the program P that reaches error, and we thus conclude
that P is incorrect. Otherwise, p is a spurious counterexam-
ple, and the proof of its infeasibility can be used to refine
the abstract precision [22]. The refinement is performed by
adding new predicates in the abstract precision, such to
eliminate the spurious counterexample from the refined
model. After the refinement, the next iteration continues.

4.3 Summaries

We now introduce a unified definition for the procedure
and loop summaries.

Let % be a program fragment (either a procedure or a
loop). An entry state of % is a state at the entry location of %,
and an exit state of % is a state at its exit location. A pair of an
entry state and an exit state summarizes the input/output
behavior of one execution of % [12], [13].

Definition 3. A summary of a program fragment % is a triple
h�;fin;fouti, where � is an abstract precision, fin and fout are
Boolean combinations of predicates in �, representing an entry
state and a set of exit states of %, respectively.

A summary states that if the entry state of % satisfies fin,
its exit state must satisfy fout. This definition is particularly
suitable for predicate analysis. Let � be the current abstract
precision, and P� be the abstract model of P with respect to
�. The model validation is essentially to traverse the state
space of P� [17] to find that if the error location is reach-
able or not. Let ðl; sÞ be the current abstract state, and % be
the program fragment to be executed, the model validation
algorithm needs to traverse all possible paths of % (under
the abstract precision �) to compute the set of exit states. Let
f be the formula representing the entry state ðl; sÞ, and f0 be
the formula representing the set of exit states, the triple
h�;f;f0i is a summary of %.

With the above definition, a summary corresponds to a
subset of paths in %. The main advantage of using the state-
based summaries is the efficiency. Consider a state-based

Fig. 3. A counterexample of the program in Fig. 1 with
�main ¼ fi < 10; x � 5; x < 5g.

Fig. 4. CEGAR-based verification.
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summary h�;fin;fouti, the abstract precision � is determined
at each iteration of CEGAR; the entry state fin and the set
fout of exit states are computed in the model validation pro-
cess. In conclusion, all ingredients of this summary are by-
products of CEGAR. There needs no additional computa-
tion to generate the state-based summaries.

Note that an abstract precision must be specified in the
summary, since the entry state and the exit state must both
be defined over the predicates in the abstract precision.
Recall that we assume a unique abstract precision through-
out a procedure or a loop. Thus only one abstract precision
needs to be specified here. Otherwise, if the abstract preci-
sion differs in different points of % (for example, as in the
lazy abstraction [22]), we need to specify an abstract preci-
sion for fin and fout, respectively.

All the generated summaries are maintained in a sum-
mary cache X. During the program analysis, whenever a pro-
gram fragment is encountered, the verifier seeks in X for an
applicable summary. Let �c be the current abstract preci-
sion, and sc be the current abstract data state. A summary
h�;fin;fouti of % is called applicable iff �c � � and sc ) fin. If
any applicable summary exists, the verifier directly uses
fout of this summary as the exit state of %. Otherwise, the
verifier needs to conduct a heavy fix-point computation [27]
on the fragment % to compute its exit state.

5 CEGAR-BASED REGRESSION VERIFICATION

Summaries convey important information about the verifi-
cation. In this section, we propose some efficient summary
reuse techniques for regression verification.

5.1 Overview

An overview of our CEGAR-based regression verification is
shown in Fig. 5. Besides the program P , a set X0 of the previ-
ously-generated summaries is also provided for the regres-
sion verification. Note that these summaries are produced by
the previous revisions, and may not be applicable to the cur-
rent revision. Similar to [11], we propose a summary selection
step to guarantee the safe reuse of summaries (see Section 5.2).

As in a standalone verification, each iteration of CEGAR
for a regression verification also consists of two phases: a
model validation phase and a counterexample analysis phase.
The former phase is exactly the same as in the standalone veri-
fication. The counterexample analysis, however, requires more
careful handling,whichwill be discussed in Section 5.3.

Note that our summary reuse does not depend on the
verification result. A summary here represents an execution
of the corresponding program fragment. No matter whether
the verification result is “correct” or “incorrect”, as long as
the fragment does not change semantically, the summary
can be reused. This is very different from the interpolation-
based summaries [11], where the summaries are related to
the property to be verified, and can only be reused when
the verification result is “correct”.

5.2 Summary Selection

Let P 0 be the old revision of P . For each fragment % (either a
procedure or a loop) of P , let %0 be its previous version in
P 0. If %0 does not exist in P 0, i.e., % is a newly added fragment
in P , we simply let %0 ¼ NULL.

In the summary selection (Algorithm 1), we check for
each % of P if % is semantically equivalent to %0 or not. If it is,
the summaries of %0 are selected. Otherwise, these summa-
ries are abandoned. These selected summaries are then
reused in the regression verification to initialize the sum-
mary cache X.

Algorithm 1. Summary Selection

forall % 2 P do
Let %0 be its previous version in P 0;
if % � %0 then
Select summaries of %0;

end
end
Use selected summaries to initialize X;

Note that the semantic equivalence checking % � %0 is
very expensive in computation, we thus choose to perform
syntactic checking instead. The syntactic checking is less
precise, i.e., may miss some semantically equivalent frag-
ments, but preserves the soundness, i.e., the fragments that
pass the syntactic checking must be semantically equivalent.

5.2.1 Syntactic Checking

In the following,wefirst discuss twonotions, i.e., syntactically
unchanged fragments and semantically equivalent fragments,
then, we propose our syntactic checking technique.

Definition 4. Let % be a program fragment in P and %0 be its pre-
vious version in P 0, we say % is syntactically unchanged if all
statements of % and %0 are same, and syntactically changed,
otherwise.

In the following,we consider only syntactically unchanged
fragments for possible summary reuse. Note that a syntacti-
cally changed procedure may still be semantically equivalent
to its previous version. We ignore this case since the semantic
equivalence checking is too expensive.

On the other hand, a syntactically unchanged fragment is
not necessarily to be semantically equivalent. Comparing
only statements in a fragment is not enough for checking the
semantics of this fragment. For example, the call statement
in a fragment may lead the execution to a statement outside
the fragment (in the called procedure). If the called procedure

Fig. 5. CEGAR-based regression verification.
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changes, even all statements in the fragment under consider-
ation remain the same, its semantics has changed.

Consider the program in Fig. 1, we assume that in the
new program revision the main procedure remains the
same while the inc procedure changes, then the semantics
of the main procedure is regarded as changed.

To summarize, the syntactic changes of a fragment may
lead the semantics of another fragment to be changed. We
thus have the following definition.

Definition 5. Let %1, %2 be two program fragments of P , we say
%1impacts %2, written %1 � %2, if either of the following state-
ments is satisfied:

� %1 is a procedure and is called in %2, or
� %1 is a loop and is nested in %2.

The above impact relation extends the call relation over
procedures by taking loops and their nesting structures into
consideration.

The impact relation is transitive, i.e., if %1 � %2 and %2 � %3,
then %1 � %3. Let �� be the transitive closure of � . If %1 �� %2,
i.e., there exist %i; ::; %iþk such that %1 � %i � 	 	 	 � %iþk � %2,
we call %2 is reachable from %1. Moreover, we define the set of
forward reachable fragments from %1 as FReachð%1Þ ¼ f%2 j
%1 �� %2g. Apparently, FReachð%1Þ is the maximal set of frag-
ments that %1 can impact. We also define the set of backward
reachable fragments from %1 as BReachð%1Þ ¼ f%2 j %2 �� %1g,
which is themaximal set of fragments that have impact on %1.

Consider the three fragments in the program in Fig. 1: the
main procedure (denoted as %main), the inc procedure
(denoted as %inc) and the loop in the main procedure
(denoted as %loop). They satisfy: %inc � %loop, %inc � %main and
%loop � %main. Thus we have FReachð%incÞ ¼ f%loop; %maing,
BReachð%incÞ ¼ ;. In other words, any change in %inc can
impact the semantics of %loop and %main, and no other frag-
ment can impact the semantics of %inc.

The concepts of forward/backward reachable sets can
be lifted to a fragment set. Let t be a set of fragments,
FReachðtÞ¼ S

%2tFReachð%Þ, andBReachðtÞ¼ S
%2tBReachð%Þ.

Definition 6. Let % be a program fragment in P and %0 its
previous version in P 0, we say % is globally syntactically
unchanged if

1) % is syntactically unchanged, and
2) all fragments in BReachð%Þ are syntactically

unchanged.

Lemma 1. A globally syntactically unchanged fragment is
semantically equivalent to its previous version.

Proof. This is a direct conclusion by the definition of glob-
ally syntactically unchanged fragment. tu
To find the globally unchanged fragments of P , we syntac-

tically compare each fragment of P to its previous version.
According to the comparing results, fragments in P are
divided into two parts: the syntactically unchanged set t1 and
the syntactically changed set t2. Then we have the following
lemma.

Lemma 2. Let t1 and t2 be the set of syntactically unchanged and
syntactically changed fragments of P , respectively. Fragments
in t1 n FReachðt2Þ are all globally syntactically unchanged.

Proof. Assume that the lemma does not hold, i.e., there is a
fragment %1 2 t1 n FReachðt2Þ that is not globally syntacti-
cally unchanged. By %1 2 t1 and Definition 6, there must
be a fragment %2 2 BReachð%1Þ such that %2 is syntactically
changed. By %2 2 BReachð%1Þ, we have %1 2 FReachð%2Þ.
By %2 being syntactically changed, we have %2 2 t2,
and thus %1 2 FReachðt2Þ. This is contradicted with the
assumption. Thus the assumption does not hold, and the
lemma holds. tu
Let t� ¼ t1 n FReachðt2Þ. The semantic equivalence

checking % � %0 (on Row 4 of Algorithm 1) is implemented
as checking whether % 2 t�. If % 2 t�, the summaries of % are
selected, and otherwise they are abandoned. Note that the
computations of t1, t2 and t� involve only syntactic check-
ing of P and P 0. According to Lemmas 1 and 2, all selected
summaries are semantically equivalent to its previous ver-
sion, and thus they can be safely reused in the regression
verification.

5.3 Counterexample Analysis

Given a counterexample returned by the model validation
process, we need to check if this counterexample corre-
sponds to a real bug or not. Summary reuse makes this pro-
cess intricate.

Consider the counterexample in Fig. 3 that contains two
procedure calls. During the program verification, these two
procedure calls are replaced by two abstract summaries,
which are defined over predicates and may introduce spuri-
ous behaviors over the program’s concrete semantics. There-
fore, to check the feasibility of this counterexample, the inner
paths in the inc procedure that correspond to these two
summariesmust be restored.

Consider the procedure call inc(x,1) between ðl3; 111Þ
and ðl5; 11�Þ for example. If the summary for this procedure
call is generated in the current verification run, the inner
path in inc that leads from ðl3; 111Þ to ðl5; 11�Þ is avail-
able [17]; otherwise, if the summary is inherited from the
previous verification, there is no information for the inner
path. Then, we have to rely on the heavy fix-point computa-
tion [27] to reproduce this path. In other words, with the
counterexample checking, the saved analysis on the inc

procedure is getting back. The benefits of summary reuse
are thus significantly weakened.

5.3.1 Holes

Definition 7. A summary on a path is called a hole if it is inher-
ited from the previous verification runs.

Let p be a counterexample path with holes. Replacing a hole
with the corresponding inner path is called an expansion. For
example, Fig. 6 shows the expanded version of the counter-
example in Fig. 3.We call a path holeless if it contains no hole.

Let H be the set of holes on a path p. The path p is split
by these holes into jHj þ 1 path segments. Each of these seg-
ments is a holeless path. The semantics of a path with holes
is defined as the conjunction of the semantics of its holeless
segments.

Theorem 1. Let p be a path with holes H, and P the set of seg-
ments of p split byH,
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1) if there exists any infeasible segment in P, p is infeasi-
ble; and

2) if all segments in P are feasible, p is, however, not nec-
essarily feasible.

For the latter case, if all segments of p are feasible, we call
the path p separately feasible. The above theorem states that
the separate feasibility does not imply the feasibility of the
whole path. This is obvious since the semantics of holes are
not taken into consideration in the separate feasibility.

Consider the counterexample in Fig. 3, the holes at l4 and
l5 split the path into three segments, i.e.,

s1 : ðl0; � � �Þ ! ðl1; 111Þ ! ðl2; 111Þ ! ðl3; 111Þ;
s2 : ðl5; 11�Þ;
s3 : ðl1; �1�Þ ! ðl6; 01�Þ ! ðlerr; 011Þ:

This counterexample is infeasible if any of s1, s2 and s3 is
infeasible. Reversely, even s1, s2 and s3 are all feasible, the
path is not necessarily feasible since the inner paths from l3
to l5 and from l5 to l1, that are replaced by summaries, may
be infeasible.

5.3.2 Lazy Analysis Algorithm

A brute-force algorithm for counterexample analysis is to
directly expand all holes of the counterexample, and then
check its feasibility. This algorithm is correct but inefficient.
Recall that to expand a hole, we need to perform a heavy
analysis on the program fragment, which usually costs lots
of computation. In the worst case, it needs to traverse all
paths of the fragment to reproduce the path from a given
input state to a given output state. We therefore propose a
technique to avoid unnecessary hole expansions.

Our lazy analysis algorithm is shown in Algorithm 2. The
basic idea is to expand holes on demand, so as to avoid
unnecessary hole expansions. The main body of the algo-
rithm is a while loop. At the beginning of each iteration of
the loop, the algorithm checks whether the current path is
holeless (isHolelessðpÞ), and whether the current path is

infeasible (isInfeasibleðpÞ). If both checks return false, the
loop continues by expanding one hole in p. Otherwise, the
current path p must be either infeasible or holeless. For the
former case, the algorithm returns p; and for the latter case,
the algorithm reports “incorrect”.

Algorithm 2. lazyAnalysisðpÞ
Input: A finite abstract path p

Output: The expanded path of p if it is infeasible; or
“unsafe” if it corresponds to a real path.

while :ðisHolelessðpÞ _ isInfeasibleðpÞÞ do
let h be a hole in p;
p expandHoleðp; hÞ;

end
if isInfeasibleðpÞ then return p;
else return incorrect;

Comparing to the brute-force approach, our lazy algorithm
needs more feasibility checking. However, it is still beneficial.
First, with the lazy approach, the computational efforts for
unnecessary hole expansions (which inmany cases are expen-
sive) are saved. Second and more importantly, the returned
path by the lazy approach is often much shorter than the fully
expanded one. Note that the refinement is a heavy step in
CEGAR [26].With a shorter counterexample, the computation
efforts for the refinement (for example, the interpolation-
based refinement [26]) can often be significantly reduced.

The lazy analysis algorithm can be easily adapted to the
existing CEGAR framework (for example, CPAchecker [17])
in the following way. When the verifier in the existing frame-
work returns a counterexample, our algorithm is applied to
check if this counterexample is spurious or not. In case of a
spurious counterexample, our algorithm returns a (partially)
expanded path and gives it to the existing refiner in the frame-
work. The returned path by our algorithmmay contain holes.
Treating these holes as value assignments, these paths can be
directly processed by most of the existing refinement techni-
ques, for example, the interpolation-based refinement [26].

5.4 Precision Reuse

In the beginning of the regression verification (in Fig. 5), the
abstract precision is set to be empty, which is in fact not nec-
essary. Dirk Beyer et al. [7] showed that the abstract preci-
sion can also be reused in the regression verification. To
take this idea, we simply use the final abstract precision �0

in the previous verification to initialize the current abstract
precision �, i.e., replace � ;with � �0 in Fig. 5.

With precision reuse, the amount of summaries that need
be recorded at the end of the verification run is also reduced.
Assume that the abstract precision of the regression verifica-
tion is initialized as �0. Then during the regression verifica-
tion, the abstract precision is iteratively refined by CEGAR.
In other words, summaries with a smaller abstract precision
than �0 are useless in the regression verification. Thus, we
need only to output the summaries with the final precision at
the end of each verification run.

6 EXPERIMENTAL EVALUATION

We implemented our regression verification technique on
top of CPAchecker [17]. CPAchecker provides a configurable

Fig. 6. An expanded version of the counterexample in Fig. 3, with �main ¼
fi < 10; x � 5; x < 5g and �inc ¼ fsign > 0; a < 5g.
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framework for software verification, with both predicate
abstraction and counterexample-guided abstraction refine-
ment supported. To support regression verification, we real-
ized the following functionalities in CPAchecker :

� summary dumping, i.e., dump all summaries to an
external file at the end of the verification,

� summary selection, i.e., load and select summaries
from an external file at the beginning of the verifica-
tion (Section 5.2), and

� lazy counterexample analysis (Section 5.3).
Moreover, precision reuse (Section 5.4) was also inte-

grated into our implementation. In the following, we call
our enhanced implementation CPAcheckerþ .

Experiments are designed to answer the following
research questions:

� RQ1. Is summary reuse efficient enough for regres-
sion verification?

� RQ2. What is the impact of precision reuse on the
efficiency of our approach?

� RQ3. What is the impact of summary types on the
efficiency of our approach?

� RQ4. What is the impact of the lazy counterexample
analysis on the efficiency of our approach?

6.1 Experimental Setup

We prepared two industrial benchmarks with 3,675 pro-
gram revisions of 488 Linux device drivers to evaluate our
approach:

1) The first benchmark, obtained from [7], consists of
1,119 real-world program revisions of 62 Linux
device drivers.

2) The second benchmark, prepared by ourselves, con-
sists of 2,556 program revisions of 426 Linux device
drivers, where all drivers were collected1 from the
“SystemsDeviceDriversLinux64Reach-Safety” cate-
gory of the 6th International Competition on Software
Verification (SV-COMP’17) [28]. For each driver, we
make the program in [28] as the base revision, and
use a state-of-the-art mutation tool MiLu [29] to ran-
domly generate 5 artificial new revisions.

Recall that all program revisions in the first benchmark
were obtained from the official Linux kernel repositories [7],
and they are real revisions implemented by the experienced
programmers. We use this benchmark to evaluate our
approach on real program changes. In contrast, program
revisions in the second benchmark were obtained by adding
mutations to the base revision of each device driver. An
advantage of the second benchmark is that the mutants gen-
erated by random pattern can involve much more unpredict-
able modifications than those wirtten by human programmers.
We use the second benchmark to evaluate our approach on a
broader range of program changes.

All experiments are performed on a machine with Intel
Xeon E5-2620 CPU of 2.4 GHz 24 cores and 32 GB RAM. We

use Ubuntu 16.04 (64-bit) with Linux 4.4.0 and jdk1.8.0. The
CPAchecker is configured using the predicateAnalysis-ABE
option. Each verification run is limited to 300 seconds (total
CPU time), 6 GB of Java heap size and 6 CPU cores.

6.2 Overall Results on Real Revisions (RQ1)

This experiment evaluates our approach on real program
revisions. We compare the performance of CPAcheckerþ

with CPAchecker on the first benchmark. All regression ver-
ification techniques, including summary reuse, precision
reuse, and lazy counterexample analysis are enabled for
CPAcheckerþ in this experiment. For simplicity, in the fol-
lowing, we refer to our approach as “Reuse”, and the stan-
dard CPAchecker as “no Reuse”.

In our experiments, a verification task is to verify a pro-
gram revision against a specification. Note that a device
driver may have multiple program revisions and also multi-
ple specifications. A pair of a device driver and a specifica-
tion involves a sequence of verification tasks, where the
base revision is verified from scratch, while the other revi-
sions are verification in an incremental way, i.e., as regres-
sion verifications. In total, there are 259 driver/specification
pairs and 4,193 verification tasks in the first benchmark.
Among all tasks, 3,934 are regression verification tasks.

Experimental results are listed in Table 1. Due to page lim-
itation, we restrict this table to the 40 best and 10 worst cases
out of the total of 259 driver/specification pairs (sorted by
the “Speedup” column). The first two columns (“Driver”
and “Specification”) list the device driver name and the spec-
ification name, respectively. The third column “LoC” shows
the lines of code for the base revision of each device driver.
The fourth column (“#T”) shows the number of regression
verification tasks (i.e., the number of revisions minus 1) for
each driver/specification pair. The fifth column (“T1st”) lists
the analysis time for verifying the first revisionwhich is not a
regression verification task. This “T1st” gives us the informa-
tion on the complexity of verifying each device driver.

The following two column assemblies report the experi-
mental results by “no Reuse” and “Reuse” approaches,
respectively. For both approaches, we report the number of
successfully verified regression tasks “#solved”; the total
number of abstract successor computations “#abs_succ”2

and the total analysis time “Trv” (in seconds) for each driver/
specification pair. To conduct a fair comparison, “Trv” and
“#abs_succ” are limited to regression verification tasks that
are solved by both approaches. The “Speedup” column
shows the average speedup of “Reuse” approach over the
“no Reuse” approach, calculated by: 1� Trv2=Trv1. The last
“AvgFSize” and “RSR” columns report the average size (in
Kilobytes) of summary files, and the average reusable sum-
mary ratio, among all revisions of each driver/specification
pair, respectively. For each regression verification task, RSR
is the proportion of summaries that are kept after the sum-
mary selection.

Recall that each row in the table corresponds to a driver/
specification pair. The last two rows (“Sum” and “Avg”)

1. The selection strategy is as similar as in [7]. We limit our selection
to drivers of Linux 3.4 kernel and with the mutex lock/unlock specifica-
tions, and skipped programs whose total CPU time is less than 0.5s and
those that need no refinement.

2. An abstract successor is a successor of the current state on the
abstract model. Abstract successors computation needs to invoke a
SMT solver and is considered as the most time-costly operation in pred-
icate abstraction [23].
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take the total and average amount of all rows in the table,
respectively.

From Table 1, we observed that our method outperforms
“no Reuse” in vast majority of cases. Considering “Speed-
up” column, among 259 driver/specification pairs, only one
pair that our method is slower. Comparing “#solved” col-
umns of both approaches, 216 more regression verification
tasks were solved with our approach. This witnesses the
value of summary reuse for regression verification.

Among the common 3,581 regression verification tasks
that both approaches can verify, “no Reuse” takes 151.8 thou-
sand seconds of analysis time while our “Reuse” approach

finishes in 10.5 thousand seconds. The overall time speedup
of our approach is 93.1 percent.

Comparing the numbers of abstract successor computa-
tions (“#abs_succ.”) required by “Reuse” and “no Reuse”
for each spec/driver pair, we found that our method cuts
down the amount significantly (about 98 percent reduction),
which can explain the reason for the speedup of analysis
time.

Let us look at the “AvgFSize” column. The average size of
summary files among all regression revisions is 17.4 KB (the
median is 3.8 KB). The added overhead by our approach in
storage is acceptable.

TABLE 1
Overall Experimental Results on Real Revisions
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6.2.1 Scaling With Larger Changes

The changes between adjacent revisions may not be very
significant. We further use the following settings to evaluate
our approach on larger changes:

� 4th: we set up a regression verification task every 4
revisions of the program, and

� 2Revs: we set up a regression verification task for the
last revision of each program.

Finally, we get respectively 898 and 259 regression verifi-
cation tasks using the above two settings.

Experimental results are listed in Table 2. The original set-
ting that incrementally verifies each adjacent revision of the
program is referred to as All in the table. The average num-
bers of changed lines for regression verification tasks using
the above three settings are 511, 1242 and 1562, respectively.
The increasing avg. diff. lines lead to decreasing RSR, which is
reasonable since more program changes can of course lead
less summaries to be reusable.

Observe that our approach can still get considerable per-
formance improvements (86.1 and 80.8 percent of speedups)
with the 4th and 2Revs settings, which show the effective-
ness of our approach on larger changes.

6.3 Overall Results on Artificial Revisions (RQ1)

The second experiment evaluates our approach on artificial
program revisions in the second benchmark. This experi-
ment contains 2,556 verification tasks, involving 426 driver/
specification pairs. Among all tasks, 2,130 are regression
verification tasks.

Results of this experiment are listed in Table 3. Again, we
limit this table to the 40 best and 10 worst cases out of all 426
driver/specification pairs (sorted by the “Speedup” col-
umn). Each column is with the same meaning as in Table 1.
Note that there is only one specification for each driver in
this benchmark, the “Spec.” column is thus skipped.

From this table, we observed similar results as in Table 1.
Among all 426 driver/specification pairs, our approach
wins on 389 pairs. In total, our approach solved 10 more
verification tasks, and the average speedup is 84.2 percent.

6.4 Comparison With Existing Tools (RQ1)

To further demonstrate the efficiency of our approach, two
more experiments were conducted to compare CPAcheckerþ

with the existing regression verification tools:

� eVolCheck [30], a regression verification tool that
implements the technique of interpolation-based
procedure summaries [11], and

� UAutomizerþ [31], a regression verification extension of
the famous software verification tool UAutomizer [19].

6.4.1 Comparison With eVolCheck

This experiment was conducted on the set of real-world
programs. Before this experiment, some of the programs
need to be modified to adapt to the input format of
eVolCheck, e.g., replacing “ldv_error()” by “assert(0)”.

Note that eVolCheck [30] is just an experimental imple-
mentation, and is not fully optimized.3 Among all 4,193
verification tasks, eVolCheck failed on 3,646 tasks due to
various parsing and runtime errors. The comparative
experiment was conducted on the remaining 547 verifica-
tion tasks.

The comparison results are listed in Table 4, where the
Trv1 and Trv2 columns report the total regression verification
timewithout andwith reuse, respectively, and the “Speedup”
is calculated by 1� Trv2=Trv1. Note that eVolCheck employs
the bounded model checking technique, and its unwinding
factor was set to 15. Among the 547 verification tasks,
eVolCheck solved (i.e., the underlying SMT solver returned
a result) 143 tasks within the time limit of 300 seconds,
whereas our CPAcheckerþ solved all. In comparison of the
efficiency of the employed reuse techniques, the speedups of
eVolCheck and CPAcheckerþ are 75.2 and 89.7 percent,
respectively. These results demonstrate the efficiency of our
summary reuse technique.

6.4.2 Comparison With UAutomizer

This experiment was conducted on the real-world bench-
mark, too. Excluding the programs that UAutomizer fails to
parse, there are totally 1,177 verification tasks that belong to
90 driver/specification pairs.4

Note that the adopted verification techniques are very dif-
ferent in these two tools: UAutomizerþ uses the trace
abstraction, while our CPAcheckerþ uses the predicate
abstraction. Moreover, the regression verification techniques
implemented in these two tools are also different: one
attempts to reuse the previously generated Floyd-Hoare
automata [31], while another attempts to reuse the previ-
ously generated state-based summaries. To compare the effi-
ciency of their adopted regression verification techniques,
we compare the speedups of these two tools (with reuse over
without reuse).

The comparison results are listed in Table 5. Note that
UAutomizerþ implements two reuse strategies, i.e., Eager
and Lazy. Results for both strategies are reported. From
Table 5, CPAcheckerþ achieves a speedup of 90.8 percent,

TABLE 2
Overall Experimental Results on Larger Changes

Revs. Avg. no Reuse Reuse Speed

#T Diff. Lines #solved Trv1 #solved Trv2 -up RSR

All 3934 511 3588 151.8K 3804 10.5K 93.1% 0.8
4th 898 1242 812 32.7K 870 4.5K 86.1% 0.6
2Revs 259 1562 240 7.7K 245 1.5K 80.8% 0.4

3. A successor version of this tool was recently released at: http://
verify.inf.usi.ch/upprover

4. In their original paper [31], the UAutomizerþ was evaluated on
the same set of programs.
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and UAutomizerþ gets a speedup of 82.8 percent or 81.4 per-
cent. This result demonstrates the efficiency of our summary
reuse technique.Note thatwe cannot conclude the superiority
of our reuse technique over UAutomizerþ from this result,
since they are used in different verification frameworks.

6.5 Impact of Reuse Strategies (RQ2)

In the former two experiments, both summary reuse and
precision reuse were enabled for our approach. In this
experiment, we switch off “precision reuse” and “summary

TABLE 3
Overall Experimental Results on Artificial Revisions

TABLE 4
Comparison of Our Approach With eVolCheck

#computable Trv1 Trv2 Speedup

eVolCheck 143 2382.7 591.9 75.2%
CPAcheckerþ 244 2074.2 213.2 89.7%

TABLE 5
Comparison of Our Approach With UAutomizerþ

Speedup

CPAcheckerþ 90.8%
UAutomizerþ-Eager 82.8%
UAutomizerþ-Lazy 81.4%
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reuse” respectively, and evaluate the efficiency of our
approach under different reuse strategies, i.e., “no Reuse”,
“Precision Reuse”, “Summary Reuse” and “both Reuse”.
This experiment was conducted on the second benchmark.

Table 6 shows the results of this experiment. Every row
sums up results of all 2,130 regression verification tasks. For
each row, we report the total regression verification time
“Trv” (in seconds), the total number of solved regression
tasks “#solved”, and the average memory usage “Mem” (in
gigabytes). Note that we only list the time usage in “no
Reuse” row. For the other three rows, we show the speedup
against “no Reuse” approach.

From Table 6, we found that every reuse technique outper-
forms “no Reuse”. They are not surprising since the precision
reuse can significantly reduce the CEGAR iterations [7], and
thus cuts down the verification time (73.5 percent speedup);
and the summary reuse can save the repeated computation of
summaries, and thus also reduces the verification time (69.5
percent speedup). Moreover, “Summary Reuse” solves 2
more tasks than “Precision Reuse”, illustrating that the former
technique is more robust than the latter one. Precision reuse
and summary reuse are two orthogonal techniques. By inte-
grating these two techniques, “both Reuse” get the best per-
formance, not only in analysis time (84.2 percent speedup),
but also in the number of verified regression tasks.

The “Mem” column shows that all reuse strategies save
the memory usage meetly. Again, “both Reuse” saves the
most on memory consumption.

6.6 Impact of Summary Types (RQ3)

This experiment investigates the efficiency of our approach
on different types of summaries. We evaluate the efficiency
of our approach with loop summaries reused, procedure
summaries reused and all summaries reused, respectively.
Note that “precision reuse” and “lazy counterexample anal-
ysis ” are switched off in this experiment.

We accumulate the analysis time on different summary
types. Results are illustrated in Fig. 7, where the X-axis

indicates the number of device drivers, and the Y-axis rep-
resents the accumulated analysis time. From Fig. 7, we
observed that “Procedure Summaries” outperforms “Loop
Summaries”, and “All Summaries Reuse” performs the
best. The main reason is that our benchmark contains fewer
loop statements than procedures (1,273 versus 11,417).

6.7 Impact of Lazy Counterexample Analysis (RQ4)

The final experiment evaluates the efficiency of lazy coun-
terexample analysis. Note that this technique is mainly rela-
tive to the refinement process, we measure the refinement
time and counterexample length in this experiment.

Fig. 8a shows the results on counterexample length in a
scatter diagram. Note that each device driver may involve
several regression verification tasks, and each regression
verification task may require many CEGAR iterations. The
reported counterexample length is the accumulated length
of all counterexamples generated in all CEGAR iterations
among all regression verification tasks of a device driver. In
Fig. 8a, each point represents the accumulated counterex-
ample length of a device driver, the Y and X axes indicate
our approach with and without lazy counterexample analy-
sis, respectively. BothX and Y axes are logarithmic. A point
below the reference line indicates a case where the lazy
counterexample analysis is beneficial.

Fig. 8b show results on refinement time. Again, the
reported refinement time is the accumulation of time spent
on all refinement iterations among all regression verification
tasks of all the currently-tested device drivers. In Fig. 8b, the
X-axis catalogs the number of device drivers and the Y -axis
shows the accumulated refinement time.

TABLE 6
Results on Different Reuse Strategies

Trv #solved Mem

no Reuse 20898.8 2119 589
Precision Reuse 73.5% 2125 151
Summary Reuse 69.5% 2127 180
Both Reuse 84.2% 2129 137

Fig. 7. Accumulating the analysis time on different summary types.

Fig. 8. Performance of summary reuse with and without lazy counterex-
ample analysis.
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On the whole, the lazy counterexample analysis per-
forms better on refinement, saving about 29.9 percent of
time. It is also observed that for 415 of 426 device drivers,
the corresponding data points in Fig. 8a are above the refer-
ence line, indicating that the accumulated counterexample
lengths were reduced with this technique. These results
conform to our algorithmic analysis in Section 5.3. With the
lazy analysis technique, the counterexample is not necessar-
ily to be fully expanded. And a shorter counterexample can
usually reduce the refinement efforts.

7 RELATED WORK

Regression verification was investigated mainly in two
directions, the verification of differences, and the reuse of
previously computed results. We also discuss the summari-
zation and symbolic execution techniques in this section.

Verification of Differences. In this line of research, one
attempts to establish the correctness of the new program by
proving its (conditional) equivalence to an old and verified
program.

Many techniques have been proposed in this line of
research. The technique for proving conditional equiva-
lence of two programs by abstraction and decomposition
of procedures is proposed in [4], [32]. Backes et al. [5] pro-
posed to distinguish the program behaviors that are
impacted by the changes. Only the impacted program
behaviors needed to be considered during the regression
verification. Beyer et al. [33] proposed the conditional
model checking, which outputs a condition such that the
program satisfies the specification under this condition.
B€ohme et al. [6] proposed a partition-based regression veri-
fication technique. Instead of proving the absence of
regression errors for the entire input space, this approach
continuously verifies the input space in a gradual manner.
Felsing et al. [34] reduced the equivalence proving of two
related imperative integer programs to Horn constraints
over uninterpreted predicates, and then solved the con-
straints using an Horn solver.

Moreover, Rungta et al. [35] presented a technique for
interprocedural change impact analysis. Yang et al. [36] intro-
duced an incremental approach for checking the confor-
mance of code against different properties. Trostanetski et al.
[37] analyzed the semantic difference between successive
revisions. Mora et al. [38] performed modular symbolic exe-
cution to prove the equivalence between different versions
of libraries with respect to the same parts of codebase (client
program).

Reuse of Intermediate Results. In this line of research, one
studies the reuse of previously-generated results to the cur-
rent verification. A variety of information has been proposed
for reuse.

Some researchers [9], [39], [40], [41] proposed to keep the
reached state space and reuse them in the further verifica-
tion runs. The rationale of these techniques is that state
spaces of consecutive versions tend to be similar. However,
recording and reusing reached state space may be costly,
and these techniques may not be applicable to large-scale
programs. For example, [40] points out 6 times more on
memory usage in the worst case. The lines of code of single
revision of [40] are less than 1,000.

Visser et al. [10] noticed the importance of constraint
solving for symbolic execution. They proposed to cache and
reuse the results of constraint solving. This approach was
further improved in [42], [43] from different aspects. This
group of techniques is orthogonal to our approach. These
techniques can be applied to enhance our approach.

Beyer et al. [7] proposed to use abstract precisions as the
intermediate results. An abstract precision defines the level
of abstraction, which conveys important information on the
current verification. They proposed to record the final
abstract precision and to reuse it as the initial abstract preci-
sion of the current verification. With this technique, the
number of refinements can often be reduced. Note that the
precision reuse and our summary reuse are orthogonal to
each other. It is possible to combine these two reuse techni-
ques together. We have already combined this technique
with ours. The combined technique shows a very promising
performance.

Fedyukovich et al. [44] offered a regression verification
technique for checking property directed equivalence. The
safe inductive invariants across program transformations
were migrated and established. Rothenberg et al. [31] pro-
posed to reuse the sequence of Floyd-Hoare automata
learned during the trace abstraction. Two reuse strategies,
eagerly and lazily, were developed in this paper. This tech-
nique has been realized in UAutomizer, a well-known soft-
ware verification tool.

The work most relevant to ours is [11], [30], where a
regression verification technique by means of interpolation-
based procedure summaries was proposed. Our idea of
summary reuse was inspired by these two papers. The main
difference lies in the way in which the summaries are con-
structed during the verification. In [11], [30], the authors use
a logical formula ’A to encode the behaviors of the proce-
dure %, and another logical formula ’B to encode its calling
context. Then they compute the interpolation of ’A and ’B

and use that as the summary of %. In contrast, we use the
abstract states in predicate analysis to construct the pro-
gram summaries. Each summary in our paper consists of an
entry state and a set of exit states of %. Our state-based sum-
maries can be completely integrated into the framework of
CEGAR. All ingredients of a state-based summary are by-
products of CEGAR. There needs no additional computa-
tion for generating this kind of summaries. Experimental
comparison in Section 6.4 demonstrates the practicability of
our approach.

Pastore et al. [45] proposed a method to validate that
an already tested code has not been broken by an
upgrade. It maintains a test suite that can be used to
revalidate the software as it evolves. Different from our
approach, this technique is respect to regression testing.
The verification technique is used there, as an aid, to vali-
date dynamic properties (or invariants). In contrast, we
aim to provide a new regression verification technique
via reusing summaries.

Summarization. In this line of research, one tries to
replace program fragments with summaries. A summary
can usually be represented as an input-output pair of a
program fragment. Procedure summaries have been long
studied and there are also many studies on loop summa-
ries recently.
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Many researchers [11], [30], [46], [47] proposed to use inter-
polation-based method to generate procedure summaries.
[47] combines function summaries with the expressiveness of
satisfiabilitymodulo theories (SMT),whichmakes summaries
smaller and more human-readable. [11], [30], [46] implement
a procedure summarization approach for software bounded
model checking, and uses interpolation-based procedure
summaries as over-approximation of procedure calls.

Kroening et al. [48] proposed the idea to substitute a loop
with a conservative abstraction of its behavior, constructing
abstract transformers for nested loops starting from the inner-
most loop. They also applied thismethod in termination anal-
ysis. Seghir et al. [49] used various inference rules for deriving
summaries based on control structures. However, this
approach can only compute precise loop summaries for
restricted classes of programs depending on inference rules.
Xie et al. [50] proposed a general framework for summarizing
multi-path loops. It classifies loops according to the patterns
of values changes in path conditions and the interleaving of
paths within the loop. A disjunctive summarization is con-
structed for all the feasible executions in the loop. Different
from our method, [50] cannot summarize loops containing
non-induction variables, array variables, and nested loops.
Godefroid et al. [51] investigated an alternative approach
based on automatic loop-invariant generation. This approach
can (partially) summarize a loop body during a single
dynamic symbolic execution, which can ease the path explo-
sion in dynamic test generation.

Symbolic Execution.In recent years, a great deal of effort
has been focused on regression symbolic execution, which
takes advantage of the previous analysis of symbolic execu-
tion to speedup the current analysis.

Person et al. [52] used a form of overapproximating sym-
bolic execution to skip portions of the program that are
provably identical across the versions. In [53], Person et al.
presented a regression symbolic execution technique for
Java programs, based on the Symbolic PathFinder. It ana-
lyzes the CFAs of two program versions, computes the loca-
tions affected by the program changes, and then applies the
symbolic execution to the affected code only. Further more,
Guo et al. [54] investigated the symbolic execution technique
for multi-threaded programs.

8 CONCLUSION

We proposed in this paper a fully automatic regression veri-
fication technique in the context of CEGAR. Abstract sum-
maries are reused across different abstract precisions and
different program revisions. We proposed a unified frame-
work for reusing both procedure summaries and loop sum-
maries. A lazy counterexample analysis algorithm was
further proposed to reduce the unnecessary path expansion
efforts. We implemented our approach in the software veri-
fication tool CPAchecker. Experimental results show the
promising performance of our technique.
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The Effectiveness of Supervised Machine
Learning Algorithms in Predicting

Software Refactoring

Maur�ıcio Aniche , Erick Maziero, Rafael Durelli , and Vinicius H. S. Durelli

Abstract—Refactoring is the process of changing the internal structure of software to improve its quality without modifying its external

behavior. Empirical studies have repeatedly shown that refactoring has a positive impact on the understandability and maintainability of

software systems. However, before carrying out refactoring activities, developers need to identify refactoring opportunities. Currently,

refactoring opportunity identification heavily relies on developers’ expertise and intuition. In this paper, we investigate the effectiveness

of machine learning algorithms in predicting software refactorings. More specifically, we train six different machine learning algorithms

(i.e., Logistic Regression, Naive Bayes, Support Vector Machine, Decision Trees, Random Forest, and Neural Network) with a dataset

comprising over two million refactorings from 11,149 real-world projects from the Apache, F-Droid, and GitHub ecosystems. The

resulting models predict 20 different refactorings at class, method, and variable-levels with an accuracy often higher than 90 percent.

Our results show that (i) Random Forests are the best models for predicting software refactoring, (ii) process and ownership metrics

seem to play a crucial role in the creation of better models, and (iii) models generalize well in different contexts.

Index Terms—Software engineering, software refactoring, machine learning for software engineering

Ç

1 INTRODUCTION

REFACTORING, as defined by Fowler [1] is “the process of
changing a software system in such a way that does not

alter the external behavior of the code yet improves its internal
structure”. Over the years, empirical studies have established
a positive correlation between refactoring operations and
code quality metrics (e.g., [2], [3], [4], [5], [6]). All these evi-
dence indicates that refactoring should be regarded as a first-
class concern of software developers.

However, deciding when and what (as well as understanding
why) to refactor have long posed a challenge to developers.
Software development teams should not simply refactor
their software systems at will, or decide not to refactor a
piece of code that causes technical debt, as any refactoring
activity comes with costs [7], [8].

To that aim, software developers have been relying more
andmore on different static analysis tools and linters as away
to collect feedback about their source code [9]. Developers not
only use these tools to find bug-related issues in their systems
(e.g., [10], [11]), but also for code quality-related advice [12],
[13]. Popular tools such as PMD, ESLint, and Sonarqube offer
detection strategies for common code smells, such as God

Classes or LongMethods. These tools have been now integrated
into different stages of the developers’ workflow, e.g., inside
IDEs (e.g., PMD’s plugin for IntelliJ or Eclipse), during code
review (by means of bots), or as a overall quality report (for
example, Sonarqube’s Technical Debt report).

Identifying refactoring opportunities is an important
stage that precedes the refactoring process. However,
despite their importance to the software development
world, the state-of-the-art tools that developers have been
using to get refactoring recommendations often present a
high number of false positives [14], making developers to
lose their confidence on them. The tools’ detection strategies
are often either based on hard thresholds of single metrics
(e.g., PMD considers all methods with more than 100 lines
of code, “problematic”), or on Lanza’s and Marinescu’s
seminal work on code smells detection strategies [15] which
rely on a combination of code metrics and thresholds.

While tools provide some degree of customization, e.g.,
PMD lets developers choose their own thresholds, and
Decor [16] enables developers to devise their own code
smells detection strategies, such hand-made detection strat-
egies may be too simplistic to capture the full complexity of
software systems. This is where we conjecture a ML-based
solution would help. We argue that the task of identifying rele-
vant refactoring opportunities, which currently heavily relies on
developers’ expertise and intuition, should be supported by sophis-
ticated recommendation algorithms.

Researchers have been indeed experimenting with differ-
ent AI-based techniques to recommend refactoring, such as
the use of search algorithms [17], [18], and pattern min-
ing [19]. In this paper, we explore how machine learning
(ML) can be harnessed to predict refactoring operations.
ML algorithms have been showing promising results when
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applied to different areas of software engineering, such as
defect prediction [20], code comprehension [21], and code
smells [22]. By learning from classes and methods that
underwent refactoring operations in practice, we surmised
that the resulting models would be able to provide more
reliable refactoring recommendations to developers.

We formulate the prediction of refactoring opportunities
as a binary classification problem. We build models that rec-
ommend several different refactoring operations (the full
list of refactoring operations is shown in Table 2). Each
model predicts whether a given piece of code should
undergo a specific refactoring operation. For instance, given
a method, the Extract Method model predicts whether that
method should undergo a extract method refactoring opera-
tion. More formally, given a set R of possible refactorings
for a source code element, we learn a set of models MrðeÞ,
r 9 R, that predict whether a source code element e should
be refactored by means of refactoring operation r.

To probe into the effectiveness of supervised ML algo-
rithms in predicting refactoring opportunities, we apply
six ML algorithms (i.e., Logistic Regression, Naive Bayes,
Support Vector Machines, Decision Trees, Random Forest,
and Neural Network) to a dataset containing more than
two million labelled refactoring operations that happened
in 11,149 open-source projects from the Apache, F-Droid,
andGitHub ecosystems. The resultingmodels are able to pre-
dict 20 different refactoring operations at class, method, and
variable-levels [1], with an average accuracy often higher
than 90 percent.

Understanding the effectiveness of the different models
is the first and necessary step in building tools that will help
developers in drawing data-informed refactoring decisions. This
paper provides the first solid large-scale evidence that ML
algorithms can model the refactoring recommendation problem
accurately.

In summary, this papermakes the following contributions:

i) A large-scale in-depth study of the effectiveness of dif-
ferent supervised ML algorithms to predict software
refactoring, showing that ML methods can accurately
model the refactoring recommendation problem.

ii) A dataset containing more than two million real-
world refactorings extracted frommore than 11 thou-
sand real-world projects.

2 RESEARCH METHODOLOGY

The goal of this paper is to evaluate the feasibility of using
supervised ML algorithms to identify refactoring opportunities.
To this end, we framed our research around the following
research questions (RQs):

RQ1: How accurate are supervisedML algorithms in predicting
software refactoring? In practice, some prediction algorithms
perform better than others, depending on the task. In this
RQ, we explore how accurate different supervised ML algo-
rithms (i.e., Support Vector Machines, Naive Bayes, Decision
Trees, Random Forest, and Neural networks) are in predict-
ing refactoring opportunities at different levels (i.e., refactor-
ings at class, method, and variable-levels), using Logistic
Regression as a baseline for comparison.

RQ2: What are the important features in the refactoring predic-
tion models? Features (i.e., a numeric representation of a
measurable property that is used to represent a ML problem
to the model) play a pivotal role in the quality of the
obtained models. In RQ1, we build the models using all the
features we had available (for a method-level refactoring,
for example, we use 58 different features). In this RQ, we
explore which features are considered the most relevant by
the models. Such knowledge is essential because, in prac-
tice, models should be as simple as and require as little data
as possible.

RQ3: Can the predictive models be carried over to different con-
texts? Understanding whether refactoring prediction mod-
els should be trained specifically for a given context or
whether it generalizes enough to different contexts can sig-
nificantly reduce the cost of applying and re-training these
models in practice. We set out to study whether prediction
models, devised in one type of software systems (e.g., librar-
ies and frameworks from the Apache ecosystem), are able to
generalize to different types of software systems (e.g.,
mobile apps in the F-Droid ecosystem). We investigate the
accuracy of predictive models against independent datasets
(i.e., out-of-sample accuracy).

Fig. 1 shows an overview of the approach we used to
answer the aforementioned RQs. Essentially, our approach
is three-fold: (i) data collection and feature extraction, (ii)
training and testing, and (iii) evaluation. These steps are
outlined below and later better detailed in the following
subsections.

Fig. 1. Overview of the research methodology.
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The first step is centered around data preparation. This
step involvesmining software repositories for labelled instan-
ces of refactored elements, e.g., a method that was moved, or an
inlined variable, and instances of elements that were not refac-
tored. To both refactored and non-refactored instances, we
extract code metrics (e.g., complexity and coupling), process
metrics (e.g., number of commits in that class), and ownership
metrics (e.g., number of authors). The code metrics are calcu-
lated at different levels, depending on the type of refactoring.
For a class-level refactoring, we calculate class-level metrics;
for a method-level refactoring, we calculate both class and
method-level metrics; for a variable-level refactoring, we cal-
culate class, method, and variable-level metrics.

In the second step, we use the examples of refactored and
non-refactored elements we collected as training and testing
data to different ML algorithms. We generate a model for
each combination of datasets (all datasets together, Apache,
F-Droid, and GitHub), refactoring operations (the 20 refac-
toring operations we show in Table 2), and ML algorithms
(i.e., Logistic Regression, Naive Bayes, Support Vector
Machines, Decision Tree, Random Forest, and Neural Net-
work). Before training the final model, our pipeline balances
the dataset, performs a random search for the best hyper-
parameters, and stores the best configuration and the rank-
ing of importance of each feature.

In the third step, we evaluate the accuracy of each gener-
ated model. First, we test the model using single datasets.
Next, we test the models that were trained using data from
just one dataset and test it in all the other datasets (e.g., the
model trained with the Apache dataset is tested on the
GitHub and F-Droid datasets). In all the runs, we record the
model’s precision, recall, and accuracy.

2.1 Experimental Sample

We selected a very large and representative set of Java proj-
ects from three different sources:

� The Apache Software Foundation (ASF) is a non-
profit organization that supports all Apache software
projects. The ASF is responsible for projects such as
Tomcat, Maven, and Ant. Our tools successfully
processed 844 out of their 860 Java-based projects.
We discuss why the processing of some projects
have failed in Section 2.6.

� F-Droid is a software repository of Android mobile
apps. The repository contains only free software
apps. Our tools successfully processed 1,233 out of
their 1,352 projects.

� GitHub provides free hosting for open source proj-
ects. GitHub has been extensively used by the open
source community. As of May 2019, GitHub has 37
million users registered. We collected the first 10,000

most starred Java projects. Note that ASF and F-
Droid projects might also exist in GitHub; we
removed duplicates. In the end, our tools were able
to process 9,072 projects.

The three different sources of projects provide the dataset
with high variability in terms of size and complexity of proj-
ects, domains and technologies used, and community. The
resulting sample can be seen in Table 1. It comprises the
11,149 projects (844 from Apache, 1,233 from F-Droid, and
9,072 from GitHub). These projects together a history of 8.8
million commits, measured at the moment of data collec-
tion, in March of 2019.

2.2 Extraction of Labelled Instances

In a nutshell, our data collection process happens in three
phases. In the first phase, the tool clones the software reposi-
tory, uses RefactoringMiner [23] to collect refactoring opera-
tions that happened throughout the history of the repository,
and collects the code metrics of the refactored classes. In the
second phase, where all the refactoring operations and their
respective files are already known, the tool then collects the
process and ownership metrics of the refactored classes.
Finally, the tool collects instances of non-refactored classes
(as well as their code, process, and ownershipmetrics).

For each project, we visit its entire master branch from
the oldest to the most recent commit. For each commit, we
invoke RefactoringMiner [23]. The tool can receive, as an
input, a pair of commits. It then uses the diff between the
two provided commits to identify refactoring operations
that have happened.1 We highlight that RefactoringMiner is
the current state-of-the-art tool to identify refactoring opera-
tions, having the highest recall and precision rates (98 and
87 percent, respectively) among all currently available refac-
toring detection tools [23].

For each refactoring operation that is detected by Refac-
toringMiner, we extract code metrics of the refactored ele-
ment in its version before the refactoring has been applied.
The intuition behind using the version before the refactor-
ing is that models should learn how to identify refactorings
by looking at the elements as they were prior to being refac-
tored. We collect the information at the precise level of the
refactoring. For example, if the refactoring is at class-level,
we collect all the class-level metrics related to the class
under refactoring; if it is a method-level refactoring, we col-
lect metric-level metrics related to the method under refac-
toring; the same applies for variable-level refactorings.

After all the refactorings were identified, our tool collects
the process and ownership metrics of the refactored classes.
These metrics are also collected at the version before the
refactoring had been applied.

Finally, our tool collects instances of non-refactored classes,
methods, and variables, i.e., code elements that did not undergo
any refactoring operations, to serve as counterexamples to
the model. This is a fundamental step as binary classification
models should learn how to separate between the two clas-
ses; in this case, between methods that need to be refactored,
andmethods that do not need to be refactored.

TABLE 1
Overview of the Sample Used in Our Study

Number of Projects Total number of commits

Apache 844 1,471,203
F-Droid 1,233 814,418
GitHub 9,072 6,517,597

11,149 8,803,218

1. Given that we need a pair of commits in order to identify the
refactoring operations, we skip the first commit of the repository, and
start from commit no. 2.
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Given that there is no clear way of extracting code ele-
ments that do not need to be refactored out of the source
code history of software systems, we propose an heuristic:
we consider a class to be a non-refactoring instance if it was
modified (i.e., a change committed in the Git repository)
precisely k times without a single refactoring operation
being applied in between this time. The heuristic aims at
identifying classes that can still be evolved by developers
(as developers have been evolving them) without the need
for a refactoring (as we see that they did not apply any
refactorings). We conjecture that such classes can serve as
good counterexamples for the model.

After experimentation, we set k ¼ 50 (we discuss the
influence of k in Section 4.1). The tool, therefore, collects all
classes that were modified precisely k times and did not go
through any refactoring operation. We then extract its
source code, process, and ownership metrics. Note that we
extract the metrics at time 0, and not at time k, as we want
the models to learn from the code element that, back then,
did not require any refactoring from developers. The same
element can appear more than once in this dataset (although
always with different metric values), as whenever we collect
an instance of non-refactoring, we restart its counter and
continue to visit the repository.

Note that our approach ignores test code (e.g., JUnit files)
and only captures refactoring operations in production files.
Test code quality has been the target of many studies (e.g.,
[24], [25], [26]). In this work, we assume that refactorings that
happen in test code are naturally different from the ones that
happen in production code; our future agenda includes the
development of refactoringmodels for test code.

In Table 3, we show the number of refactored and non-
refactored instances we collected per dataset. We highlight
the fact that the number of instances varies per refactoring,
which reflects how much developers apply each of these

refactorings. For example, the dataset contains around 327
thousand instances of Extract Method, but only 654 instances
of Move and Rename Class. We see this as a positive point to
our exploration, as the model will have to deal with refac-
torings where the number of instances is not high.

2.3 Feature Selection

We extract source code, process, and ownership metrics of
all refactored and non-refactored instances. These three
types of metrics have been proven useful in other prediction
models in software engineering (e.g., [20], [27], [28]). More-
over, earlier studies based on the correlation between refac-
toring and code quality metrics postulated that an increase
in the former leads to improvements in the latter (e.g., [3],
[4], [6]).2 Table 4 lists all the metrics we chose to train pre-
dictive models. In our online appendix [30], we show the
distribution (i.e., descriptive statistics) of the values of each
feature. The following subsections detail the source code,
process, and code ownership metrics we collect.

Source Code Metrics. Features in this category are derived
from source code attributes. We collect CK metrics [31] as
they express the complexity of the element. More specifi-
cally, CBO, WMC, RFC, and LCOM. We also collect several
different attributes of the element, e.g., number of fields,
number of loops, number of return statements. These met-
rics are collected at class (37 metrics), method (20 metrics),
and variable-levels (1 metric).

Process Metrics. Process metrics have been proven useful
in defect prediction algorithms [32], [33]. We collect five

TABLE 2
The 20 Refactoring Operations That are Studied in This Paper

Refactoring Problem and Solution

Class-level refactorings
Extract Class A class performs the work of two or more classes. Create a class and move the fields and methods to it.
Extract Subclass A class owns features that are used only in certain scenarios. Create a subclass.
Extract Super-class Two classes own common fields and methods. Create a super class and move the fields and methods.
Extract Interface A set of clients use the same part of a class interface. Move the shared part to its own interface.
Move Class A class is in a package with non-related classes. Move the class to a more relevant package.
Rename Class The class’ name is not expressive enough. Rename the class.
Move and Rename Class The two aforementioned refactorings together.

Method-level refactorings
Extract Method Related statements that can be grouped together. Extract them to a new method.
Inline Method Statements unnecessarily inside a method. Replace any calls to the method with the method’s content.
Move Method A method does not belong to that class. Move the method to its rightful place.
Pull Up Method Sub-classes have methods that perform similar work. Move them to the super class.
Push DownMethod The behavior of a super-class is used in few sub-classes. Move it to the sub-classes.
Rename Method The name of a method does not explain the method’s purpose. Rename the method.
Extract And Move Method The two aforementioned refactorings together.

Variable-level refactorings
Extract Variable Hard-to-understand/long expression. Divide the expression into separate variables.
Inline Variable Non-necessary variable holding an expression. Replace the variable references with the expression itself.
Parameterize Variable Variable should be a parameter of the method. Transform variable into a method parameter.
Rename Parameter The name of a method parameter does not explain its purpose. Rename the parameter.
Rename Variable The name of a variable does not explain the variable’s purpose. Rename the variable.
Replace Variable w/ Attribute Variable is used in more than a single method. Transform the variable to a class attribute.

Definitions derived from Fowler [1].

2. It is worth noting that studying the effect of refactoring on soft-
ware quality is a topic that remains relatively underdeveloped (despite
being a highly active topic). Therefore, while this research topic is
evolving, the evidence is likely to be far from clear-cut and, in some
cases, it might even be contradictory (e.g., [5], [29]).
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different process metrics: quantity of commits, the sum of
lines added and removed, number of bug fixes, and number
of previous refactoring operations. The number of bug fixes is
calculated bymeans of an heuristic:Whenever any of the key-
words {bug, error, mistake, fault, wrong, fail, fix}
appear in the commit message, we count one more bug fix to
that class. The number of previous refactoring operations is
based on the refactoringswe collect fromRefactoringMiner.

Code Ownership Metrics. We adopt the suite of ownership
metrics proposed by Bird et al. [34]. The quantity of authors is
the total number of developers that have contributed to the
given software artifact. The minor authors represent the
number of contributors that authored less than 5 percent (in
terms of the number of commits) of an artifact. The major
authors represent the number of developers that contributed
at least 5 percent to an artifact. Finally, author ownership is
the proportion of commits achieved by the most active
developer.

The cardinality of the set of features we use to train each
model varies. The feature set for training models whose
desired output is to predict class-level refactoring comprises
46 features: 37 source code metrics, 5 process metrics, and 4
ownership metrics. As for the training of method-level mod-
els, we use a set of features that comprises all the 37 class-
level source code metrics plus 20 method-level source code
metric features, totaling 57 features. The same holds for vari-
able-level models, all class, method, and variable-level
source codemetrics features are used to fit thesemodels.

Process and ownership metrics are only used in class-
level refactoring models. Our tool relies on Git data to mea-
sure ownership and process metrics. However, Git provides

information solely at file and line levels. While process and
ownership metric values for a file are good approximations
of process and ownership metric values for classes, the same
does not hold for methods and variables. Technically speak-
ing, extracting such metrics in a fine-grained manner (i.e.,
whichmethods or variables weremodified, precisely) would
cost extra computational analysis, which we decided to
avoid. We discuss the importance of such metrics later in
Section 4.3.3

2.4 Model Training

In this step, we train different ML algorithms to predict
refactoring opportunities. We use the collected refactoring
instances (and their non-refactoring counterexamples) as
training data.

We make use of six different (binary classification) super-
vised ML algorithms, all available in the scikit-learn [36]
and keras:

TABLE 3
Overview of the Number of Instances of Refactoring

and Non-Refactoring Classes

All Apache GitHub F-Droid

Class-level refactorings
Extract Class 41,191 6,658 31,729 2,804
Extract Interface 10,495 2,363 7,775 357
Extract Subclass 6,436 1,302 4,929 205
Extract Superclass 26,814 5,228 20,027 1,559
Move And Rename Class 654 87 545 22
Move Class 49,815 16,413 32,259 1,143
Rename Class 3,991 557 3,287 147

Method-level refactorings
Extract And Move Method 9,723 1,816 7,273 634
Extract Method 327,493 61,280 243,011 23,202
Inline Method 53,827 10,027 40,087 3,713
Move Method 163,078 26,592 124,411 12,075
Pull Up Method 155,076 32,646 116,953 5,477
Push DownMethod 62,630 12,933 47,767 1,930
Rename Method 427,935 65,667 340,304 21,964

Variable-level refactorings
Extract Variable 6,709 1,587 4,744 378
Inline Variable 30,894 5,616 23,126 2,152
Parameterize Variable 22,537 4,640 16,542 1,355
Rename Parameter 33,6751 61,246 261,186 14,319
Rename Variable 324,955 57,086 250,076 17,793
Replace Variable w/ Attr. 25,894 3,674 18,224 3,996

Non-refactoring instances
Class-level 10,692 1,189 8,043 1,460
Method-level 293,467 38,708 236,060 18,699
Variable-level 702,494 136,010 47,811 518,673

TABLE 4
List of Features Collected at Class, Method, and Variable Levels

Class-level (total of 46 metrics)
Source Code (37 metrics): CBO, WMC, RFC, LCOM, number of
methods, number of static methods, number of public methods,
number of private method, number of protected method, number of
abstract methods, number of final methods, number of synchronized
methods, number of fields, number of static fields, number of public
fields, number of private fields, number of protected fields, number of
default fields, number of final fields, number of synchronized fields,
number of static invocations, lines of code, number of ’return’
statements, number of loops, number of comparison expressions,
number of try catches, number of expressions with parenthesis,
number of string literals, number of ’number constants’, number of
assignments, number of mathematical operators, number of declared
variables, max number of nested blocks, number of anonymous
classes, number of sub classes, number of lambda expressions,
number of unique words.
Process (5 metrics):Quantity of commits, sum of lines added, sum of
lines deleted, number of bug fixes, number of previous refactoring
operations.
Ownership (4 metrics):Quantify of authors, quantity of minor
authors, quantity of major authors, author ownership.

Method-level (total of 20 metrics + 37 code metrics at class-level)
Source Code (20 metrics): CBO, WMC, RFC, lines of code, number of
’return’ statements, number of variables, number of parameters,
number of loops, number of comparison operators, number of try/
catches, number of expressions with parenthesis, number of string
literals, number of ’number constants’, number of assignment,
number of mathematical operators, max number of nested blocks,
number of anonymous classes, number of sub-classes, number of
lambda expressions, number of unique words.

Variable-level (total of 1 metric + 57 method+class level)
Source Code (1 metric): Number of times the variable is used.

3. Recent work by Higo et al. [35] proposes a “finer Git”, which tracks
changes in individual methods. Such tool was not available at the time of
this research.

By using class-level features in the training of method-level refactor-
ing prediction models (or similarly, class-level and method-level fea-
tures in variable-level refactoring models), we give models a “sense of
context”. The intuition is that developers might not decide to refactor a
method by only looking at it; rather, they might look at the overall con-
text (i.e., class) that the method belongs to.

Subsequently, the input to a trained model is a feature vector con-
taining the source code, process, and ownership metrics of the class,
method, or variable one wants to predict.
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i) Logistic Regression [37]: Logistic Regression is, simi-
larly to linear regression, centered on combining
input values using coefficient values (i.e., weights) to
predict an outcome value. However, differently from
linear regression, the outcome value being modeled
ranges from 0 to 1.

ii) (Gaussian) Naive Bayes [38]: Naive Bayes algorithms
describe a set of steps to apply Bayes’ theorem to clas-
sification problems. These algorithms use training
data to compute the probability of each outcome based
on the information extracted from feature values.

iii) Support Vector Machines [39]: Support Vector
Machines computes a hyper-plane in a high-dimen-
sional space to classify data into predefined classes.
The algorithm searches for the best hyper-plane to sep-
arate the training instances into their respective classes.

iv) Decision Trees [40]: Decision Tree algorithms yield
hierarchical models composed of decision nodes and
leaves. Essentially, the resulting models represent a
partition of the feature space.

v) Random Forest [41]: Random Forest is an ensemble
of decision tree predictors. That is, such algorithm
uses a number of decision trees with random subsets
of the training data.

vi) Neural Networks [42]: Neural Networks are a family
algorithms designed to loosely resemble how the
human brain processes information. The elements
that comprise the architecture of such algorithms are
similar to neurons, and Neural Networks are made
up of one or more layers of these neurons. Essen-
tially, these layers of neurons act as a function, map-
ping inputs into their respective classes.

We decided to choose a mixture of simple/less sophisti-
cated learners (e.g., Logistic Regression and Naive Bayes)
and smarter learners (e.g., Decision Trees and Random For-
ests). Simple learners serve as a baseline to understand
whether more complex learners are needed.

Our training pipeline works as follows:

i) We collect the refactoring and the non-refactoring
instances for a given dataset d and a refactoring R.
We merge them in a single dataset, where refactoring
instances are marked with a true value and non-refac-
toring instances are marked with a false value. These
instances will later serve as training and test data.

ii) The number of refactoring instances vary per refac-
toring; thus, the number of refactoring instances
might be greater than or smaller than the (fixed) num-
ber of non-refactoring instances. Thus, we balance the
dataset as to avoid the model to favour the majority
class. To that aim, we use scikit-learn’s random under
sampling algorithm, which randomly selects instan-
ces of the over-sampled class.4

iii) We scale all the features to a [0,1] range to speed up
the learning process of the algorithms [43]. We use
the Min-Max scaler provided by the scikit-learn
framework.

v) We tune the hyper parameters of each model by
means of a random search. We use the randomized

search algorithm provided by the scikit-learn. We set
the number of iterations to 100 and the number of
cross-fold validations to 10. Thus, we create 1,000
different models before deciding the model’s best
parameters. For the Support Vector Machines (SVM)
in particular, we use number of iterations as 10 and
number of cross-fold validations to 5, given its slow
training time (which we discuss more below). For
each algorithm, we search the best configuration
among the following parameters:
� Logistic Regression: C: This parameter specifies,

inversely, the strength of the regularization. Reg-
ularization is a technique that diminishes the
chance of overfitting the model.

� Naive Bayes: Smoothing: It specifies the variance of
the features to be used during training.

� SVM: C: This parameter informs the SVM opti-
mization algorithm how much it is desired to
avoid misclassifying training instances. Like the
C parameter in the Logistic Regression, it helps
in avoiding overfitting. Moreover, given that our
goal is to also understand which features are
important to the model (RQ2), we opt only for
the linear kernel of the SVM. Future research
should explore how non-linear kernels perform.

� Decision tree: Max depth: It specifies the maximum
depth of the generated tree. The deeper the tree,
more complex the model becomes; Max features:
It defines the maximum number of features to be
inspected during the search for the best split,
generating inner nodes; Min sample split: It indi-
cates the minimum number of instances needed
to split an internal node, supporting the creation
of a new rule; Splitter: It defines the strategy in
choosing the split at each node, varying from
“best to random” strategies; Criterion: It defines
the function to measure the quality of a split.

� Random Forest: The max depth, max features, min
samples split, and criterion parameters have simi-
lar goals as to the ones in the Decision Tree algo-
rithm; Bootstrap: It specifies whether all training
instances or bootstrap samples are used to build
each tree; Number of estimators: It indicates the
number of trees in the forest.

� Neural Network: As we intend to explore sophisti-
cated and more appropriated Deep Learning
architectures in the future work (Section 4), here
we compose a sequential network of three dense
layers with 128, 64, and 1 units, respectively.
Also, to avoid overfitting, we added dropout
layers between sequential dense layers, keeping
the learning in 80 percent of the units in dense
layers. The number of epochs was set to 1,000.
This architecture is similar to a Multilayer Per-
ceptron, in the sense that it is a feedforward deep
network.

v) Finally, we perform a stratified 10-fold cross-valida-
tion (i.e., 9 folds for training and 1 fold for testing)
using the hyper parameters established by the
search. We return the precision, recall, and accuracy
of all the models.4. We discuss the impact of balancing the classes in Section 6.2.

ANICHE ETAL.: EFFECTIVENESS OF SUPERVISED MACHINE LEARNING ALGORITHMS IN PREDICTING SOFTWARE REFACTORING 1437



Once a binary classification model for a given refactoring
R is trained, given a code element e (i.e., a class, method, or
a variable), the model would predict true in case e should
undergo through a refactoring R, or false in case e should
not undergo through a refactoring R.5

2.5 Evaluation

To answer RQ1, we report and compare the mean precision,
recall, and accuracy among the different models after the 10
stratified cross-fold executions.6 We apply stratified sam-
pling in all the cross-fold executions to make sure both train-
ing and test datasets contain the same amount of positive
and negative instances. For SVM and the Neural Network,
we set the number of cross-folds to 5. The SVM and the Neu-
ral Network models training and validation processes took
237 and 232 hours, respectively. The precision, recall, and
accuracy across the five folds of both models were highly
similar, indicating that the models are stable (numbers can
be found in our appendix [30]), and thus, we have no reason
to believe that the smaller number of cross-fold validations
for the SVM andNeural Network affected their results.

For clarity, we revisit what a correct prediction means in
this context. We recall that the feature vectors of the positive
labels (i.e., elements that underwent some refactoring oper-
ations) are represented by the code metrics collected at the
commit right before developers refactored them. In other
words, the feature vector represents the code element at the
moment that the developer decided that it needed to
undergo a refactoring. On the other hand, the feature vec-
tors of the negative labels are represented by the code met-
rics of classes that did not undergo the refactoring
operation for k commits in a row. In other words, code that
can be maintained for at least k commits without undergo-
ing a refactoring. Thus, a correct prediction means that the
model was able to predict that a code element with that
characteristic underwent a refactoring operation.

For example, let us suppose a method m1() underwent a
Extract Method in commit 10. This means a developer, when
working with m1()’s implementation at version 9 decided
the method needed a Extract Method. When testing the
model, we give a feature vector representing m1() in commit
9, and we expect the model to return “true” (i.e., this method
needs a Extract Method). If the model returned “false”, that
would result in a false negative. Moreover, suppose another
method m2() that was changed 50 times between commits
[10, 200]. In none of these changes developers refactored this
method. When testing the model, we give a feature vector
representing method m2() in commit 10, and we expect the
model to return “false” (i.e., the method does not need a
Extract Method). If the model returned “true”, that would be
an example of a “false negative”.

To answer RQ2, we report how often each feature (from
Table 4) appears among the top-1, top-5, and top-10 most
important features of all the generatedmodels. We use scikit-
learn’s ability to extract the feature importance of the Logistic
Regression, SVM, Decision Trees, and Random Forest

models. The framework does not currently have a native way
to extract feature importance of Gaussian Naive Bayes and
Neural Networks. We intend to extract the feature impor-
tance of both algorithms via “permutation importance” in
future work. Given the high number of different models we
build (we extracted the feature importance of 320 out of the
480models we created), we have no reason to believe the lack
of these two models would affect the overall findings of this
RQ. Given that the number of features vary per refactoring
level, we generate different rankings for the different levels
(i.e., different ranks for class, method, and variable-level
refactorings). Some models (e.g., SVM) might return the
importance of a feature as a negative number, indicating that
the feature is important for the prediction of the negative
class.We consider such a feature also important to the overall
model, and thus, we build the ranking using the absolute
value of feature importance returned by themodels.

Finally, to answer RQ3, we test each of our dataset-spe-
cific models on the other datasets. For example, we test the
accuracy of all Apache’s models in the GitHub and F-Droid
datasets. More formally, for each combination of datasets d1
and d2, where d1 6¼ d2, and refactoring r we: 1) load the pre-
viously trained r model of the d1 dataset, 2) open the data
we collected for r of the d2 dataset, 3) apply the same pre-
processing steps (i.e., sampling and scaling), 4) use d1’s
model to predict all data points of d2’s dataset, 5) and report
the precision, recall, and accuracy of the model.

2.6 Implementation and Execution

The data collection tool is implemented in Java and stores
all its data in a MySQL database. The tool integrates
natively with RefactoringMiner [23] (also written in Java) as
well as with the source code metrics tool.

The tool gives RefactoringMiner a timeout of 20 seconds
per commit to identify a refactoring. We define the timeout
as RefactoringMiner performs several operations to identify
refactorings, and these operations grow exponentially,
according to the size of the commit. Throughout the devel-
opment of this study, we observed some commits taking
hours to be processed. The 20 seconds was an arbitrary
number decided after experimentation. In practice, most
commits are resolved by the tool in less than a second.
Given that its performance is related to the size of the com-
mit and not to the size of the class under refactoring or the
number of refactorings in a commit, we do not believe that
ignoring commits where RefactoringMiner takes a long
time influences our sample in any way.

Given that our tool integrates different tools, there are
many opportunities for failures. We have observed (i) the
code metrics tool failing when the class has an invalid struc-
ture (and thus, ASTs can not be built), (ii) our tool failing to
populate process and ownership metrics of refactored clas-
ses (often due to files being moved and renamed multiple
times throughout history, which our tool could not track in
100 percent of the cases), (iii) RefactoringMiner requiring
more memory than what is available in the machine. To
avoid possible invalid data points, we discard all data
points that were involved in any failure (a total of 10 percent
of the commits we analyzed).

We had 30 Ubuntu 18.04 LTS (64bits) VMs, each with 1
GB of Ram, 1 CPU core, and 20 GB of disk available for data

5. For completeness, in such models, a false positive would mean
that the model predicted true for an element e that, in fact, did not
undergo a refactoring R; a false negative would mean that a model pre-
dicted false for an element e that, in fact, did undergo a refactoring R.

6. We kept the 50-50 distribution in all the 10 folds.
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collection. These machines, altogether, spent a total of 933
hours to collect the data. We observe that the majority of
projects (around 99 percent of them) took less than one hour
to be processed. 159 of them took more than one hour, and
70 of them more than two hours. A single project took 23
hours.

The ML pipeline was developed in Python. Most of the
code relies on the scikit-learn framework [36] and keras for
the Neural Networks training. To the ML training, we had
under our disposition two machines: one Ubuntu 18.04.2
LTS VM, 396 GB of RAM, 40 CPU cores, and one Ubuntu
18.04.2 LTS VMS with 14 CPUs and 50 GB of RAM. Given
the hyperparameter search and cross-validations, our ML
pipeline experimented with a total of 404,080 models. The
overall computation (training and testing) time was approx-
imately 500 hours.

2.7 Reproducibility

Our online appendix [30] contains: (i) the list of the 11,149
projects analyzed, (ii) a spreadsheet with the full results,
(iii) the source code of the data collection and the ML tools,
and (iv) a two million refactorings dataset.

3 RESULTS

In the following subsections, we answer each of the RQs.

3.1 RQ1: How Accurate are Supervised ML
Algorithms in Predicting Software Refactoring?

In Table 5, we show the precision, recall, and accuracy of
each ML algorithm in each one of the 20 refactoring opera-
tions, when training and testing in the entire dataset. Due to
space constraints, we show the results of training and test-
ing in individual datasets, as well as the confusion matrix,
in our appendix [30].

Observation 1: Random Forest models are the most accu-
rate in predicting software refactoring. Random Forest
has the highest overall accuracy among all types of refac-
torings. Its average accuracy for class, method, and vari-
able-level refactorings, when trained and tested in the
entire dataset, are 0.93, 0.90, and 0.94, respectively. The
only three refactorings that are below the 90 percent
threshold are Extract Class, Extract and Move Method, and
Extract Method. Its average accuracy among all refactorings
in all the datasets together, as well as Apache, GitHub, and
F-Droid datasets only, are 0.93, 0.94, 0.92, and 0.90, respec-
tively. As a matter of comparison, the second best model is
Decision Trees, which achieves an average accuracy of
0.89, 0.91, 0.88, and 0.86 in the same datasets.

Observation 2: Random Forest was outperformed only
a few times by Neural Networks. In the F-Droid data-
set, Neural Networks outperformed Random Forest 4
times (in terms of accuracy). Neural Networks also out-
performed Random Forest in two opportunities in both
the Apache and GitHub datasets. However, we note that
the difference was always marginal (around 1 percent).

Observation 3: Naive Bayes models present high recall,
but low precision. The Naive Bayes models presented
recalls of 0.94, 0.93, 0.94, and 0.84 in the entire dataset,
Apache, GitHub, and F-Droid datasets, respectively.
These numbers are often slightly higher than the ones
from Random Forest models, which were the best models
(on average, 0.01 higher). Nevertheless, Naive Bayes
models presented the worst precision values: 0.62, 0.66,
0.62, and 0.67 in the same datasets. Interestingly, no other
models presented such low precision.

Observation 4: Logistic Regression, as a baseline, shows
good accuracy. Logistic Regression being, perhaps,
the most straightforward model in our study, presents a

TABLE 5
The Precision (Pr), Recall (Re), and Accuracy (Acc) of the Different ML Models, When Trained

and Tested in the Entire Dataset (Apache + F-Droid + GitHub)

Values range between [0,1]. Numbers in bold represent the highest accuracy for each refactoring operation.
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somewhat high overall accuracy, always outperforming
Naive Bayes models. The average accuracy of the model
in all the refactorings in the entire dataset is 0.83. Its best
accuracy was in the Move Class refactoring: 0.94 (which
also presented high values in the individual datasets: in
F-Droid, 0.94, in GitHub, 0.93, and in Apache, 0.95), and
its worst accuracy, 0.77, was in the Extract and Move
Method and Inline Method refactorings. The overall aver-
ages are similar in the other datasets: 0.85 in Apache, 0.83
in GitHub, and 0.78 in F-Droid.

3.2 RQ2: What are the Important Features in the
Refactoring Prediction Models?

In Table 6, we show the most important features per refac-
toring level. The complete ranking of features importance
can be found in the online appendix [30].

Observation 5: Process metrics are highly important in
class-level refactorings. Metrics such as quantity of com-
mits, lines added in a commit, and number of previous refactor-
ings appear in the top-1 ranking very frequently. In the
top-5 ranking, seven out of the first ten features are pro-
cess metrics; six out of the first ten are process metrics in
the top-10 ranking. Ownership metrics are also consid-
ered important by the models. The author ownershipmetric
appears 32 times in the top-1 ranking; the number of major
authors and number of authors metrics also appear often in
the top-5 and top-10 rankings.

Observation 6: Class-level features play an important
role in method-level and variable-level refactorings.

Method-level refactoring models often consider class-
level features (e.g., lines of code in a class, number of
methods in a class) to be more important than method-
level features. In the top-1 ranking for the method-level
refactoring models, 13 out of the 17 features are class-
level features. In variable-level refactoring models, the
same happens in 11 out of 17 features. Interestingly, the
most fine-grained feature we have, the number of times a
variable is used appears six times in the top-1 ranking for
the variable-level refactoring models.

Observation 7: Some features never appear in any of the
rankings. For class-level refactoring models, the number
of default fields, and the number of synchronized fields7 do
not appear even in the top-10 ranking. Nine other features
never appear in the top-10 feature importance ranking of
method-level refactoring models (e.g., number of compari-
sons, math operations, and parenthesized expressions), and
ten features never make it in the variable-level refactoring
models (e.g., number of loops, and parenthesized expressions).

3.3 RQ3: Can the Predictive Models be Carried Over
to Different Contexts?

We show the precision and recall of each model and refac-
toring, in all the pairwise combinations of datasets in our
appendix [30]. In Table 7, we show the overall average pre-
cision and recall of the Random Forest models (the best
model, according to RQ1 results) when trained in one data-
set and tested in another dataset.

Observation 8: Random Forest still presents excellent
precision and recall when generalized, but smaller
when compared to previous results. Random Forest
models achieve precision and recall of 0.87 and 0.84,
when trained using the GitHub repository, the largest
repository in terms of data points, and tested in Apache.
When trained in the smallest dataset, F-Droid, Random
Forest still performs reasonably well: precision and recall
of 0.77 and 0.73 when tested in Apache, and 0.81 and 0.76
when tested in GitHub. Nevertheless, we remind the
reader that in terms of accuracy, Random Forest achieved
average scores of around 90 percent. In other words,
models seem to perform best when trained with data col-
lected from different datasets.

TABLE 6
Most Important Features for the Models

at Different Refactoring Levels

Class-level refactorings
Top-1: quantity of commits (68), author ownership (32), lines added (6)
Top-5: quantity of commits (108), lines added (63), previous
refactorings (63), author ownership (56), uniquewords in the class (47)
Top-10: quantity of commits (111), lines added (90), previous
refactorings (90), unique words in the class (78), class LOC (70)

Method-level refactorings
Top-1: class LOC (39), number of unique words in a class (15),
number of methods in a class (13), class LCOM (9), number of fields in
a class (6)
Top-5: class LOC (74), number of methods in a class (55), number of
unique words in a class (52), class LCOM (37), number of final fields
in a class (25)
Top-10: number of methods in a class (90), class LOC (88), class
LCOM (71), number of unique words in a class (54), class CBO (54)

Variable-level refactorings
Top-1: class LOC (27), class LCOM (10), number of unique words in a
class (9), method LOC (7), number of public fields in a class (7)
Top-5: class LOC (61), number of unique words in a class (48),
number of string literals in a class (38), number of variables in the
method (30), number of public fields in a class (24)
Top-10: number of string literals in a class (72), class LOC (71),
number of unique words in a class (66), number of variables in a class
(55), number of variables in a method (49)

Top-1, Top-5, and Top-10 indicate the number of times (in parenthesis) a spe-
cific feature appeared in the top-N ranking. For class and method level refactor-
ings, a feature can at most appear 112 times; 96 times for a variable level
refactoring. We show only the first five features per ranking; full list in the
online appendix [30].

TABLE 7
The Average Precision (Pr) and Recall (Re) of the 20 Refactoring

Prediction RandomForest Models, When Trained in One
Dataset and Tested in Another Dataset

Apache GitHub F-Droid

Pr Re Pr Re Pr Re

Apache - - 0.84 0.79 0.77 0.70
GitHub 0.87 0.84 - - 0.84 0.80
F-Droid 0.77 0.73 0.81 0.76 - -

Rows represent datasets used for training, and columns represent datasets used
for testing.

7. By looking at the features distribution in our appendix [30], we
observe that most classes do not have synchronized fields; we discuss
how feature selection might help in simplifying the final models in
Section 4.
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Observation 9: Method and variable-level refactoring
models perform worse than class-level refactoring. In
general, class-level refactoring models present higher pre-
cision and recall than the method- and variable-level
refactoring models. Using a model trained with the
GitHub data set and tested in the F-Droid data set, the
average precision and recall for Random Forest models at
class-level are 0.92 and 0.92. On the other hand, the aver-
age precision and recall for Random Forest models at
method-level are 0.77 and 0.72, respectively; at variable-
level, we observe precision and recall of 0.81 and 0.75.

Observation 10: SVM outperforms Decision Trees when
generalized. We observed Decision Trees being the sec-
ond best model in RQ1. When carrying models to different
contexts, however, we observe that SVM is now the second
best model, and only slightly worse than the Random For-
est. For example, in the appendix, we see that for a model
trained in GitHub and tested in Apache, the average preci-
sion and recall of SVMmodels is 0.84 and 0.83 (in contrast,
Random Forest models have 0.87 and 0.84). The difference
between both models is, on average, 0.02.

Observation 11: Logistic Regression is still a somewhat
good baseline. Logistic Regression baseline models,
when carried to different contexts, still present somewhat
good numbers. As an example, the models trained with
GitHub data and tested in the Apache dataset show an
average precision and recall of 0.84 and 0.83. The worst
averages happen in the models trained with the Apache
dataset and tested in the F-Droid dataset (precision of
0.75 and recall of 0.72).

Observation 12: Heterogeneous datasets might general-
ize better. More homogeneous datasets (i.e., the Apache
and F-Droid datasets), when carried to other contexts,
present lower precision and recall. This phenomenon can
be seen whenever Apache and F-Droid models are cross
tested; their precision and recall never went beyond 0.78.
This phenomenon does not happen when GitHub, a more
heterogeneous dataset in terms of different domains and
architectural decisions, is tested on the other two datasets.

4 DISCUSSION

In the following, we extensively discuss some important
ramifications of our research. More specifically, we discuss:

1) the challenges in defining k as a constant to collect
non-refactored instances,

2) the features used for model building as well as their
interpretability,

3) the importance of process and ownership metrics
(and the need for fine-grained metrics),

4) the need for larger and more heterogeneous datasets
to achieve higher generalizability,

5) how to prioritise the refactoring recommendation
suggestions given by the models,

6) the need for more fine-grained refactoring
recommendations,

7) the recommendation of high-level refactorings,
8) taking the developers’ motivations into account,

9) the use of Deep Learning (and Natural Language
Processing algorithms) for software refactoring, and

10) the challenges of deploying ML-based refactoring
recommendation models in the wild.

4.1 Collecting Non-Refactored Instances via an
Heuristic

The identification of negative instances, i.e., code elements
that did not undergo a refactoring operation, is an impor-
tant theoretical problem that our research community
should overcome.

We propose the use of code elements that did not
undergo refactoring operations for k commits in a row. In
this particular paper, we chose k ¼ 50 (i.e., 50 commits in a
row without being refactored) as a constant to determine
whether a class, its methods, and its variables should be
considered an instance of a non-refactoring. The number 50
was chosen after manual exploration in the dataset.

To measure the influence of k in our study, we re-exe-
cuted our data collection procedure in the entire dataset
(11,149 projects) with two different values for k:

� k ¼ 25. The half of the value used in the main experi-
ment. A threshold of 25 means that we are less con-
servative when considering instances for the non-
refactoring dataset. In this dataset, we have a total of
7,210,452 instances (at class, method, and variable
levels). This represents an increase of 7.1 times when
compared to the dataset in the main experiment.

� k ¼ 100. The double of the value used in the main
experiment. A threshold of 100 means that we are
more conservative when it comes to considering a
class as an instance of a non-refactoring. In this data-
set, we have a total of only 120,775 instances. This
represents around 12 percent of the dataset in the
main experiment.

We note that the distribution of the features values of the
non-refactored instances in k ¼ 25 and k ¼ 100 datasets are
somewhat different from each other. As examples, the quan-
tiles of the CBO at class-level in k ¼ 25 dataset are [1Q=17,
median=35, mean=57, 3Q=69], whereas the quantiles in k ¼
100 dataset are [1Q=6, median=28, mean=54, 3Q=75]; for the
WMC at class-level, we observe, [1Q=59, median=145,
mean=273, 3Q=343]for k ¼ 25, and [1Q=72, median=266,
mean=425, 3Q=616] for k ¼ 100; for the LOC at class-level, we
observe [1Q=320,median=734,mean=1287, 3Q=1626] for k ¼
25, and [1Q=466, median=1283, mean=1568, 3Q=2189] for
k ¼ 100.

We trained Random Forest models (given that it was the
algorithm with the best accuracy in RQ1) in both k ¼ 25 and
k ¼ 100 datasets. In k ¼ 25, the average of the absolute dif-
ference in the precision and recall of the 20 refactoring mod-
els, when compared to k ¼ 50, are 0.0725 and 0.099,
respectively. In k ¼ 100, the average of the absolute differ-
ence in precision and recall when compared to k ¼ 50 are
0.0765 and 0.064, respectively. The precision and recall of
each refactoring is in our online appendix [30].

In k ¼ 25, however, in only four (Move Class, Move and
Rename Class, Extract Method, and Rename Method; out of 20)
models, the precision values were better than in the k ¼ 50.
Similarly, only a single model (Rename Method) had a better
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recall when compared to k ¼ 50. This might indicate that
k ¼ 25 is not a good threshold, as it might be too small. In
k ¼ 100, while it is hard to distinguish whether it has a bet-
ter precision than k ¼ 50 (11 models did better with k ¼ 50
and 9 models did better with k ¼ 100), models in k ¼ 100
had almost always a better recall (16 models out of 20). This
might indicate that more conservative thresholds might
help in increasing recall at the expense of precision perfor-
mance. This discussion shows the importance of finding the
right threshold to determine classes, methods, and variables
that can serve as non-refactoring instances.

It is worth emphasizing that our proposed heuristic to
detect counterexamples of refactoring instances is an
approximation. While we believe that our assumption that
classes that can still be evolved by developers without the
need for refactoring can serve as good counterexamples for
the model, these data points are simply approximations.
There might be other more effective counterexamples that
would contribute to the creation of better models.

As an alternative, when designing the model, we consid-
ered the possibility of doing the extraction of non-refactored
instances at commit-level. For example, whenever a refac-
toring R was detected in a class, method, or variable a, we
extracted all the other elements that existed in the modified
files of that commit as examples of non-refactored instances.
We relied on the assumption that the elements that did not
change in that commit could be used as counterexamples
during model creation. We, however, discarded this idea
after some exploration. When looking at individual commits
only and not at larger time windows, one can not determine
whether a code element is an example of an element that
does not need to be refactored. The same code element
might have changed in the subsequent commit, thus render-
ing the previously collected data invalid (i.e., mischaracte-
rizing the counterexample). Furthermore, another factor we
took into account was that, if we consider all elements that
were not refactored in every single commit as a counterex-
ample, the number of extracted data points would be orders
of magnitude higher than the number of data points for
refactoring instances. That would make the dataset highly
imbalanced. We decided not to deal with a highly imbal-
anced datased because that is a known challenge in ML [44].

Given that the current state-of-the-art enables us to pre-
cisely identify refactoring operations that have happened in
software systems, but the identification of non-refactoring
instances is challenging, we suggest the possibility of train-
ing models using solely a single class. In this case, one
would train the model solely on the real-world refactoring
instances, and use the outcome probability of the model to
decide whether to recommend a refactoring operation. We
expect models to return a very low probability in methods
that do not need to undergo refactoring. Note that, in this
way, there is no need for collecting non-refactoring data
points, which would avoid the problem discussed in the
previous subsection. We therefore suggest future work to
explore the performance (as well as the drawbacks) of such
models in recommending software refactoring.

Nevertheless, the fact that our community does not have
an accurate dataset composed of examples of code elements
that do not need refactoring is a threat to any study in soft-
ware refactoring. Our community has been working on

several approaches to point developers to problematic pieces
of code for a long time. However, less research has been ded-
icated to revealing exemplary pieces of code (exemplary in
the sense that these pieces of code do not warrant refactoring
operations). Given the data-driven era we find ourselves in,
research investigating the identification and creation of a
sample of such pieces of codemight be highly relevant.

4.2 Features and Their Interpretability

Our models use a set of source code, process, and owner-
ship metrics as features (see Table 4 for the complete list).
The choice of features was mostly based on previous ML
models for software engineering tasks (e.g., [20], [27], [28]).

Our conjecture when we settled on using structural met-
rics was that the structure of a class or method is an impor-
tant factor that developers take into consideration when
identifying pieces of code to refactor, e.g., a complex method
is much more prone to being refactored than a structurally
less complex method. Given the high accuracy, precision,
and recall that we observed in our empirical study, our con-
jecture seems to hold. We understand that some of the met-
rics might seem counterintuitive. Some developer might be
hard-pressed to explain why something as the number of
mathematical operations in a given part of the code may indi-
cate that refactoring is warranted.

Given the amount of features that are readily available
and that have been used in the literature, we decided not to
perform manual feature selection (i.e., manually selecting
the most appropriate features given the data and the
model). Rather, we decided to let the model decide which
ones have more predictive power.

Interestingly, as the results we used to answer our RQ2

seem to suggest, models tend to selected features that also
make more sense to humans. For example, number of meth-
ods in a class (which was chosen 13 times as the most
important predictor in method-level refactorings) or num-
ber of lines of code in a class (which was selected 39 times
as the features that most contributed to model building). On
the other hand, the number of parenthesized expressions
and number of lambdas do not seem to help models in
learning how to recommend refactoring; such features were
automatically discarded (i.e., never used) by these models.

We, nevertheless, understand that the interpretability of
these models can play a decisive factor in whether develop-
ers will accept the recommendation. Developers might
want to know why the model is suggesting a specific refac-
toring. While interpretability of models is a complex prob-
lem in the area of ML in general [45], [46], making use of
metrics that developers can better relate to, as well as show-
ing them what metrics most influenced the model to recom-
mend a given refactoring might make the developer more
confident in accepting the recommendations. Interpretabil-
ity of refactoring recommendation models is therefore an
important future work.

4.3 The Importance of Process and Ownership
Metrics (and the Need for Fine-Grained Metrics)

We observed that process metrics are indeed considered
important by the models (see RQ2). For example, the number
of commits metric figured as the most important feature in
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the class-level refactoring models. Additionally, related
research suggests that defect prediction models [20], [32],
[33] also benefit from process metrics.

While source codemetrics are able to capture the structure
of a code element, process metrics are able to capture its evo-
lution history (e.g., number of changes, code churn, number
of bugs, or refactorings over time). Such characteristics seem
to play an important factor when deciding whether to refac-
tor the code element. We would argue that this is inline with
general knowledge on software design. For example, chang-
ing a class several times eventually leads to brittle design (fol-
lowing Lehman’s laws of software evolution [47], [48]),
which drives developers to remedy the situation by refactor-
ing the class; or a class that has presented a high number of
bugs tend to require more “clean up” than classes that do not
suffer from the same issue. Process metrics, thus, provide
modelswith a perspective on the evolution of the class.

We currently use process and ownership metrics to sup-
port the prediction of class-level refactorings only. These
metrics are naturally collected at file-level, and collecting
them in a more fine-grained manner (i.e., method and vari-
able ownership) would require complex tooling to be devel-
oped. We can only conjecture that process metrics would
also help models in better predicting refactoring at method
and variable levels. To that aim, it is our goal to (i) develop
a tool that is able to collect process and ownership metrics
at method and variable levels, (ii) feed our models with
these new features, (iii) re-execute our ML pipeline and
examine how accuracy is affected.

In addition, D’Ambros et al. [20] observed that the number
of bugs, when extracted by means of string matching in the
commitmessage (which is our case), might reduce the quality
of the resulting predictor. Our models currently indicate that
the “number of bugs” feature is relevant. This feature fre-
quently appeared in the top five and top ten ranking of fea-
tures that most contributed to model building. We surmise
that a more precise approach to detecting and counting bugs,
which might require better integration with issue tracking
systems, will improve the quality of the recommendations.

4.4 Making a Case for Larger and More
Heterogeneous Datasets

According to the results we used to answer RQ3, larger and
more heterogeneous datasets tend to generalize better. We
would argue that large amounts of diverse refactoring opera-
tions contribute to the creation of stronger, more accurate
models.

While our dataset might be already considered a large one,
with around 3 million labelled instances, we believe that the
collection of even larger datasets compressed of different
types of systems and refactoring operations will result in
more helpful models able to provide developers with more
accurate refactoring recommendations. Moreover, it is a com-
mon observation in ML studies (not only in software engi-
neering tasks) that simple models trained on large datasets
often work better than complexmodels trained on small data-
sets [49], [50]. Simplemodels are cheaper to train and store.

4.5 Prioritizing Refactoring Recommendations

All our models currently perform binary classification. In
other words, each model is only able to predict a single

refactoring operation. Our empirical study shows that,
when tested in isolation, models have high accuracy.

We envision a recommendation tool making use of all the
models together in order to recommend all the possible
refactorings. Suppose we want to offer refactoring recom-
mendations for a given method, we would need to pass the
method through the seven different method-level refactor-
ing models; each of these seven models would give its own
prediction, and we would show the resulting list of recom-
mendations to the developer.

We understand that in a scenario in which developers are
faced with lots of refactoring recommendations it might be
hard for them to work out which refactorings to prioritize.
An avenue to explore in future work is to take advantage of
the probability values that are internally produced by the
models to prioritize which refactorings are more appropri-
ate in a given context. A tool that presents these probability
values to the end-users could allow them to decide which
refactorings they should apply and in which order (we dis-
cuss more usability concerns of such a tool in Section 4.10).

4.6 The Need for More Fine-Grained Refactoring
Recommendations

In this first step, we have showed that ML can model the
refactoring recommendation problem. Although the current
models provide recommendations at different levels of granu-
larity (i.e., class,method, and variable levels), there is room for
improvement by fine-tuning models to offer even more fine-
grained refactoring recommendations. Take as an example
the ExtractMethod refactoring. Ourmodels can identifywhich
method would benefit from an extraction; however, it cur-
rently does not point to which parts of that method should be
extracted (i.e., initial token and end token). Another example
are refactorings that involve more than one class, e.g., Move
Method or Pull Up Method: to which class should the method
bemoved to?

We see a future where, for each of the refactorings we
studied, a highly-specific model, able to provide fine-
grained recommendations, is devised. We conjecture that
models that learn precisely, e.g., what tokens to extract out
of a method, would need to be deep. Therefore, we believe
that deep learning will play an important role in the field of
software refactoring in the near future. We discuss deep
learning later in this section.

4.7 The Recommendation of High-Level
Refactorings

In this study, we explore recommendations of low-level
refactorings, i.e., small and localized changes that improve
the overall quality of the code. We did not explore recom-
mendations of high-level refactorings, i.e., larger changes
that improve the overall quality of the design.

We see that the great challenge of recommending high-
level refactorings is that the model requires even more con-
text to learn from. Before applying a design pattern to the
source code, developers often think about how to abstract
the problem in such a way that the pattern would fit.

As an initial step, the book of Kerievsky [51] might serve
as a guide. In his book, the author shows how to move code,
that is often implemented in a procedural way, to a design
pattern oriented solution, bymeans of low-level refactorings.
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Our next step is to explore how we can “aggregate” several
low-level refactoring recommendations in order to provide
developerswith high-level refactoring suggestions.

4.8 Taking the Developers’ Motivations into Account

Empirical research shows that developers refactor for several
reasons, other than to “only improve the quality of the code”
(e.g., [7], [52]). In our first foray into applying ML algorithms
to predict refactoring operations, our models do not factor in
“motivation”. Nevertheless, note that our large dataset of
refactorings contains refactorings that have happened for
varying reasons (given that we never filtered refactoring
based on motivation from the projects). Interestingly, our
models still show high accuracy. Exploring whether models
built specifically for, e.g., “refactoring to add new
functionality”, would provide even better results, not only in
terms of accuracy, but also in terms of “developer sat-
isfaction”.We defer this development to futurework.

4.9 The Use of Deep Learning (andNatural Language
Processing Algorithms) for SoftwareRefactoring

Programming languages have phenomena like syntax and
semantics [53], [54], [55]. Motivated by several recent works
that use advanced ML algorithms on source code with the
goal of (semi) automating several non-trivial software engi-
neering tasks such as suggesting method and class names
[56], code comments [57], generation of commit messages
[58], and defect prediction [59], we intend to experiment
NLP-specific deep learning architectures to deal with code
refactorings. Using models like Seq2Seq [60] and Code2-
Vec [49], both refactorings predictions and refactored code
can be outputs of the model, having the source code only as
input. To facilitate the work of future researchers interested
on the topic, our online appendix [30] contains a dataset
with all the refactored classes studied here.

4.10 RefactoringRecommendationModels in theWild

As mentioned, popular tools such as PMD and Sonarqube
offer detection strategies for common code smells, e.g., God
Classes and Long Methods. These tools have been integrated
into different stages of the developers’ workflow, e.g., inside
IDEs, during code review, or their results have been incor-
porated into quality reports. We envision a ML-powered
refactoring recommendation tool finding its way into the
daily life of a developer in the same way linters and code
quality recommendation tools (e.g., PMD, Checkstyle,
Sonarqube) currently belong to their daily routine. How-
ever, the deployment of ML-based refactoring recommen-
dation models does not come without its challenges.

First, prediction models take up a lot of disk space (some
of the models we built throughout this research take up
around 700 MB to 1 GB of disk space), which makes them
unwieldy to deploy inside IDEs (without mentioning that
loading them into memory would require sizable memory
resources). While the ML research field is still looking for
efficient ways of compressing large models (see [61] for
details), introducing the 20 ML models that we built into
the developers’ machines/IDEs is certainly not a feasible
solution. A possible workaround to this challenge would be
to provide a centralized server that provides recommenda-
tions to clients (e.g., IDEs and code review tools).

Another way to reduce the size of our models would be
to build leaner models. In RQ2, we show that some features
never make to the top-10 ranking features; others were
never even used. Future work should investigate which fea-
tures can be removed without significant loss of prediction
power, thus on removing features that have no real predic-
tion power, and on identifying the simplest model that
works by, e.g., performing feature reduction. As a reference,
we refer the reader to Kondo et al.’s work [62]. Authors
explored the impact of eight different feature reduction
techniques on defect prediction models; we suggest the
same line of work for refactoring recommendation models.

Moreover, our empirical study shows that the training of
these models take hours (some of our Random Forest mod-
els took approximately 2 hours running on a machine
equipped with a 40-core processor). On the other, once these
models are trained, prediction happens almost instantly.
This is due to the fact that our models require a feature vec-
tor composed solely by code metrics that are easily
extracted from source code. The long training time reinfor-
ces the need for generalizable models (which are possible to
obtain according to our results), given that many companies
are not able to afford the costly model training.

Second, program analysis tools solely require access to
the source code of the program for the recommendation to
happen. Our current ML models also require ownership
and process metrics. While our results show that these met-
rics play an important role in the models, they are less triv-
ial to be calculated, requiring access to the full history of the
project as well as maintenance. Future work should evalu-
ate what to do in cases where the developer does not have
access to these metrics, i.e., when offering consultancy to a
company that does not provide the consultant with the full
repository, or when the project is in earlier stages and the
repository still does not contain useful data.

Third, the usability aspects that such a tool would need
in order for developers to trust it. In this paper, we do not
explore such aspects. While this is not unique to ML-based
recommendation models, we believe this is an important
aspect to be explored, given that the interpretability of these
(black box) models are harder than the detection strategies
our community currently relies on. Guidelines on how to
recommend software refactoring [19] as well as lessons
learned on building large-scale recommendation tools [63],
[64] are of great help. Given that ML models are drawing a
lot of attention from the software engineering community,
other researchers have already started to probe into the
usability-related issues of ML-powered solutions to soft-
ware engineering tasks (e.g., [65]).

Finally, understanding whether it is possible for a com-
pany to reuse existing models (a practice commonly used in
other communities, such as the reuse of pre-trained models
as Word2Vec [66] and BERT [67]) and how often the refac-
toring recommendation models should be re-trained are
fundamental questions that still need to be answered.

5 RELATED WORK

After the publication of Fowler’s seminal book [1], refactor-
ing went mainstream and many surveys and literature
reviews on the subject were performed. One of the early
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surveys that brought refactoring into the limelight of
researchers was carried out by Mens and Tourw�e [68]: their
survey is centered around refactoring activities, supporting
techniques, and tool support. Specifically, their discussion
is organized around software artifacts and how refactoring
applies to them, so the authors emphasize requirement
refactoring, design refactoring, and code refactoring. Addi-
tionally, Mens and Tourw�e briefly share their outlook on
the impact of refactoring on software quality. Their survey,
however, took only a few studies on identifying refactoring
opportunities into account and did not follow a systematic
approach. As mentioned, since then several systematic liter-
ature reviews have been conducted on refactoring.

The existing literature discusses different automatic
refactoring approaches whose purpose is helping practi-
tioners in detecting code smells, some of which are even
able to suggest the refactoring activities that should be per-
formed by the practitioners in order to remove the detected
code smells. Most approaches are either based on rules,
employ search-based algorithms, or ML approaches. A
recent systematic literature review [69] shows that there has
been an increase in the number of studies on automatic
refactoring approaches. According to the results of such lit-
erature review, source code approaches have been receiving
more attention from researchers than model based
approaches. In addition, the results indicate that search-
based approaches are gaining increasing popularity and
researchers have recently begun exploring how ML can be
used to help practitioners in identifying refactoring oppor-
tunities. The concepts and rule-based approaches proposed
by early researchers that laid the theoretical foundation for
more recent advances in the area are presented in Sec-
tion 5.1. Related work on search-based approaches applied
to refactoring is discussed in Section 5.2 and related work
on ML is reviewed in Section 5.3.

5.1 Code Smell Detection

In hopes of providing a insightful understanding of code
smells, the goals of studies on code smells, approaches used
to probe into code smells, and evidence that bolsters the
fundamental premise that code smells are symptoms of
issues in the code, Zhang et al. [70] carried out a systematic
literature review in which they synthesized the results of 39
studies on code smells. Since we consider the identification
of code smells and the detection of refactoring opportunities
two related problems, it is also worth mentioning the sys-
tematic literature review performed by Al Dallal [71]. Al
Dallal discusses studies that consider both code smells and
refactoring opportunities from a different perspective: the
main focus of their literature review is providing an over-
view of code smell identification approaches. Based on an
analysis of 47 studies, Al Dallal concluded that although
there was a sharp increase in the number of studies on iden-
tifying refactoring opportunities, up to 2013 the results of
these studies were derived mostly from relatively small
datasets. Singh and Kaur [72] extended the systematic litera-
ture review carried out by Al Dallal focusing on code smells
identification and anti-patterns. The two main contributions
of their survey is highlighting the datasets and the tools
employed in the selected studies and the identification of
the code smells that were most used in these studies.

Recently, Santos et al. [73] performed a systematic litera-
ture review to summarize knowledge about how code
smells impact software development practices, which the
authors termed “smell effect”. Santos et al. selected and ana-
lyzed 64 studies that were published between 2000 and
2017. One of the main findings reported by the authors is
that human-based evaluation of smells is not reliable: a
trend in the selected studies seems to indicate that develop-
ers have a low level of consensus on smell detection. Fur-
thermore, their analysis of the selected studies suggests that
demographic data as developers’ experience can signifi-
cantly impact code smell evaluation.

Fernandes et al. [74] carried out a systematic literature
review on code smell detection tools. Their study is centered
around the identification of code smell detection tools, their
main features, and the types of code smells that these tools
are able to identify. Fernandes et al. also performed a com-
parison of the four most widely used tools (i.e., most fre-
quently mentioned in the selected studies). It is worth
mentioning that considering the selected studies, which
were published from 2000 to 2016, no tool implements a ML
based approach: this indicates that only recently researchers
have begun investigating ML models in this context. Rasool
and Arshad [75] also performed a systematic literature
review on tools and approaches to mining code smells from
the source code. Essentially, Rasool and Arshad classified
tools and approaches based on their detection methods.
Rasool and Arshad emphasized mining approaches, thus
they did not take ML-based approaches into account.

5.2 Search-Based Refactoring

Mariani and Vergilio [17] carried out a systematic literature
review of how search-based approaches have been applied
to refactoring. Mariani and Vergilio found that evolutionary
algorithms and, in particular, genetic algorithms were the
most commonly used algorithms in the analyzed studies. In
addition, they found that the most widely used and investi-
gated refactorings are the ones in Fowler’s catalog [1]. More
recently, Mohan and Greer [76] also looked at search-based
refactoring. However, differently from the literature survey
by Mariani and Vergilio, Mohan and Greer give a more in-
depth review of the selected studies in the sense that Mohan
and Greer also cover other aspects of the literature. For
instance, Mohan and Greer also discuss the tools used in
the selected studies as well as provide an investigation of
how some metrics have been tested and discussed in the
selected literature. In addition, Mohan and Greer detail
how the search-based approaches described in the selected
studies have evolved over time. Similarly to the results pre-
sented by Mariani and Vergilio, Mohan and Greer also
found that evolutionary algorithms are the most commonly
used algorithms in the selected studies.

5.3 ML Algorithms

To our best knowledge, only one systematic literature
review [77] has been conducted with the purpose of summa-
rizing the research on ML algorithms for code smell predic-
tion. Azeem et al. selected 15 studies that describe code smell
predictionmodels. Azeem et al. analyzed the selected studies
in terms of (i) code smells taken into account, (ii) setup of
the ML based approaches, (iii) how these approaches were
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evaluated, and (iv) ameta-analysis on the performance of the
code smell prediction models described in the selected stud-
ies. According to the results, God Classes, Long Methods,
Functional Decomposition, and Spaghetti Code are the most
commonly considered code smells. Decision Trees and SVM
are the most widely used ML algorithms for code smell
detection. Additionally, JRip and Random Forest seem to be
themost effective algorithms in terms of performance.

6 THREATS TO VALIDITY

This section outlines the threats to the validity of our study.

6.1 Construct Validity

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly
due to the measurements we performed.

� Our strategy for gathering the large amount of data
we investigated entailed mining a large number of
software repositories for instances of class, method,
and variable refactorings. Thus, the main internal
validity threat is the data collection process. We can-
not rule out the issues that arise when performing
large scale data extraction (issues indeed happened,
as discussed in Section 2.6). We provide a replication
package containing all experimental scripts and data-
sets used in our study so that researchers and practi-
tioners can fully replicate and confirm our results.

� As mentioned in Section 2.3, over the course of our
data extraction process, we determined the number
of bug fixes by employing a keyword matching
approach. The approach is widely used by the min-
ing software repositories community to detecting
bug fix related information in software repositories.
It is worth noting that the effectiveness of such
approach depends on the keywords used during the
data extraction process, so we acknowledge the pos-
sibility that we might have overlooked the inclusion
of relevant keywords.

� Our data collection mechanism makes use of Refac-
toringMiner [23], a tool that is able to identify refac-
toring operations in the history of a repository.
Therefore, the soundness of our approach hinges on
the effectiveness of refactoring detection tool we
used. RefactoringMiner presents a precision and
recall of 98 and 87 percent, respectively, in detecting
the refactoring operations we study. We did not re-
evaluate the precision and recall of RefactoringMiner
in the studied sample, as this was already estab-
lished in their research. Given how RefactoringMiner
works internally and that RefactoringMiner was
evaluated on projects with similar characteristics (in
fact, 65 percent of the projects in RefactoringMiner’s
evaluation dataset are in our dataset), we have no
reason to believe that the accuracy reported in the lit-
erature would not apply to our study.

� An underlying assumption of our research is that
refactorings that have happened in the past are good
examples of refactorings that will happen in the
future. Our models never learn from “refactorings

that developers find to be important, but never got
around to carrying them out”. Nevertheless, given
the amount of data points we use for training, we
have no reason to believe that “refactorings that
developers consider relevant but ended up never
being carried out” are so intrinsically different from
the “refactorings that developers carried out”. In ML
terms, we do not believe their feature vectors would
have such a different distribution that models would
not be able to predict them with a reasonably good
accuracy. This is, however, a conjecture. Case studies
in industrial settings, in which developers annotate
not only whether the recommendations of ML-based
models were pertinent, but also refactorings they
would like to perform in elements that our models
do not identify refactoring opportunities, is a neces-
sary step in order to test this conjecture.

� Finally, one of the metrics we also used to train our
models was the “number of default methods” (at
class-level). However, later in one of our inspections,
we observed that, due to a bug in the metric collec-
tions tool, the number of default methods was
always zero.8 All the learning algorithms ignored
this metric, as it indeed added no value to the learn-
ing process; in fact, it appeared on the list of features
that were never used by our model. Therefore, we
affirm that this bug does not influence the overall
results of our paper. Moreover, we have no reason to
believe that the adding this feature would bring sig-
nificant improvements. Nevertheless, we propose
researchers to use this feature in future replications
of this paper.

6.2 Internal Validity

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated.

� We removed projects that failed during data collec-
tion. As we discussed in Section 2.1, our pipeline is
composed of several tools, all of them being prone
to failures, e.g., RefactoringMiner running out of
memory. The percentage of failed projects is small
(8 percent), and does not affect the representative-
ness of our final dataset.

� Owing to the fact that, in most cases, there are more
instances of the non-refactoring class in our dataset
than instances of the refactoring class (see Table 3),
we had to cope with an imbalanced dataset. Given
that there is no reliable estimate on the distribution
of refactoring and non-refactoring instances “in the
wild”, we decided to perform under-sampling. That
is, we chose to remove instances from the over-repre-
sented class by means of random under-sampling.
This means that the dataset for each refactoring oper-
ation is bounded by the minimum between the num-
ber of positive and the number of negative instances
(e.g., as we see in Table 3, although we have 41,191

8. https://github.com/mauricioaniche/ck/commit/
f60590677271fb413ecfb4c2c5d0ffbaf8444075.
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instances of Extract Class refactorings, we have only
10,692 instances of non-refactored classes, and thus,
our model is trained on all the 10,692 instances of
non-refactored classes + 10,692 randomly sampled
instances of refactored classes).

To better measure the impact of this choice, we re-
created the Random Forest models using a “Near
Miss” under-sampling strategy [78]. While the aver-
age absolute difference in precision and recall are
0.116 and 0.052, respectively, it is hard to distinguish
which strategy helps the model in improving accu-
racy. In nine out of 20, Near Miss improved the preci-
sion when compared to the random sampling
strategy (and thus, random performed better in 11
models), whereas in 12 out of 20, NearMiss improved
the recall. As we conjecture that, in the refactoring
problem, classes will always be unbalanced by
nature, future research is necessary to better under-
stand how to under (or even over) sample. Neverthe-
less, we acknowledge that a balanced dataset may be
different from the distribution that is expected in real
life. Hence, a balanced dataset has the potential to
lead to less accurate models in practice. Exploring the
performance ofmodels trained on datasets that reflect
reality is important future work that should be tack-
led once, as a community, we understand what the
real distribution is.

� Our ML pipeline performs scaling and undersam-
pling. Improving the pipeline, e.g., by applying better
feature reduction, different balancing strategies, and
extensive hyperparameter search, will only make our
results better. While developing production-ready
models was not the main goal of this paper, we note
that our open-source implementation available in our
appendix [30] enables it effortlessly. In other words,
any researcher or company can download our imple-
mentation and datasets, use their available infrastruc-
ture, and train (evenmore accurate) models.

� Code smells are symptoms thatmight indicate deeper
problems in the source code [1]. While code smells
have been shown to greatly indicate problematic
pieces of code, in this work, we did not use them as
features to our model. However, we note that code
smells are detected by combinations of proxy metrics
(i.e., detection strategies [79]). These proxy metrics
are commonly related to the structure of the source
code (e.g., complexity/WMC, coupling/CBO) and
are highly similar to the structural metrics we use as
features (see Table 4). In other words, we train our
models with metrics that are similar to the metrics
used by the code smells detection strategies. There-
fore, we conjecture that using code smells as features
would add only a small amount of information for
the models to learn from. That being said, making
sure that all catalogued code smells are covered by
our features is interesting future work which might
increase the accuracy of refactoring recommendation
models. Our own previous research shows that code
smells might be architecture-specific [80], [81], [82],
[83], e.g., MVC systems might suffer from different
and specific smells than Android systems.

� As we discuss in Section 4, we did not take into
account the different reasons a developer might have
when deciding to refactor, e.g., to add a new function-
ality, or to improve testability. These motivations
might indeed change (or even help the developer to
prioritize) which refactors to apply. Nevertheless, we
affirm that the goal of this first study was to explore
whether ML can model the refactoring recommenda-
tion problem. Given that we observed high accuracy,
we can only conjecture that taking the motivation
into consideration will only increase the accuracy (or
again, help in prioritization) of the models. We leave
it as futurework.

� We consider our dataset as a set of unordered refac-
torings. As a contrast, studies in defect prediction
consider datasets as a set of ordered events, e.g.,
they do not mix “past” and “future” when evaluat-
ing the accuracy of their models (e.g., [84]). We argue
that there is no need for such design, given that we
devise a single cross-project model, based on hun-
dreds of thousands of data points from more than
11k projects altogether. In other words, we do not
devise one model per project, as commonly done in
defect prediction. Thus, we affirm that the model has
little chance of memorizing specific classes. Our 10-
fold random cross validation (and the individual
precision and recall of each fold, that can be seen in
our appendix [30]) also gives us certainty that this is
not a threat. Nevertheless, to empirically show that
our decision of not ordering the dataset does not
influence our results, we trained Random Forest
models using the first 90 percent of refactorings that
have happened (ordered by time) and tested on the
remaining 10 percent of refactorings that happened
afterwards. We obtained an average accuracy of 87
percent among the 20 refactorings. The individual
results per type of refactoring can be seen in our
online appendix [30].

� In RQ3, when studying the generalization of ourmod-
els, we observed that class-level refactoring models
outperformed method- and variable-level refactor-
ings. We took a harder look at our data and noticed
that this phenomenon tends to happen when models
are built from smaller datasets, F-Droid and Apache.
When training our models with GitHub data
(the largest dataset), the phenomenon still occurs,
although with a smaller difference. Nevertheless, we
can not offer a clear explanation onwhy that happens,
based on the data we collected. There might be an
unseen factor which we did not collect data and ana-
lyze. Future work should understand the reasons for
this phenomenon.

6.3 External Validity

Threats to external validity concern the generalization of
results.

� Our results are based only on open source projects,
which might affect their generalizability to industrial
settings. It is worth mentioning, however, that our
sample contains many industrial-scale projects that
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span different domains. To the best of our knowl-
edge, this is the most extensive study of ML algo-
rithms for the prediction of refactorings to date.
Nevertheless, replicating this research in a large
dataset of industry projects is necessary.

� One of our goals was to understand whether ML
models trained on a set of systems are able to accu-
rately recommend refactoring operations to improve
completely different software systems. We experi-
mented with different ecosystems as an approxima-
tion for “completely different software systems”.
While we believe this is a reasonable approximation,
we are not able to make strong assumptions about
the accuracy of those models in large-scale enterprise
industrial systems. We suggest that researchers per-
form case studies together with industrial partners
in hopes of providing evidence to support such
hypothesis.

� Moreover, since we considered Java as the language
of choice, we cannot be sure that our results carry
over to other programming languages. Thus, replica-
tions of this study are needed for different program-
ming languages. However, we cannot think of any
reason why the results would be different for other
imperative object-oriented languages.

7 CONCLUSION

Supervised ML algorithms are effective in predicting refac-
toring opportunities and might indeed support developers
in making faster and more educated decisions concerning
what to refactor.

Our main findings show that:

1) Random Forest models outperform other ML models
in predicting software refactoring;

2) Process and ownership metrics seem to play a crucial
role in the creation of better models; and

3) Models trained with data from heterogeneous proj-
ects generalize better and achieve good performance.

More importantly, this paper shows that ML algorithms
can accurately model the refactoring recommendation problem.
We hope that this paper will pave the way for more data-
driven refactoring recommendation tools.

Given that we are more confident that ML models might
provide accurate recommendations to developers, the next
step of this research should work on devising and building
the necessary tools to deploy and perform case studies on
the efficiency of refactoring recommendation models in the
wild.
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A Fast Clustering Algorithm for Modularization
of Large-Scale Software Systems

Navid Teymourian , Habib Izadkhah , and Ayaz Isazadeh

Abstract—A software system evolves over time in order to meet the needs of users. Understanding a program is the most important

step to apply new requirements. Clustering techniques through dividing a program into small and meaningful parts make it possible to

understand the program. In general, clustering algorithms are classified into two categories: hierarchical and non-hierarchical

algorithms (such as search-based approaches). While clustering problems generally tend to be NP-hard, search-based algorithms

produce acceptable clustering and have time and space constraints and hence they are inefficient in large-scale software systems.

Most algorithms which currently used in software clustering fields do not scale well when applied to large and very large applications. In

this paper, we present a new and fast clustering algorithm, FCA, that can overcome space and time constraints of existing algorithms

by performing operations on the dependency matrix and extracting other matrices based on a set of features. The experimental results

on ten small-sized applications, ten folders with different functionalities from Mozilla Firefox, a large-sized application (namely ITK), and

a very large-sized application (namely Chromium) demonstrate that the proposed algorithm achieves higher quality modularization

compared with hierarchical algorithms. It can also compete with search-based algorithms and a clustering algorithm based on

subsystem patterns. But the running time of the proposed algorithm is much shorter than that of the hierarchical and non-hierarchical

algorithms. The source code of the proposed algorithm can be accessed at https://github.com/SoftwareMaintenanceLab.

Index Terms—Software clustering, software modularization, software maintenance, software comprehension, architecture recovery

Ç

1 INTRODUCTION

SOFTWARE plays a key role in government agencies and
organizations and as an interface, it has an important

role in communications. Over the time, the requirements of
an organization will change according to the environmental
conditions and software engineers need to make changes in
the software system to meet the needs of the organization.
To make changes to the software, developers require to
understand the software structure (software architecture).
During software maintenance, software engineers spend a
considerable amount of time on program comprehension
activities [1]. Because of the complex structure and relation-
ships, understanding the structure of a large software sys-
tem and applying new changes is not an easy task.
Recovering software architecture to understand software
systems is therefore particularly important because it facili-
tates the maintenance and evolution of software systems
[2], [3].

The software architecture recovery aims to use techniques
to partition a software system into meaningful subsystems
(modules) [4], [5]. For this reason, numerous attempts have
been done to develop techniques for extracting software archi-
tecture automatically. One of these techniques is clustering
[5]. “The objective of software clustering is to reduce the

complexity of a large software systemby replacing a set of arti-
facts with a cluster, a representative abstraction of all artifacts
grouped within it. Thus, the obtained decomposition is easier
to understand” [6]. The purpose of clustering is to divide a
software system into clusters (modules) so that the relation-
ships between artifacts in a cluster are maximized (i.e., cohe-
sion) and the relationships between clusters (i.e., coupling) are
minimized. Fig. 1 illustrates the clustering process of a soft-
ware system. The input of a clustering algorithm is an Artifact
Dependency Graph (ADG) which is constructed from source
code [6]. The nodes of this graph indicate the artifacts (e.g.,
class, method, file, function, etc.), and the links indicate the
relationships between artifacts (e.g., calling dependency,
inheritance dependency, semantic dependency, etc.).

In general, clustering algorithms are classified into hier-
archical and non-hierarchical categories (such as search-
based and graph-based) [7]. In the hierarchical algorithms,
artifacts are first considered as separate clusters and are
then merged in a repeating process. These algorithms
require a data table representing relationships between arti-
facts and a table that shows similarities between artifacts.
These tables should be updated at each step of the cluster-
ing process. In very large software systems, these tables will
be very big and it will also be time consuming to calculate
the similarities between the artifacts. For example, the
LIMBO algorithm [6], at the first step of the clustering pro-
cess, requires about 15� 1011 operations for a graph with
10,000 artifacts. Given all the clustering steps, the number of
operations will be much higher than this number. This algo-
rithm requires a large amount of time for large graphs,
which reduces its efficiency.

In the literature, because of the NP-Hardness of clustering
problem, search-based methods (such as genetic algorithm)
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have beenwidely used [8], [9]. Search-based algorithms are an
effective way to solve the clustering problem [9]. The search-
based algorithms may take a long time to execute, if comput-
ing the fitness function in each iteration takes a long time to
perform. Therefore, the main drawback of these methods is
that they work very slowly when faced with large-sized
graphs. Due to the problems of the existing algorithms, in this
paper, we designed a new clustering algorithm that operates
on artifact dependencymatrix constructed from source code.

The main problem addressed in this paper is scalability
in terms of running time. We aim to provide a deterministic
clustering algorithm that its running time grows slowly as
the input size increases. We claim that by performing a
series of simple operations on the dependency matrix and
extracting other matrices based on a set of features, a devel-
oper can quickly cluster a software system while the cluster-
ing quality is acceptable. The proposed algorithm was
tested on ten small-sized software systems, ten folders of
Mozilla Firefox, and two large and very large software sys-
tems. The results showed that the algorithm achieves
acceptable clustering quality according to evaluation criteria
(internal and external criteria), in less run time, compared to
the tested algorithms.

This paper is structured as follows. In Section 2, we discuss
related work on software clustering. Section 3 introduces the
proposed algorithm, and we present the experimental setup
in Section 4. The result of research and threats to validity are
discussed in Sections 5 and 6, respectively. Finally, Section 7 is
the conclusions of this research and futurework.

2 RELATED WORK

So far many algorithms have been developed for clustering,
but given the NP-Hardness of clustering problem, design-
ing a proper clustering algorithm is a difficult work. In this
section, first, a description of the clustering algorithms clas-
sification is presented, and then some state-of-the-art clus-
tering algorithms are described.

Most software clustering algorithms fall into two major
categories: agglomerative hierarchical and search-based
algorithms, and there also are a few algorithms that are
graph-based [8] and pattern-based. Hierarchical algorithms
are greedy and phased and at each stage, the most similar
artifacts are merged. Single linkage, complete linkage, aver-
age linkage, weighted average link are some of the classical
hierarchical algorithms [10]. Maqbool and Babri presented
two hierarchical clustering algorithms for software architec-
ture recovery, namely combined Algorithm (CA) and
Weighted combined Algorithm (WCA) [11]. Weighted com-
bined Algorithm is a popular hierarchical clustering tech-
nique. Considering the ways to compute the similarity

between artifacts, Unbiased Ellenberg (UE) and Unbiased
Ellenberg-NM (UENM), WCA has two versions WCA-UE
and WCA-UENM. Another popular hierarchical clustering
algorithm is scaLable InforMation BOttleneck (LIMBO) [6].
This algorithm employs information theory and entropy
concepts for software clustering. In [10], the cooperative
clustering technique (CCT) as a consensus-based technique
is utilized for the software clustering problem. In this tech-
nique more than one similarity measure cooperates during
the hierarchical clustering process.

In search-based algorithms, the clustering process is con-
sidered as an optimization problem [5]. Then, heuristic or
meta-heuristic search methods are used to find the near-
optimal solution. The search process is guided and evaluated
by a quality function (objective function) that shows how
appropriate the solution is. The searching process in these
algorithms is performed in two global and local ways. In the
global search-based systems algorithm, the entire search
space is considered the solution space. In these algorithms, an
operator is intended to discover new areas in the search space.
Local search algorithms start from a selective solution and
then gradually move from the current solution to the neigh-
boring solution using search changes. However, these algo-
rithms inherently have the problem of being trapped in local
optima solution [8]. It is also possible to combine global and
local search algorithms. Graph-based clustering algorithms
can be applied to various areas such as social networking,
image segmentation, and software clustering. Mohammadi
and Izadkhah in [7] use a neighboring tree generated from the
ADG to cluster a software system. The clustering quality
obtained by this algorithm is better than hierarchical methods
and worse than evolutionary methods. Spectral methods [12]
use algebraic properties of the graph, such as eigenvalues and
eigenvectors in the corresponding Laplacian matrix to per-
form clustering. ACDC [13] is a pattern-based algorithm that
was introduced by Tzerpos and Holt. It uses several patterns
to cluster code artifacts. Several previous studies, such as [14],
[15], [16], have shown that ACDC performed well on the
tested applications.

Depending on the features used for clustering, clustering
techniques can be categorized in terms of structural and
non-structural (or semantic). Some algorithms only use
structural properties and some others use non-structural
properties such as comments and name of artifacts. Some
algorithms combine both of them. Table 1 shows some clus-
tering algorithms with different categories. Here, we briefly
describe some clustering algorithms.

Bunch: the Bunch toolset was proposed by Mitchell for
the software clustering problem [5], [17]. Two search-based
algorithms with different searching strategy namely genetic
algorithm (GA) and Hill-climbing were employed in this
toolset for the software clustering problem. Next Ascent
Hill climbing (NAHC) and Steepest Ascent Hill climbing
(SAHC) are two versions of the Hill-climbing algorithm
which are presented in the Bunch. The algorithms presented
in the Bunch use a real-valued encoding to represent the sol-
utions. The search space produced by this encoding equals
nn, where n is the number of artifacts. Bunch input is a call
dependency graph (CDG) made from source code. The out-
put of the Bunch is clustering with minimum coupling and
maximum cohesion among clusters.

Fig. 1. Software clustering process.
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DAGC: similar to Bunch, this algorithm [22] employs
genetic algorithm to perform clustering. But, each chromo-
some is encoded by a permutation of graph’s nodes. The
search space in this algorithm equals n!. It can be said that it
has less search space than Bunch, in contrast to it uses a
sophisticated encoding method.

Maximizing Cluster Approach (MCA) and Equal-size
Cluster Approach (ECA) [9]: both algorithms are multi-
objective and use two-archive Pareto optimal genetic algo-
rithm to optimize the objectives. The objectives used for
clustering in MCA are “maximize the number of edges
inside the clusters”, “minimize the number of edges between
all the clusters”, “maximize the number of clusters”,
“maximize the TurboMQ”, and “minimize the number of
single-member clusters”; and the objectives used in the ECA
are similar to the MCA with one difference. ECA replaced
the fifth objective of the MCA with “minimizing the differ-
ence between the maximum and minimum number of mod-
ules in a cluster.”

In semantic-based algorithms, how words are selected
and which semantic analysis method employed is the main
reason for the differences between these algorithms. Garcia
et al. [33] proposed a hierarchical clustering algorithm-
named Architecture Recovery using Concerns (ARC)- that
uses concerns to perform an architecture recovery. ARC con-
siders textual information (identifiers and comments)
extracted from source code and extracts concerns based on
Latent Dirichlet Allocation (LDA) model. Some studies, e.g.,
[16], have shown that this algorithm has acceptable accuracy.

Corazza et al. [34] proposed a natural language process-
ing based clustering approach that partitions textual infor-
mation (identifiers and comments) into different zones. The
zones are weighted based on the Expectation-Maximization
algorithm and then clustered by hierarchical agglomerative
technique. Using the Hill-climbing algorithm, in [21], a
semantic-based clustering algorithm, namely SHC, was pre-
sented which uses artifact names and comments for seman-
tic analysis. Taking into account syntactic features such as
call dependency and inheritance dependency and semantic
features such as code comment and identifier name, Misra
et al. [35] proposed an algorithm for clustering.

Most software clustering algorithms use static dependen-
cies between artifacts. Xiao and Tzerpos [36] presented an
approach for investigating the dynamic dependencies. The
results of their experiments on some applications showed
that dynamic clusters have significant competencies.

To sum up, the main limitations of the existing algo-
rithms are:

� Search-based algorithms, such as genetic algorithms,
are usually used to cluster software systems [8], [9].
Because of their exploration and exploitation ability,
they can produce good quality answers. But on large
applications, they are very time-consuming. Nor-
mally it takes more than a month for graphs with
more than 10,000 nodes without parallelization to
find a proper clustering. It should be noted, how-
ever, that parallelization cannot greatly reduce time.
This is because the software systems selected for
clustering in these methods are small- or medium-
sized, e.g., see [8], [9], [17], [20], [24], [37]. Also,
because evolutionary algorithms are stochastic, they
need to be executed many times, which for large
graphs is practically impossible because they are
time-consuming.

� Hierarchical algorithms require a data table that rep-
resents relationships between artifacts and a table
that shows similarities between artifacts. In very
large software systems, these tables will be very big
and it will also be very time consuming to calculate
similarities between artifacts. For example, the
LIMBO algorithm for a software system with 10,000
artifacts requires about 15� 1011 computations, at
the first step of the clustering process.

3 PROPOSED CLUSTERING ALGORITHM

The dependency graph is a mathematical way to model the
relationships between artifacts. Let x and y denote two arti-
facts (two nodes in the graph) so that an edge between the
two artifacts x and y indicate the existing dependency
between them. In the dependency matrix corresponding to

TABLE 1
Some Search-Based Software Clustering Algorithms

Name Type of algorithm Type of objective function Structural/Semantic Features

Bunch-NAHC and Bunch-SAHC [17] Local Search Single Objective Structural
E-CDGM [18] Local Search Single Objective Structural
Large neighborhood search [19] Local Search Single Objective Structural
HC-SMCP [20] Local Search Single Objective Structural
SHC [21] Local Search Single Objective Semantic
Bunch-GA [5] Global Search Single Objective Structural
DAGC [22] Global Search Single Objective Structural
A multi-agent evolutionary algorithm [23] Global Search Single Objective Structural
Harmony search [24] Global Search Multi-Objective Structural
GA-SMCP [20] Global Search Single Objective Structural
Hyper-heuristic approach [25] Global Search Multi-Objective Structural
ECA and MCA [9] Global Search Multi-Objective Structural
Estimation of distribution approach [26] Global Search Single Objective Structural
EoD, CGH, CGoH [8] Global Search Multi-Objective Structural and Semantic
Search based multiobjective software remodularization [27] Global Search Multi-Objective Structural
Multiple relationship factors [28] Global Search Multi-Objective Structural
Interactive evolutionary optimization [29] Global Search Multi-Objective Structural
GAKH [30] Global Search Single Objective Structural
MaABC [31] Global Search Multi-objective Structural
ILOF [32] Global Search Support multi-objective Structural

TEYMOURIAN ET AL.: FAST CLUSTERING ALGORITHM FOR MODULARIZATION OF LARGE-SCALE SOFTWARE SYSTEMS 1453



the dependency graph, the intersection of two nodes is
placed one if there exists an edge between them, and zero if
the two nodes are not connected.

In this paper, we cluster software systems by defining a
series of operations on the dependencematrix and extracting
several features from it. We derive additional matrices from
the dependence matrix, based on a set of features, as well as
applying mathematical operations on the matrices to per-
form the clustering. In this algorithm, the dependency graph
is the input of the algorithm and a modularized ADG is the
output of the algorithm. Because the input of the proposed
algorithm is the dependency graph, so the algorithm is inde-
pendent of the programming language used. Tools such as
Understand (https://scitools.com/) or NDepend (https://
ndepend.com) can be used to extract the dependency graph
from the source code of most programming languages. The
proposed algorithm aims to maximize intra-connectivity
within the clusters (i.e., cohesion) andminimize inter-depen-
dencies between the clusters (i.e., coupling).

3.1 Algorithm Steps (FCA)

1) Input: dependency matrix constructed from the arti-
fact dependency graph,

2) The neighborhood degree matrix is created from the
dependency matrix. This matrix shows degree infor-
mation. Each node has several neighbors, and this
matrix shows the degree of neighbor nodes for each
node. The steps to build this matrix are as follows:
a) The number of rows and columns in this matrix

is equal to the number of nodes in the artifact
dependency graph.

b) Let x and y denote the row number (node num-
ber) and column number in the matrix, respec-
tively. For each node x in the dependency graph
connected to node y, the degree of node y is
placed at the intersection from x to y in the
neighborhood degree matrix.

We use this matrix to select nodes for clustering. High-
degree nodes and nodes that are connected to high-degree
nodes are not good options to start the clustering process.
To perform clustering, the algorithm starts with nodes that
have a small degree and are not connected to high-degree
nodes. We call these nodes “border” nodes. Larger-degree
nodes tend to absorb the rest of the nodes and create larger
clusters. In steps 3 and 4, the nodes are ranked and used as
primary nodes in the clustering process.
3) To rank the nodes, the numbers in each row of the

neighborhood matrix are summed up and placed in
an n� 1 matrix named Sum matrix, where n is the
number of nodes. The entries of this matrix are S1,
S2; . . . , Sn.

The Sum matrix is not enough to prioritize nodes.
Because, in large graphs, the number of nodes in
which the sum of their rows is equal is large. There-
fore, in order to prioritize the nodes, it is necessary
to normalize this matrix. Step 4 is used for this
purpose.

4) To normalize the Sum matrix, for each node x (row
x), the following equation is calculated and the

results are saved in an n� 1 matrix named Effect
matrix. Let NDM denotes the neighborhood degree
matrix, the entries of Effect matrix, E1, E2, ... , En, are
calculated as follows:

Ex ¼ SxPn
i¼1 ðki � SiÞ ; (1)

where

ki ¼ 0; NDMx;i ¼ 0;
1; NDMx;i 6¼ 0:

�

The numbers in the Effect matrix are sorted in
descending order. Node x having the largest Ex is
used as the first node for clustering. It is important
to note that the largest Ex is for a border node and
the clustering process starts with this node.

5) The clustering steps start from the first node in the
Effectmatrix as follows:
a) For node x, the algorithm finds node y which has

the lowest numeric value in the row associated
with x in the neighborhood matrix. The reverse
of this rule must hold: for the node y found by
the algorithm, the node x must also have the low-
est numeric value in the row associated with y in
the neighborhood matrix. In such a case, the
node x is co-clustered with the node y. Other-
wise, the node x is added to an array named
Incompatible.

b) Repeat step 5(a) for all nodes in Effect matrix. If
the addressed node has already been clustered, it
will be ignored.

6) Clustering all nodes in array Incompatible. For node x,
the algorithm finds node y that has the first or sec-
ond smallest numerical value in the row associated
with x in the neighborhood matrix. The reverse of
this rule must hold: for the node y found by the algo-
rithm, the node x must also have the first or second
smallest numerical value in the row associated with
y in the neighborhood matrix. In such a case, the
node x is co-clustered with the node y. Otherwise,
the node x is added to an array named Closed.

The intuition behind steps 5 and 6 is to cluster
nodes that are related to each other and also have a
lower degree. This will reduce coupling. These steps
prevent the formation of very large clusters.

7) The clusters obtained in steps 5 and 6 are merged if
they have at least one node in common. The number
of clusters obtained in steps 5 and 6 is high. This step
reduces the number of clusters by merging some of
them and increases cohesion.

8) Clustering all nodes in array Closed. Up to this step,
there may be nodes that have not been clustered. All
these nodes are in the array Closed. Using one of the
following steps, we determine the cluster of these
nodes.
a) There are nodes in array Closed that are only con-

nected to one cluster. These nodes merge with
the related clusters. The next condition is consid-
ered for the remaining nodes.

1454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

https://scitools.com/
https://ndepend.com
https://ndepend.com


b) For node x in array Closed, all nodes, y, which
have an edge to node x are extracted in the
dependency matrix. The node x goes to the clus-
ter that has the least amount of inter-connectivity.
Intuitively, inter-connectivity measures a cluster
coupling. The lower the value of this relation-
ship, the lower the coupling of a cluster, which is
desirable.

Let X, Y, and Z denote the sum of the outer
edges of the cluster containing the node y, the sum
of Ex values of nodes in the cluster containing the
node y, and the number of nodes in the cluster con-
taining the node y, respectively.Wehave

inter� connectivity ¼ X þ Y

Z
: (2)

The value of X
Z may be the same for clusters

with different sizes and may not show the value
of the coupling well. While one is superior to the
other. That’s why Y is used. If the inter-connectiv-
ity value for the clusters is equal, the next condi-
tion is investigated.

c) The nodes go to a cluster that has the most rela-
tionship with the members of that cluster. If the
number of relationships is the same, the node go
to a cluster that has fewer members.

Using an example, we illustrate the steps of the proposed
algorithm. Artifact dependency graph (ADG) of a sample
software is shown in Fig. 2.Step 1- Table 2 shows the depen-
dency matrix constructed from the ADG shown in Fig. 2.

Step 2- The neighborhood degree matrix is constructed
for all nodes, as shown in Table 3. This matrix shows the
degree of neighbor nodes for each node. For example, row 1
shows the neighbors of node 1, while row 3 shows the
neighbors of node 3.

Step 3- The Sum matrix is shown in Table 4. This matrix
represents the sum of the rows in Table 3.

Step 4- According to Eq. (1), the Effect matrix is created,
as shown in Table 5. For example:

E1 ¼ S1=ðS2 þ S3 þ S4Þ ¼ 10=ð11þ 11þ 10Þ ¼ 0:32:

The calculated Effect matrix is sorted in descending order as

Effect name ¼ ½E7; E8; E6; E5; E1; E3; E4; E2�:

Step 5- The clustering process starts from the first node in
the Effectmatrix.

1) Node 7 can be co-clustered with a node that has the
lowest numerical value in the row of Table 3, i.e.,
node 8. The important point is that node 8 must also
have the lowest number in its corresponding row
with node 7. This condition is true.
a) First cluster {7, 8}
b) Since node 8 is in the first cluster, then it is not

checked in Effectmatrix.
2) Node 6 can be co-clustered with a node that has the

lowest numerical value in the row of Table 3, i.e.,

Fig. 2. A sample of an artifact dependency graph.

TABLE 2
Dependency Matrix Constructed From Fig. 2

1 2 3 4 5 6 7 8

1 0 1 1 1 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 1 0 0 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 1 0

TABLE 3
The Neighborhood Degree Matrix

1 2 3 4 5 6 7 8

1 0 4 3 3 0 0 0 0
2 3 0 3 3 2 0 0 0
3 3 4 0 3 0 0 0 0
4 3 4 3 0 0 0 0 0
5 0 4 0 0 0 1 0 0
6 0 0 0 0 2 0 0 0
7 3 0 0 0 0 0 0 1
8 3 0 0 0 0 0 1 0

TABLE 4
The Sum Matrix

Sum

S1 10
S2 11
S3 10
S4 10
S5 5
S6 2
S7 1
S8 1

TABLE 5
The Effect Matrix

Effect

E1 0.32
E2 0.31
E3 0.32
E4 0.32
E5 0.38
E6 0.40
E7 1
E8 1
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node 5. Node 5 also has the lowest number in its cor-
responding row with node 6. Thus
a) Second cluster {5, 6}
b) Since node 5 is in the first cluster, then it is not

checked in Effectmatrix.

After addressing the condition above for node 1, third
cluster is {1, 3, 4}
3) Node 2 can be co-clustered with a node that has the

lowest numerical value in its corresponding row of
Table 3, which is node 5.
a) since the lowest number in row 5 is equal to 1,

which corresponds to node 6, so node 2 doesn’t
cluster with node 3.

b) the condition is not fulfilled and node 2 is added
to array Incompatible.

Step 6- Clustering array Incompatible starts from its first
node i.e., node 2. In the neighborhood matrix, the first and
second small numbers in row 2 are related with nodes 1, 3,
4 and 5. That is, node 2 can be clustered with these nodes if
the inverse of these relationships are also true.

1) The first and second small numbers in row 1 (i.e.,
node 1) are related to nodes 2, 3 and 4; so the condi-
tion is true, and node 2 can be clustered with node 1.

2) This step is also applied on nodes 3, 4 and 5.
3) Fourth cluster {2, 1, 3, 4, 5}
Step 7- The second, third and fourth clusters are merged

due to having common nodes, and the final clustering is as
follows:

First cluster ¼ f1; 2; 3; 4; 5; 6g; Second cluster ¼ f7; 8g:

Step 8- Due to the small size of the dependency graph used,
array Closed is empty, and thus step 8 is not checked.

4 EXPERIMENTAL SETUP

To evaluate the proposed algorithm, it is necessary to men-
tion the following.

4.1 Software System

Software systems play an important role in the evaluation and
comparison of clustering algorithms. We selected ten real-
world small-sized applications, as shown in Table 6. In this
table, the number of links indicates the number of relation-
ships between the artifacts within the dependency graph, as
described in the Introduction. Mozilla Firefox1 is an open-

source software system. Based on the Open hub site report,
more than 13,000 developers work on this application. This
application has 55 folders (clusters), so we selected ten of
them with different functionalities and sizes. The names and
specifications of these folders are presented in Table 7.

In addition to the above applications, two large and very
large applications, namely ITK, Chromium, are selected. In
place of those large-sized projects, we included ITK (includ-
ing 7,310 files). We also included a very large project, Chro-
mium (including 18,698 files). Detailed information about
these projects can be found in Table 8.

4.2 Expert Decompositions

Expert decomposition (other names: ground-truth architec-
ture or authoritative decomposition) is employed to evalu-
ate the accuracy of the clustering algorithms [7], [10], [14],
[15], [38]. An algorithm is reliable if its modularization
result is close to decomposition provided by an expert [10].
In large projects, the directory structure of the project origi-
nally usually reflects the architecture of the project [39].

In this paper, the developer preview version of the
Mozilla Firefox has been selected, because there is a credible
(human) expert decomposition (the directory structure) of
that. It is important to note that this version is a stable ver-
sion. For example, folder DB has 97 files organized by the
developers of this software in four sub-folders. Our method
considers all of 97 files as flat and the aim is to determine
how much the algorithm can achieve a clustering similar to
the decomposition of Mozilla Firefox’s developers.

We also used the ground-truth architectures created by
Lutellier et al. [15] for ITK and Chromium applications to
evaluate the accuracy of the clustering algorithms.2

4.3 Assessment of Results

In the literature, there aremany software clustering algorithms
and thus to determine the appropriate algorithm, somemetrics
were presented for determining the quality of clustering
obtained by these algorithms. There exist generally two types
of metrics for determining the quality of clustering: internal
metrics, and externalmetrics. Internalmetrics are independent
of any ground-truth architecture,which calculate the quality of
the recovered architectures.

TurboMQ presented in [5] is one of the internal metrics
which is used in many research papers to evaluate the qual-
ity of the recovered architectures e.g., [9], [15], [40]. This
metric is defined as follows:

TurboMQ ¼
Xk

i¼1

2Ai

2Ai þ
Pk

j¼1 ðEi;j þ Ej;iÞ
; (3)

where Ai represents the internal communication into cluster
i, Eij represents the external communication between two
clusters i and j. The higher TurboMQ value indicates better
clustering.

TheMoJoFMmetric is also used to evaluate clustering tech-
niques [41]. This metric is a well-known and widely used
external assessment (e.g., see [7], [8], [10], [15], [37]). In

TABLE 6
The Description of Tested Software Systems

1. https://ftp.mozilla.org/pub/firefox/releases/devpreview/
1.9.3a4/source/

2. The ground-truth architecture for ITK and Chromium are avail-
able at http://asset.uwaterloo.ca/ArchRecovery
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external assessment, the automatically prepared clustering, A,
is compared with the decompositions prepared by human
experts, B [10]. The value of MoJoFM is between 0 and 100,
and the higher valuemeans themore proximity between clus-
tering generated by an algorithm and decomposition created
by an expert and hence better results [10]. The MoJoFM is cal-
culated by Eq. (4):

MoJoFMðA;BÞð%Þ ¼ 1� mnoðA;BÞ
maxðmno 8A;Bð ÞÞ ; (4)

where mnoðA;BÞ denotes the minimum operations
required for converting clustering A to clustering B.

Cluster-to-cluster coverage (C2C) [14], [15], [16] is an exter-
nal metric to assess component-level accuracy that measures
the degree of overlap between the two architecture’s clusters.
Before calculating C2C between two recovered architecture, it
is necessary to calculate the following equation:

c2cðci; cjÞ ¼ jentitiesðciÞ \ entitiesðcjÞj
maxðjentitiesðciÞj; jentitiesðcjÞjÞ ;

where ci is an automatically prepared clustering; cj is a
ground-truth cluster; and entities(c) is the set of entities in
cluster c. C2C is computed as following:

C2CðA1; A2Þð%Þ ¼ jsimCðA1; A2Þj
jA1:Cj (5)

simCðA1; A2Þ ¼ fcijðci 2 A1; 9cj 2 A2Þ ^ c2cðci; cjÞ > thcvgÞg:

A1 is the recovered architecture; A2 is a ground-truth
architecture; and A1:C are the clusters of A1. simCðA1; A2Þ

returns A0
1s clusters for which the c2c value is above a

threshold thcvg.
To compare the overall results of FCA against other

tested algorithms in terms of TurboMQ, MoJoFM, C2C, and
running time, we utilized a non-parametric effect size statis-
tic namely Cliff’s d which is used to quantify the amount of
difference between two algorithms.

4.4 Algorithmic Parameters

The setting of parameters is necessary for search-based
algorithms. For genetic-based algorithms, for our compari-
sons, we followed the algorithmic parameters setting used
in [9], [20]. Algorithmic parameters are dependent on the
number of artifacts (N). For the rest of the algorithms (i.e.,
Hill-climbing algorithm and Estimation of Distribution
algorithm), we used the same parameters as those used by
the authors of these algorithms. We obtained the implemen-
tation of the ACDC from its official web site.

As references [8], [9], [37], to reduce randomness the
results of the search-based algorithms used in comparisons,
we collect the best of 30 independent runs. For MoJoFM,
TurboMQ, and C2C, we report the best values rounded to
the closest integer. Let N denote the number of artifacts, the
parameter setting for experiments is shown in Table 9.

4.5 Research Questions

The following questions are answered to evaluate the effec-
tiveness of the proposed algorithm.

TABLE 7
Properties of the Selected Folders

TABLE 8
Data Sets Specifications for Two Large and Very Large

Software Systems

Project Version Description SLOC #File

ITK 4.5.2 Image Segmentation Toolkit 1M 7,310
Chromium svn-171054 Web Browser 10M 18,698

TABLE 9
The Parameter Setting for Experiments

Parameter Value

Population size 10N
Maximum number of
generations

200N

Crossover Rate 0.8
Mutation Rate 0.004log2(N)

Termination condition
There has been no improvement in the

population for 50 iterations
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RQ1. Does the proposed algorithm perform better than
the hierarchical and non-hierarchical clustering algorithms
in terms of TurboMQ, MoJoFM, and C2C?

RQ2. Is the proposed algorithm scalable?
RQ3. Is there a statistically significant improvement

between the FCA and the algorithms compared?
We ran the algorithms on a Laptop with Intel core i7 pro-

cessor 2.60 GHz and 16 GB of memory.

5 EXPERIMENTAL RESULTS

This section presents the results of the empirical study. The
aim is to compare the proposed algorithm, FCA, against some
hierarchical and non-hierarchical algorithms in terms of Tur-
boMQ, MoJoFM, C2C, and running time. To this end, eight
search-based algorithmswith different characteristics are cho-
sen. The algorithms selected vary from each other in some dif-
ferent ways including single-objective, multi-objective, global
search, local search, structured-basedmethods, and semantic-
based methods. The software clustering approaches to which
we compared FCA are Bunch-GA, DAGC, ECA, MCA,
Bunch-NAHC, SHC, GA-SMCP, and EoD. The characteristics
of these algorithms are described in Table 10. K-means, a basic
machine learning algorithm, and ACDC, a clustering algo-
rithm based on subsystem patterns are also used for compari-
son. Several previous studies [14], [15], [16] have shown that
ACDC performedwell on the tested applications. Besides, we
selected agglomerative clustering algorithms such as Com-
plete, Single, Average (Weighted), WCA-UE, WCA-UENM,
and LIMBO for comparison.

To compare and evaluate the proposed algorithm, sev-
eral software systems with different domains and sizes
have been selected. Tables 6, 7, and 8 show the specifica-
tions of these software systems. Note that the dependency
used in the software systems shown in Table 6 are call and
include dependencies. The dependency used in the soft-
ware systems shown in Table 7 are call and include depen-
dencies, that we are obtained from their source code using
Understand toolset (https://scitools.com/).

Lutellier et al. [15] have extracted various dependencies
for ITK and Chromium applications such as include, sym-
bol, Function call, etc. These dependencies alone do not
cover the entire program. For example, in Chromium, the
function call dependency only covers 12,627 artifacts of
18,698 artifacts. So, to cover the whole program, we merged
these dependencies and removed duplicate dependencies.

The size of projects used for the experiments are 13 to
18,698 source files. Table 11 shows the size of projects used
for experiments in some existing clustering algorithms.

To answer the research question RQ1, we compared the
proposed algorithm against some hierarchical algorithms,
k-means and ACDC in terms of TurboMQ on ten small-
sized applications shown in Table 6. Table 12 shows the
comparison results. The results demonstrate that in all cases
the proposed algorithm has been able to obtain higher qual-
ity clustering than the algorithms tested.

We have also selected the Mozilla Firefox application. The
reason for this choice is that there is an expert decomposition
for it. Ten folders with different functionalities have been
selected from this application.Wehave clustered these folders
with eight evolutionary algorithms with different features, k-
means and ACDC. Because the clustering problem is an NP-
hard problem, evolutionary algorithms usually produce plau-
sible solutions [8], [9]. In terms of MoJoFM, Table 13 shows
that the proposed algorithm performs better in six out of ten
cases. In the Build folder, there is a significant difference
between the FCA and the other algorithms in the value of
MoJoFM, and the FCA did not work well. The reason for this
improper performance is that the dependency graph of this
folder is disconnected and also has several isolated vertices.

TABLE 10
Features of Selected Search-Based Algorithms for Comparison With the Proposed Algorithm

Algorithm Algorithm type #objective used Search type Structural based/Semantic-based Encoding type

Bunch-GA [5] Genetic algorithm Single-objective Global Structural real-valued
DAGC [22] Genetic algorithm Single-objective Global Structural permutation- based
ECA [9] two-Archive genetic algorithm Multi-objective Global Structural real-valued
MCA [9] two-Archive genetic algorithm Multi-objective Global Structural real-valued
Bunch-SAHC [17] Hill-climbing algorithm Single-objective Local Structural real-valued
SHC [21] Hill-climbing algorithm Single-objective Local Semantic real-valued
GA-SMCP [20] Genetic algorithm Single-objective Global Structural real-valued
EoD [8] Estimation of Distribution algorithm Multi-objective Global Semantic & Structural real-valued

TABLE 11
Projects Size Used for Experiments in

Some Clustering Algorithms

Reference Projects size (#modules or #files)

[9], [20] 20 to 198
[5], [17] 13 to 413
[31] 13 to 124
[8] 21 to 97
[32] 63 to 401
[24] 4 to 93
[21] 21 to 881
[20] 20 to 198
[40] 41 to 97
in this paper 13 to 18698

TABLE 12
Comparison of the Proposed Algorithm With Some Hierarchical

Algorithms, k-Means and ACDC in Terms of TurboMQ
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Note that, the FCA works better in large folders than other
algorithms. In terms of C2C (thcvg > 33%), the FCA can com-
pete with other algorithms. In terms of TurboQ, Table 14
shows that the FCAhas comparable results.

The important point is that the running time of the algo-
rithm is much shorter than the algorithms compared. Table 15
shows the running times of the algorithms. In the folders
where there are many artifacts, the difference in running time
is considerable. In terms of time, the FCA has significant supe-
riority over evolutionary algorithms. For example, the well-
knownMCAalgorithm took about 260 hours to cluster the con-
tent folder,while the proposed algorithm took about 3 seconds.
With the increase in the size of software systems, the perfor-
mance of evolutionary algorithms slows down due to the size
of their solutions, the time-consuming operators, and in some
cases, memory problems. But the proposed solution only
works on thematrix, whichmakes it less time consuming than
the others.

To answer the research question RQ2, to further investi-
gate the performance of the proposed algorithm, we have
selected two large (ITK including 7,310 files) and very large
software systems (Chromium including 18,698 files).

For future comparison, we selected four state-of-the-art
algorithms, which all are published in IEEE Transactions on
Software Engineering Journal. The algorithms selected are
Bunch-SAHC, WCA-UE, WCA-UENM, and LIMBO. The
Bunch-SAHC is a search-based algorithm and others are
hierarchical algorithms. We also selected two famous algo-
rithms k-means and ACDC. Due to time and memory prob-
lems, we were unable to select other algorithms from
search-based methods. Table 16 shows the results in terms
of TurboMQ, MoJoFM, C2C, and run time. The results show
that the proposed algorithm performs better than hierarchi-
cal algorithms and can also compete with the Bunch-SAHC
algorithm and ACDC. But the running time of the proposed
algorithm is much shorter, which is discussed below.

For ITK and Chromium, the techniques compared take
several hours to days to run. Considering the existing tested
algorithms, running all experiments for Chromium would
take more than a week of CPU time on a single machine or
time out (TO), and the ACDC takes 10 hours for clustering.
Bunch-SAHC, and LIMBO timed out after 24 and 8 days,
respectively. For Bunch-SAHC, we report here the interme-
diate architecture recovered at that time. K-means can take

TABLE 13
Comparison of the Proposed Algorithm With Some State-of-the-Art Search-Based Algorithms in

Terms of MoJoFM (M)(%) and C2C (C)(%)

TABLE 14
Comparison of the Proposed Algorithm With Some State-of-the-Art Search-Based Algorithms, k-Means and ACDC in

Terms of TurboMQ

Folder name Bunch-GA DAGC ECA MCA Bunch-NAHC SHC GA-SMCP EoD ACDC k-means FCA

Accessible 6.26 0.93 22.17 28.98 4.80 10.01 14 29.21 12.26 0.82 17.92
Browser 3.72 0.92 4 28.5 5.85 9 6.5 9 11.45 0.98 7.57
Build 3 0.5 3 3 1 0.92 1.23 2.9 3 0.85 3
Content 6.76 0.19 46.09 39.40 5.41 16.97 12.01 10.11 28.05 2.69 36.66
Db 2.34 0.86 5.5 6.9 2.60 2.34 1.90 2.51 3.12 0.70 2.7
Dom 6.16 0.92 23.51 79.38 4.30 12.87 5.11 8 6.93 0.67 7.44
Extensions 11.80 0.91 24.92 32.85 6.66 8.90 10.99 13 7 1.8 26.62
Gfx 6.50 0.82 29.14 70.43 4.32 3.01 6.86 12.22 10.58 1.63 19.83
Intl 5.46 0.90 60.04 116.63 2.54 7.90 4.11 12.90 12.16 0.86 31.19
Ipc 5.64 0.84 17.7 18.29 3.92 4.50 5.64 10.90 19.68 1.63 11.41

TABLE 15
Comparison of the Proposed Algorithm With Some State-of-the-Art Search-Based Algorithms in Terms of Time (Second)

Folder name Bunch-GA DAGC ECA MCA Bunch-NAHC SHC GA-SMCP EoD ACDC k-means FCA

Accessible 4535 7471 4521 4437 101.5 869 5921 3990 0.86 4.03 0.30
Browser 708 609.5 733.5 796.5 4.95 12.25 901 541 0.86 0.72 0.18
Build 512 383.805 421.5 425 3 3.2 540 431 0.26 0.05 0.03
Content 950337.5 4794247.5 943040 943021 698441.5 6531479 5224315 890021 3.31 2007.9 3.30
Db 494.5 1834.495 1363.5 1470.5 47.4 1350.5 2301 481 1.25 0.32 0.26
Dom 3110 6139 3082.5 3153 110.5 101.4 6341 2208 0.79 0.95 0.25
Extensions 6264 7653 6461 6730 266.5 4032 6421 6259 0.36 3.24 0.28
Gfx 15563 28173 14781 14966 1131 2036 21540 13238 0.70 19.05 0.51
Intl 222888 1333765.5 223645 222884 238100.5 419513.5 1034921 22198 1.24 40 0.82
Ipc 62770.5 424153.5 62642.5 62683.5 1196 899.5 99101 61211 0.15 0.48 0.11
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varying numbers of clusters as input. For k-means, the algo-
rithm has been executed with different values of k in steps
of 5 increment, up to a specified runtime. It is important to
note that it is not possible to terminate hierarchical methods
in the clustering process and these algorithms must be exe-
cuted until the last step. But it is possible to terminate
search-based algorithms in the clustering process and report
the intermediate results. The results obtained from this
research question demonstrate that the proposed algorithm
is scalable, and can cluster large applications in less time.

To answer the research question RQ3, Cliff’s d effect size
metric is utilized. This test is a non-parametric effect size
metric that quantifies the difference among two groups of
observations (here FCA against other tested algorithms).
The result of this metric is in range �1 to 1 and higher value
shows that results of the first group (here, FCA) generally
are better than the second group (other algorithms). To
interpret, as [15], the following magnitudes are used: negli-
gible (jdj < 0:147), small (jdj < 0:33), medium (jdj < 0:474),
and large (0.474 � jdj). The results (Table 17) indicate that,
in terms of time, the FCA is better than the other algorithms.
Also, the values of MoJoFM, TurboMQ, and C2C in FCA are
better than the other algorithms in general.

From the short review above, the main achievements,
including contributions to the field can be summarized as
follows:

1) Compared with hierarchical algorithms, the FCA
results in a modularization of higher quality and is
also comparable with search-based algorithms and
ACDC, a state-of-the-art algorithm, in terms of the
internal and external metrics.

2) Because the FCA has fewer and simpler operations
than the other algorithms, it can cluster large graphs
in less time and therefore it is scalable. Compared to
the state-of-the-art algorithms, the proposed algo-
rithm is the fastest software clustering algorithm.

6 THREATS TO VALIDITY

In this section,we discuss the threats that could affect the valid-
ity of the results obtained from the evaluation. Despite our
efforts to avoid/reduce as many threats to validity as possible,
some are inevitable. In the following, we address the threats to
validity from two aspects of external and internal validity.

Threats to External Validity. Several factors may restrict
the generality and limit the interpretation of our results.

The main external threat arises from the possibility that the
selected application is not representative of software sys-
tems in general, with the result that the findings of the
experiments do not apply to ‘typical’ software systems. To
address these concerns, a variety of applications with differ-
ent functionalities and sizes are considered. There is, there-
fore, reasonable cause for confidence in the results obtained
and the conclusions drawn from them.

Threats to Internal Validity. The external metrics used to
the evaluation can affect the validity of the results. As [10],
[15], we utilized two well-known and widely used metrics,
namely MoJoFM, C2C, for the evaluation. Different metrics,
such as architecture-to-architecture [15], and EdgeSim [4],
may produce different results for the same software system.

Another important factor that affects the experiment results
is the accuracy of the authoritative decomposition achieved
from a software system.Weused the package structure (direc-
tory structure) of the Mozilla Firefox as an authoritative
decomposition. The expert decompositions that we selected
have been used earlier in software modularization experi-
ments in [7], [8].We know that there is a big threat as the direc-
tory structure of a project is often different from the actual
“ground-truth decomposition.” In well-structured projects,
the directory structure of the project originally usually reflects
the architecture of the project [39]. To handle this threat, we
selected the developer preview version of the Mozilla Firefox,
because there is a credible (human) expert decomposition (the
directory structure) of that. It is worth mentioning that the
selected version is a stable version, as small changes have
beenmade to it and its directory structure has not changed.

Isolated vertices (single vertices). These nodes have no
connection to other nodes. Thus, it is not possible to assign
them into specific clusters. These single vertices are one of
the reasons for the discrepancy between the results of the
algorithms and the expert clustering.

7 CONCLUSION

Given the importance of clustering in understanding and
maintaining software as well as its importance for extract-
ing software architecture, in this paper, we proposed a new
style of software system clustering based on the artifact
dependency graph. To this end, we proposed a clustering

TABLE 16
Comparison of the Proposed Algorithm With Other Algorithms
on ITK and Chromium in Terms of TurboMQ (T)(%), MoJoFM

(M)(%), C2C (C)(%), Time (d: Day, h: Hour, s: Second)

ITK Chromium

Algorithm T M C Time T M C Time

Bunch-SAHC 14 42 1 24y d 14 53 10 24y d
WCA-UE 1 33 0 16 h 1 21 0 31 h

WCA-UENM 2 31 0 18 h 1 23 0 38 h

LIMBO 10 28 0 8 d TO TO TO TO

ACDC 15 55 0 565 s 18 58 41 10 h

k-means 14 26 0 24y h 6 33 7 36y h
FCA 28 44 6 272 s 16 36 45 8 h

yScores denote results for intermediate architectures recovered at that time.

TABLE 17
Cliff’s d Effect Size Test

Algorithm TurboMQ MoJoFM C2C Time

Bunch-GA .59 (large) .31 (small) .24 (small) 1 (large)
ECA -.19 (small) .5 (large) .23 (small) 1 (large)
MCA -.48 (large) .28 (small) .15 (small) 1 (large)
Bunch-NAHC .87 (large) .44 (med.) .39 (med.) 1 (large)
Bunch-SAHC 1 (large) -.5 (large) .5 (large) 1 (large)
SHC .68 (large) .44 (med.) .48 (large) 1 (large)
GA-SMCP .7 (large) .34 (med.) .31 (small) 1 (large)
EoD .24(small) .36 (med.) .05 (neg.) 1 (large)
ACDC .19 (small) .05 (neg.) .1 (neg.) .37 (med.)
k-means .80 (large) .26 (small) .45 (large) .48 (large)
WCA-UE .91 (large) 1 (large) 1 (large) 1 (large)
WCA-UENM 1 (large) 1 (large) 1 (large) 1 (large)
LIMBO 1 (large) 1 (large) 1 (large) 1 (large)

A positive value indicates that the effect size favor of the FCA. The interpreta-
tion of the effect size is indicated in parenthesis. neg. stands for negligible and
med. for medium.
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algorithm that works on the dependency matrix. Compara-
tive results indicated that it performs better than hierarchi-
cal algorithms and competes with search-based algorithms
in terms of TurboMQ (an internal metric) and two external
metrics namely MoJoFM and C2C. The main feature of the
FCA is its scalability. It can cluster very large software sys-
tems within a reasonable amount of time.

Future research should be devoted to the development of:

1) Using the non-structural features. The algorithm will be
developed to consider some nonstructural features
such as artifacts name and comments, alongwith struc-
tural features, in the process of software clustering.

2) Preprocessing for determining libraries and utilities.
Some algorithms try to delete libraries and utilities
before the clustering process.
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