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ABSTRACT

The availability of curated collections of models is essential for the
application of techniques like Machine Learning (ML) and Data
Analytics to MDE as well as to boost research activities. How-
ever, many applications of ML to address MDE tasks are currently
limited to small datasets. In this demo paper, we will present Mod-
elSet, a dataset composed of 5,466 Ecore models and 5,120 UML
models which have been manually labelled to support ML tasks
(http://modelset.github.io). ModelSet is built upon the models col-
lected by the MAR search engine (http://mar-search.org), which
provides more than 500,000 models of different types. We will de-
scribe the structure of the dataset and we will explain how to use
the associated library to develop ML applications in Python. Finally,
we will describe some applications which can be addressed using
ModelSet.

CCS CONCEPTS

• Software and its engineering → Model-driven software en-

gineering; Unified Modeling Language (UML); Software libraries

and repositories; • Computing methodologies → Machine

learning.
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1 INTRODUCTION

The use of Machine Learning (ML) techniques to solve Model-
Driven Engineering (MDE) problems is becoming widespread. This
can be witnessed by the publication of recent works which address
different types of problems in MDE. For instance, the task of auto-
matically labelling models stored in model repositories has been
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successfully addressed using feed-forward neural networks [17].
An LSTM architecture is used to perform model transformation by
example [5]. Graph neural networks are used to assess the realism of
model generators [14]. Model assistants based on providing recom-
mendations are starting to be built using different techniques [9, 19].
A key element to successfully apply ML techniques is the existence
of curated datasets of modelling artefacts. In particular, in this work
we will focus on software models. In this sense, some applications
are unsupervised and only require the existence of a large number
of models. Other applications are supervised and require not only
the models but a set of associated labels. The creation of a labelled
dataset is typically a manual and tedious process, which makes
their creation costly.

In this context, the availability of adequate datasets of mod-
els is scarce. Regarding unlabelled modelling datasets, there are a
few alternatives. The Lindholmen dataset [18] contains more than
90,000 UML models (although it is not curated and actually many
of the models are broken). A dataset of OCL constraints, which also
includes associated Ecore models, is presented by Mengerink et
al. [16]. An alternative, typically done by many empirical papers
is to roll their own GitHub crawler [3]. With regard to labelled
datasets, some works have used the dataset created by Babür [2],
but it contains only 555 Ecore meta-models thus hindering the
potential to obtain reliable conclusions from its use.

To alleviate this issue and to boost research activities of ML
techniques applied to MDE, we built the ModelSet dataset [11].
The dataset contains 5,466 Ecore models and 5,120 UML models
manually labelled with its category, plus a set of additional tags.
ModelSet relies on a subset of the models provided by the MAR
search engine [12, 13]. MAR makes available more than 500,000
models1 of different types, including Ecore, UML and BPMN, among
others; extracted fromGitHub, GenMyModel and the AtlanMod zoo.
We believe that the provision of these two datasets may become key
to promote and improve research activities related to the application
of ML techniques to address MDE tasks.

In this paper, we will presentModelSet focusing on technical
details like its structure and the available support library for Python.
Finally, we will describe some ML tasks in MDE which could be
facilitated byModelSet.

Organization. Section 2 describes the features of ModelSet and
provides some details about how to use it. Section 3 describes some
applications which can be implemented usingModelSet. Finally,
Section 4 concludes the paper.

1http://mar-search.org
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Figure 1: Example Ecore model.

2 MODELSET

ModelSet is a dataset of software models which has been manually
labelled and curated in order to foster research in ML andMDE. The
project is structured in five separate projects, which are available
in the corresponding repositories at https://github.com/modelset.
In particular, the repositories are the following:

• modelset-dataset. This repository contains the databases with
the manually created labels, some Java code to facilitate the
handling of the models and scripts to generate the released
package.

• modelset-datasetcreator. An Eclipse plug-in to facilitate the
labelling of EMF-based models, like Ecore models and UML
models. It implements a method for fast labelling described
by Hernández López et al. [11].

• modelset-py. A Python library to facilitate loadingModelSet
and using it to train ML algorithms. The library will be
described in more detail in Sect. 2.3.

• modelset-apps. This repository contains example projects
which uses ModelSet to perform simple ML tasks with
software models.

• modelset.github.io. Awebsite available at http://modelset.github.
io intended to explore the models and the labels of Mod-
elSet.

2.1 Dataset Description

ModelSet is a collection of labelled software models comprising
5,466 Ecore and 5,120 UML models, making a total of 10,586 models.
The models were collected from GitHub and GenMyModel reposito-
ries. Especifically, they were reused from the models made available
by early versions of MAR. For Ecore, the models were retrieved
from GitHub; and for UML, they were collected from GenMyModel.
We filtered out duplicated files by computing the MD5 hash of each
file.

The models were manually labelled with several types of labels.
The labelling was performed by the authors Javier Luis Cánovas
and Jesús Sánchez, who have more than 15 years of experience in
modelling. To address possible conflicts, the authors met together
and each one reviewed a random sample of size 25% of the models
labelled by the other author. All disagreement cases were discussed
between the authors to reach consensus.

As a running example, Fig. 1 shows one of the meta-models
of the dataset. It is a meta-model to represent feature models as
part of a software product line. The meta-model contains nine sub-
packages but for the sake of the space only the contents of the

Table 1: Usage of labels in ModelSet. Taken from [11]

Label Ecore UML

# values coverage # values coverage

Category 224 100.00% 135 100.00%
Tags 387 117.53% 92 52.99%

Purpose 29 31.16% – –
Notation 8 11.09% – –
Tool 188 7.78% – –
Main-diagram – – 6 108.03%
coverage > 100% when label is assigned more than once.

package FMModel are shown. This model, and the rest of the models
in the ModelSet dataset have been manually labelled with the
following types of labels:

• Category. This is the main type of label used in ModelSet.
It represents a family of models sharing a similar application
domain. In the running example, the model has been labelled
as features since it is a meta-model to specify feature models.
Therefore, all models with characteristics typical of feature
models have been labelled with this category.

• Tags. This label includes additional keywords providing
additional insights about the model, typically specializing
the value of the category. For instance, the example model
has been labelled with tags feature-modelling and spl.

• Purpose. For some models it was possible to determine its
purpose. For instance, a model used in a university course
about MDE is assigned the label assignment when they were
developed by students as part of a course project. Other
models were assigned the label experiment since they were
built for experimental purposes.

• Notation. This type of label attempts to indicate whether
the meta-model is used as part of a Domain Specific Lan-
guage (DSL) and there is an associated notation in the same
project. For instance, typical labels include Xtext for textual
languages and Sirius for graphical languages.

• Tool. This type of label indicates whether the meta-model
has been identified as part of a tool. In the example, the
meta-model is labelled with the name of the associated tool,
SpineFM.

• Main-diagram. This label is only available in UML models,
and identifies the main diagrams included in the model. For
instance, if a model contains several diagrams but the most
developed or representative diagram is the class diagram,
the model is labelled with class-diagram.

In total, 28,719 labels were used (15,288 and 13,431 labels in Ecore
and UML models, respectively), with an average number of labels
per model of 2.71 (2.80 and 2.62 in Ecore and UML, respectively).
Table 1 shows the distribution of labels.

2.2 Dataset Structure

The structure of ModelSet is graphically depicted in Fig. 2. Mod-
elSet has been populated by two sets of files, one for Ecore and one
for UML. The formerwere collected fromGitHub and the latter from

https://github.com/modelset
http://modelset.github.io
http://modelset.github.io
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metadata

id: VARCHAR {PK, FK(model.id)}
json: TEXT

raw-data
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txt
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repo-ecore-all

repo-genmymodel-uml

dataset.ecore

analysis.db

genmymodel.db

dataset.genmymodel

analysis.db

Ecore

GitHub

UML

GenMyModel

Labelling
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id: VARCHAR {PK}
repo: VARCHAR
filename: TEXT

Database Schema

Figure 2: Structure of the dataset.

Listing 1: Example of metadata.

{ "category": ["features"],
"tags":["feature -modelling","spl"],
"tool":["spinefm"] }

GenMyModel. Once the model files were collected, they were the
input of the labelling process, in which the models were manually
annotated with the labels described above. The actual models are
stored in a specific folder, and there is a rendering process, which
generates alternative representations of the models (e.g., graph- or
text-based). In the following we describe each process.

The labelling process produced a relational database for each
set of files. This is the main artefact of the dataset. In particular,
we generated two SQLite databases (see dataset.ecore/ecore.db and
dataset.genmymodel/genmymodel.db files, for Ecore and UML set of
models, respectively). The schema of these databases includes two
tables: the table models, which stores the name and reference of the
model; and the table metadata, which stores the labels assigned to
the model in JSON format. We use JSON to facilitate the integration
of external tools with ModelSet. Listing 1 shows an example of
JSON metadata. Providing a relational database allows the use of
the command-line interface of SQLite to easily query the dataset
and perform simple analysis. For instance, Listing 2 shows how to
compute the top categories of for Ecore. In particular, the query
joins the models and metadata tables to access the JSON document
with the labels and then uses json_extract to the stored category2.

In addition to the manually labelled metadata, for each model a
set of statistics are also provided. They are gathered in an associated
SQLite database (see dataset.ecore/analysis.db and dataset.genmymodel/

analysis.db files, for Ecore and UML, respectively). The statistics in-
clude the number of elements of the model, the number of elements
per type (e.g., the number of objects of type EClass, EReference, etc.
in the case of Ecore) and the number of diagrams of each type in
the case of UML. Implementation-wise, these statistics are automat-
ically computed using the model analyser implemented as part of
the MAR project (see https://github.com/mar-platform/mar).

The storing process collects all the original files serialized in XMI
format in the raw-data folder (see repo-ecore-all and repo-genmymodel-

umml subfolders for Ecore and UML, respectively).

2SQLite offers a set of functions to interact with JSON data stored in the database.
This is very convenient to perform queries over the dataset. See https://www.sqlite.
org/json1.html

Listing 2: Querying the dataset.

$ sqlite ecore.db
> select json_extract(md.json , '$.category [0]') as category ,

count (*) as total
from models m join metadata md on m.id = md.id
group by category
order by total desc
limit 7;

category total
-------- -----
dummy 729
statemachine 392
petrinet 236
library 235
modelling 209
class -diagram 182
gpl 180

Listing 4: Path to text-based representation of the model

shown in Fig. 1.

txt/repo -ecore -all/data/surli/spinefm/
spinefm -eclipseplugins -root/spinefm -core/

model/MetamodelSpineFM.ecore/MetamodelSpineFM.txt

Finally, during the rendering process all collected models are also
stored in other formats suitable to facilitate the usage of the dataset
to train ML algorithms. Currently, two formats are available: graph
and text (see the so-called folders). The graph version renders the
models into the JSON format supported by networkx

3, a popular
graph library for Python. Using this JSON-based format it is easy
to visualize the graphs for further analysis, and also load and trans-
form them into other formats like COO, as required by PyTorch
Geometric. On the other hand, the text version of the models stores
the values of the string attributes, one per line. This is useful to
easily implement encodings based on text like TF-IDF. Listing 3
shows the text encoding for the previous running example. It is
worth noting that if the same term appears more than one (e.g.,
name), there will be multiple lines containing it. This is needed to
weight the relative importance of each term in the models.

Listing 3: Text encoding of the model shown in Fig. 1.

spinefm
FMModel
FeatureModel
getStateFT
feature
getFeatureFromName
name
addFeature
name
...

To promote efficiency when accessing the models, graph- and
text-based model representations are stored with the same relative
path as the original model, but using the model file name as a folder
to contain the new file. For instance, Listing 4 shows the text-based
representation of the model file for the running example. Note
that the path after the txt folder name matches with the path of
the original model which is repo-ecore-all/data/surli/spinefm/spinefm-

eclipseplugins-root/spinefm-core/model/MetamodelSpineFM.ecore.

3https://networkx.org/documentation/stable/reference/readwrite/json_graph.html

https://github.com/mar-platform/mar
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Listing 5: Using modelset-py.
1 import modelset.dataset as ds
2
3 MODELSET_HOME = '/path/to/modelset '
4 dataset = ds.load(MODELSET_HOME ,
5 modeltype='ecore ',
6 selected_analysis =['stats '])

Listing 6: Usage example of to_normalized_df method.

1 df = dataset.to_normalized_df(
2 min_ocurrences_per_category = 5,
3 languages = ['english '],
4 remove_categories = ['petrinet ',
5 'statemachine '])

2.3 Support Library

ModelSet can be used by accessing the SQLite database by means
of some existing driver, however, this can be error-prone and relies
on the structure of the database, which may change in the future.
Therefore, we have developed a companion Python-based support
library, namedmodelset-py, which is available at the PyPi repository4
and can be easily installed via pip.

The main functionality provided by the modelset-py library is to
load the dataset into memory (from the database) and to prepare
the data in a manner that is suitable for using well-known Python
libraries like Pandas, Scikit-Learn or PyTorch, among others.

Listing 5 shows how to loadModelSet using the library. Once
the library is imported (line 1), it is important to load the dataset to
a local folder, which must have been downloaded previously5 (line
3 points to this folder). To load the dataset the load method receives
(1) the location of ModelSet package, (2) the type of the models
(themodeltype parameter can be ecore or uml), and, optionally, (3) the
selected_analysis parameter, which currently accepts the stats value
to indicate whether statistics about the models must be included.
Note that the selected_analysis parameter may slow down the loading
process, thereby its optionality.

The loaded dataset object contains a few methods to query the
dataset. In particular, there are two main methods to convert the
dataset into a Pandas dataframe: to_df and to_normalized_df. The
former converts the complete dataset as it is; while the latter per-
forms the conversion but only considering examples with a mini-
mum number of examples (7 by default), written in the provided
languages (English by default) and removing special categories
(dummy and unknown6).

For instance, Listing 6 obtains a Pandas dataframe in which
any model whose category has less than 5 models is removed, only
models written in English are retrieved, and models whose category
is petrinet or statemachine are removed. This dataframe provides a
good starting point to manipulate the dataset, and to interact with
other libraries. Thus, Listing 7 reuses the df variable and shows
how to split the dataset into training and test.

4https://pypi.org/project/modelset-py/
5The lastest version of the ModelSet package can be downloaded from the releases
page of the project: https://github.com/modelset/modelset-dataset/releases/.
6The dummy category represents incomplete models which has little value and un-
known means that we could not label properly the model.

Listing 7: Creating training and test sets.

1 from sklearn.model_selection import train_test_split
2
3 ids = df['id ']
4 labels = df['category ']
5
6 train_X , test_X , train_y , test_y =
7 train_test_split(ids , labels)

Listing 8: Recovering all models in the three available for-

mats.

1 models = [dataset.model_file(id) for id in ids]
2 texts = [dataset.txt_file(id) for id in ids]
3 graphs = [dataset.graph_file(id) for id in ids]

a

c

d

b

Figure 3: Screenshot of MAR generating labels (from [11])

Finally, the loaded dataset also provides access to the XMI files,
the text versions and the graph versions of a model given its id.
Listing 8 reuses the variable dataset to illustrate how to obtain all
the models of the dataset in the three available formats.

Altogether, we believe the library makes it easy to start an ML
project which treats with models since it bridges the gap between
the internal structure of the dataset and the Python ecosystem.

3 APPLICATIONS

ModelSet has been previously used to address classification tasks
for Ecore and UML models. This type of task can be informally
defined as follows: given an unseen model, identify is the most
probable label (or labels if it is a multi-label task) for the model.

Although this problem has been addressed before the release of
ModelSet, it was done only with small datasets [17]. The usage of
ModelSet allows us to derive stronger conclusions, as described
in recent work [15]. Moreover, the classification model [11] has
been used in practice to implement a faceted search facility in
the MAR search engine. Fig. 3 shows an example, in which the
models retrieved as a response to a query are automatically provided
a category (label b ) and a set of tags (label d ). Moreover, it is
possible to refine the search using the categories (label c ).

In the rest of the section we discuss other scenarios in which we
believe that ModelSet can be useful. For the sake of completeness,
for those scenarios which can be addressed using unsupervised

https://pypi.org/project/modelset-py/
https://github.com/modelset/modelset-dataset/releases/
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learning techniques, we indicate whether the models provided by
MAR can also be used as an equivalent dataset (containing a larger
number of models, but not labelled).
Evaluation of clustering methods. ModelSet gives access to a
large number of models which can be applied to empirically evalu-
ating clustering methods. In this case, the labels can be interpreted
as cluster identifiers and used as ground truth. This is particularly
useful to perform a more robust evaluation of previously proposed
clustering techniques like SAMOS [3] or [4].
Recommender systems. MAR provides large amounts of models
of different types which may allow training neural models, which
requires large amounts of models. ModelSet may also be used
if one is interested in specific categories of models (e.g., a recom-
mender system to model in the banking domain). Furthermore,
the models of MAR have been already used to train and evaluate
several recommender systems [1, 19].
Spurious model identification. ModelSet may be used to iden-
tify spurious models, which are models with a low quality level
(e.g., partial or wrong models). This can be done by focusing on the
models labelled as dummy.
Label-based stratified evaluation. ModelSet may be used to eval-
uate ML models using train-test-eval splitting in a stratified fashion
using the labels. This is useful to avoid bias in performance estima-
tion as there are several domains that contain much fewer models
than others.
Train embeddings. ModelSet may be used to train embeddings
of models of a specific category (i.e., for clone detection or recom-
mender systems in a particular domain). For instance, the authors
in [6] propose a doc2vec [10] approach over UML class diagrams
extracted from code to recommend concepts within a model.
Usage of models in education. The collection of models in Mod-
elSet gives the opportunity to use models for illustrating purposes
in educational environments.
Statistical model analysis.ModelSet contains a good amount
of samples that can be used to apply several statistical analyses
and perform quality assurance. For instance, understanding com-
mon characteristics of model through statistical analysis [7, 8] or
evaluating the realistic model generators [14].

Altogether, we believe that ModelSet provides a good opportu-
nity to boost research activities related to Machine Learning and
Model-Driven Engineering.

4 CONCLUSION AND FUTUREWORK

The application of ML algorithms to address tasks related to MDE
is increasingly being researched. However, an important element
which may hinder the evolution of this research line is the lack of
sufficiently large datasets. In this paper, we have presented the cur-
rent status of ModelSet, a large labelled dataset of software models
composed of 5,466 Ecore meta-models and 5,120 UML models. We
have described the structure of the dataset, how to start using the
support library to create Python projects, and we have described
several applications of the dataset.

As future work, we plan to continue enhancing ModelSet. To
this end we aim at associating other types of labels, like textual
descriptions of the models (e.g., to generate textual summaries).

We also want to improve the modelset-py library with facilities like
detection of duplicate models and better integration with other
libraries like PyEcore or Scikit-Learn, among others. Also, to
facilitate its use we want to allow the automatic downloading of the
dataset when the library is first used. Finally, we are looking into
ways to integrate the models provided by MAR with the Python
library ofModelSet, so that it is possible to use them in unsupervised
learning scenarios.
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