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Abstract
The application of machine learning (ML) algorithms to address problems related to model-driven engineering (MDE) is
currently hindered by the lack of curated datasets of software models. There are several reasons for this, including the lack of
large collections of good quality models, the difficulty to label models due to the required domain expertise, and the relative
immaturity of the application of ML to MDE. In this work, we present ModelSet, a labelled dataset of software models
intended to enable the application of ML to address software modelling problems. To create it we have devised a method
designed to facilitate the exploration and labelling of model datasets by interactively grouping similar models using off-the-
shelf technologies like a search engine. We have built an Eclipse plug-in to support the labelling process, which we have
used to label 5,466 Ecore meta-models and 5,120 UML models with its category as the main label plus additional secondary
labels of interest. We have evaluated the ability of our labelling method to create meaningful groups of models in order to
speed up the process, improving the effectiveness of classical clustering methods. We showcase the usefulness of the dataset
by applying it in a real scenario: enhancing the MAR search engine. We use ModelSet to train models able to infer useful
metadata to navigate search results. The dataset and the tooling are available at https://figshare.com/s/5a6c02fa8ed20782935c
and a live version at http://modelset.github.io.
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1 Introduction

Model-driven engineering (MDE) is a software development
paradigm that advocates the use of models as active elements
in the development cycle. Such models can be created with
general-purpose modelling languages (e.g., UML) or using a
domain-specific language (DSL). At the same time, artificial
intelligence (AI) and machine learning (ML), its most cur-
rent branch, have shown their potential to enhance software
engineering approaches in many areas [2,5,50,56], but their
application for addressing tasks in the modelling domain is
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still relatively recent. For instance, a neural network has been
used to classify meta-models into application domains [39],
clustering techniques have shown its usefulness in organiz-
ing collections ofmodels [9,11], and graph kernels have been
proposed as a means to characterize similar models [17].

An important limitation of current applications of ML for
MDE is the lack of large datasets (either labelled or unla-
belled) from which rich ML models can be trained. While
there exist a few model datasets freely available, their qual-
ity is not adequate. Most datasets have a small size (e.g., 555
labelled meta-models [7,39]), while others are not curated
(e.g., the UML dataset proposed in [47] contains 90,000
models, but neither availability nor navigability are guaran-
teed and only 23,000 models can be downloaded, and only
3000 of them are EMF-valid; the rest crashed or it is not pos-
sible determine the tool to edit them easily). This scenario
contrasts with the situation in other application areas. For
instance, one of the milestones of the ML community was
the creation of large datasets, like ImageNet [18], which con-
tains thousands of manually labelled images. In the software
engineering domain, many approaches (either ML-based or
not) rely on public datasets designed for concrete applica-
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tions. A well-known example is the Defects4J [28] dataset,
which has fueled research in program repair (e.g., [15,36]).

In this paper, we tackle the creation of labelled datasets
of software models. The main difficulty is that labelling a
single model can be hard and time consuming due to the
domain expertise required to explore and understand the
model and assign a proper label. To address this shortcom-
ing, we have devised an interactive, semi-automatic labelling
method based on grouping similar models using a search
engine. We have created an Eclipse plug-in as a concrete
instantiation of the method, including features like auto-
matic model grouping by similarity, visualizations, and label
review. We have used this tool to label Ecore meta-models
and UML models with their category (e.g., DSLs for Petri
nets, UML for modelling an ATM). Moreover, we provide
a number of additional labels, like tags to describe the main
topics of a model. Altogether, this paper makes the following
contributions:

• We propose a methodology to speedup the process of
labelling software models. It is accompanied with a sup-
porting tool implemented as an Eclipse plug-in.

• We contribute the first version of ModelSet, a large
dataset of labelled models which comprises 5,466 Ecore
meta-models and 5,120 UML models.

• To assess the usefulness of the labelled part of the dataset
in practice, we show three applications of different nature
and apply them to enhance theMAR search engine1 [35]:
detection of dummymodels, single-label classification to
infer model categories, as well as multi-label classifica-
tion to infer relevant tags.

Ultimately, our aim is that this work fosters new interesting
applications forMDE, in particular, related tomachine learn-
ing and empirical studies, and it becomes a milestone for the
development of other datasets for models (or extensions of
this one).

1.1 Organization

Section 2 motivates the main challenges when creating
datasets. Section 3 presents the methodology to create
datasets ofmodels. Section 4 describesModelSet. Section 5
shows a case study usingModelSet. Section 6 presents the
related work and Sect. 7 concludes and describes the further
work.

2 Background andmotivation

Machine learning is a branch of artificial intelligence which
encompasses techniques to make computers learn from data.

1 http://mar-search.org.

The availability of high-quality datasets is essential for the
application ofML techniques in a given domain. In this paper,
our target domain is software modelling, and therefore our
focus is the creation of a dataset consisting of models. Our
underlying motivation is to push the development of ML
methods in the software modelling domain.

2.1 Machine learning and datasets

In general, ML techniques can be classified according to the
amount and shape of the provided data (i.e., the dataset).

In supervised learning, the dataset includes the labels that
the ML algorithm needs to learn. A particular type of learn-
ing task is regression, in which the system learns to predict
a numerical variable (e.g., a person height). Another type of
task is classification, in which the system learns to predict
a categorical variable (e.g., hair color). The existence of a
dataset, such as the one proposed in this work, will enable
classification applications associated with the management
of largemodel repositories [19], like attaching tags automati-
cally tomodels to help the user’s navigation and the automatic
detection of anomalous models to discard them, among oth-
ers. Moreover, the labels of a dataset are not only useful for
supervised tasks, but they also play a role in stratified sam-
pling to make sure that, when the data is split, the models
within each split preserve the percentage of sample for each
class.

In contrast, in unsupervised learning, the dataset does not
need to be labelled since the system tries to identify patterns
by itself. A typical task is clustering, in which the system
identifies groups of similar examples according to some crite-
ria [11]. Other unsupervised tasks include learningmodelling
patterns which arises in a dataset, for instance, with the aim
of creating smart modelling environments, including rec-
ommenders for model editors [31,33] and supporting the
interaction with bots [42,43]. It is important to note that a
labelled dataset is useful for testing clustering techniques
since there are quality metrics that require the ground truth to
be computed (e.g., Rand Index, NMI, AMI, etc). On the other
hand, reinforcement learning approaches have been used in
the modelling domain to apply automatic repairs [26].

Regarding clustering techniques, many algorithms have
been proposed. Among the most popular ones, there are K-
Means, hierarchical clustering and DBSCAN. All of them
requires a distance measure and the first two admit the num-
ber of clusters as hyperparameter. DBSCAN does not require
setting the number of clusters upfront, but it requires other
parameters. We use these three algorithms as a baseline to
compare our labelling method.

Altogether, the existence of high-quality datasets is a
pre-requisite for applying some of the ML techniques men-
tioned above to modelling. Moreover, the availability of
curated datasets will enable the development of model
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analytics and related empirical approaches (e.g., maturity
analysis [14,46], model characterization [24] or technical
debt assessment [21,27]).

2.2 Challenges for creating labelledmodelling
datasets

The technical underpinning of our work is the Eclipse Mod-
eling Framework (EMF) [44], which is a de facto industrial
standard to create modelling languages. Ecore is the meta-
modelling language provided by EMF and allows us to
represent the main concepts and relationships of an applica-
tion domain or a DSL (i.e., its abstract syntax). On the other
hand,UML is awell-knownmodelling language proposed by
the OMG [40], for which there is an EMF-based implemen-
tation. The language includes different diagram definitions
(e.g., class, interaction, or use case diagrams) and has become
the main general-purpose modelling language in software
development. Thus, we focus on creating labelled datasets
of Ecore and UML models extracted from public sources,
but the techniques that will be proposed in this work can be
applicable to other types of models as well.

As noted in the introductory section, there is a lack of
datasets specific to softwaremodels, which hinders the appli-
cation and adaptation of existing ML algorithms to deal with
software models. This contrasts which the situation in other
domains, in which there has been much research focused
on the creation of datasets [48]. Many labelled datasets
are general-purpose in the sense that most individuals can
contribute or correct labels. This fact facilitates the use of
crowdsourcing tools like Amazon Mechanical Turk (e.g.,
images [18] or questions [45]). However, one of the main
challenges in labelling software models is that it requires
modelling expertise and specialized tooling for inspection.
For instance, to label models in a dataset of Ecore meta-
models one needs to have experience about EMF and its
ecosystem. Similarly, annotating UML diagrams requires
knowledge about the different UML diagrams.

Another important challenge is that, evenwith the required
experience, labelling a single model can be very time-
consuming. Let us suppose that we are labelling Ecore
meta-models, and we come across a model similar to the one
in Fig. 1a. For manymodellers it might be challenging to find
out at first glance what type of model it represents2. A good
strategy is to look for more information from the tool source.
In this case, neither the GitHub README file nor the website
of the tool (osate2) includes specific information about this
meta-model. Therefore, we must spend some time looking
in alternate sources (e.g., Wikipedia), or we might try to find

2 Unless the modeller is familiar with safety modelling techniques. In
our case, only one of the authors of the paper knew what a fault tree is,
but only superficially.

FaultTree Event

name: String name: String
type: EventType
prob: double

root
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subEvents
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faultTree1

Fig. 1 Excerpts of fault tree meta-models

similar meta-models in the dataset in order to find out more
about this modelling domain. Only when we understand the
usage of the meta-model and we have explored similar meta-
models, we are ready to assign a label that properly identifies
the category of this and similarmeta-models. In this example,
one could find meta-models like the ones shown in Fig. 1b
and Fig. 1c. Using these two additional examples and the
information in the respective GitHub pages we could learn
that a fault tree is a formalism used in safety analysis inwhich
the key concepts are events whichmay be present in a fault or
hazard, and which are arranged in a tree structure according
to different types of gates and with probabilities assigned. If
we are assigning a category to the models, we could annotate
these three models with fault-tree. Moreover, we might want
to add additional tags like hazards and safety.

In our experience creating labelled datasets of models,
this situation happens often and it is a major hindrance to
its construction. To address this problem, our key observa-
tion is that the time spent understanding a model is likely
unavoidable. However, if we are able to show similar mod-
els at once, it would be easier to understand these models
by comparison, and it is possible to label similar models in
a row, thus speeding up the whole process. Hence, we have
devised a semi-automatic labelling method that applies this
idea, which is explained in the next section.
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3 Buildingmodel datasets

Building a dataset of software models generally implies two
main steps. First, models must be retrieved from known
model repositories, validated and organized. A dataset like
this can already be useful, for instance, for software ana-
lytics, and to apply unsupervised ML. If we aim at using
the dataset for supervised ML we need to label the mod-
els, but many times this requires manual intervention, which
is a time-consuming task, as discussed in the previous sec-
tion. Thus, to address the labelling task, we have devised a
generic methodology aimed at grouping likely similar mod-
els to speed up the process by allowing the user to label
several models at once.

3.1 GMFL: a greedymethodology for fast labelling

Ourmethodology is based on the observation that the effort of
labelling canbe split into two tasks. The costly and essentially
complex task is the identification of the proper label for a
category of models not seen before (e.g., fault tree models).
The other task is to find similar models for which the same
label is adequate. If one is labelling a givenmodel, the sooner
such similar models are found the better, since there is less
cognitive load in labelling them because there is no need to
re-think about this type of models and labelling becomes a
matter of reassigning the label.

A conventional approach could be to perform clustering
using widely known techniques like K-means or hierarchi-
cal clustering (HC) [8,11], and use the clusters to explore the
dataset. The disadvantage is that the number of clusters needs
to be set upfront, but this value is generally not known in
advance. Although there exist techniques to estimate it, they
are computationally expensive and still provide sub-optimal
results for large and irregular datasets. Some clustering algo-
rithms, like DBSCAN [20], do not require setting the number
of clusters, but other parameters are needed. A key disadvan-
tage of using clustering methods to help in the labelling of
datasets is that they require to split the data in groups upfront,
and thus give little control to the user. Even if a dendrogram
is used to perform the splits interactively and assign labels,
if a model is deemed “outside” a cluster by the person in
charge of labelling, it will not appear again when labelling
other clusters.

This situation is illustrated in Fig. 2. Let us suppose that
we are given a set of clusters to label the models contained in
each one in turn. We could start labelling Cluster #5 with cat-
egory fault-tree as mentioned before (because FaultTree.ecore,
emfta.ecore and ftp.ecore represent fault tree models). This
cluster is formed due to the coincidence of words like Fault-

Tree, Event, Gate. However, the model ui_events.ecore is of
different nature and requires a different category, although
it includes similar words like Event. We may label the model

Fig. 2 Incorrect grouping ofmodels in clusters.Modelui_events.ecore
should not belong to cluster #5, and model simple_fault_tree.ecore
should not belong to cluster #200

with category gui when processing the current cluster, but it
means that we will label it in isolation. The trouble is that the
model will not appear again when manually processing other
clusters, thus if we do not label it nowwe lose the opportunity
to label it. Similarly, when we arrive at cluster #200, we will
find simple_fault_tree.ecore and we will need to remember the
category that we have previously used when labelling cluster
#5.

To address this issue, we have devised a greedy, interactive
algorithm intended to performa formof dynamic, user-driven
clustering, which is outlined in Algorithm 1. Given a dataset
consisting of a set of models M = {m1, . . . ,mt }, we want
the user to assign each model a main label plus a set of addi-
tional labels.3 At the end of the process, we will have a set
of labels L �= ∅ and a set of tuples with the same cardinal-
ity of M, that is T = {(m1, l1), . . . , (mt , lt )} where li ∈ L
for all 1 ≤ i ≤ t . The algorithm attempts to maximize the
number of models with the same label assigned in a row,
without changing the focus to another label. Thus, we define
a labelling streak as a set of models that have been assigned
the same label without interruption. As noted before, the idea
is to help model identification by analyzing several models
together, and also amortize this cost by labelling them at
once.

The algorithm has three customizable parts, which are
indicated by comments. The rationale is to allow the adaption
of the algorithm to the concrete artifact being labelled and
the available technology in order tomake the implementation
cost as modest as possible since the real value is in the labels.
These three parts are explained next focusing on how we
apply them to software models.

3.1.1 Exploration order

sets the order in which the user will be presented with new
unlabelled models. A simple approach is to make it ran-

3 For the sake of simplicity in the presentation we show only the
main label, but it can be extended by replacing label l with a tuple
(l, additional) where l is the main label and additional represent a
list of additional labels.
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Data: M: Models in the dataset
Result: T : set of labelled models along their labels

1 T ← ∅
2 while M has unlabelled models do
3 // Exploration order
4 m ← pick unlabelled model from M
5 Manually inspect m to assign label l
6 T ← T ∪ {(m, l)}
7 V ← {m}
8 while not isEmpty(V) do
9 m ← pop(V)

10 // Similar model retrieval
11 F ← search for non-labelled models m1, ...,mn sorted by

similarity to m;
12 Manually inspect m1, ...,mn to assign label l
13 A = {(m1, l), ..., (mn, l)}
14 T ← T ∪ A
15 // Model retrieval refinement
16 m’ ← pick relevant models from A
17 add m’ to V
18 end
19 end
Algorithm 1: Sketch of our labelling algorithm. T is the
resulting set of pairs (model, label), V keeps unvisited
models.

dom (e.g., choose an unlabelled model randomly). Other
configurations are possible to follow specific strategies, like
splitting models into distinct groups to minimize conflicts
when labelling collaboratively.Weopted to explorefirst those
models which may have more similar models in the dataset.
The rationale was to gain confidence at the beginning by
having many similar examples to understand how to label, as
well as encouraging ourselves by feeling productive.

To define this order we converted the models to text
documents by considering the values of string attributes
(i.e., typically names of model elements). We use a TF-
IDF approach to transform each document (model) into a
vector. For each document, we define its density as the aver-
age similarity of the k nearest neighbors (the k more similar
documents using cosine similarity), and we sort the list in
descending density order. In this way, models withmore sim-
ilar models are selected first for exploration.

3.1.2 Similar model retrieval

. Given a modelm selected to be labelled, a set of potentially
similar models are retrieved, F , so that the user may decide
whether the same label is applicable to them (i.e., this is the
basis of a streak). We propose to use off-the-shelf search
engines to perform model similarity. The idea is to approxi-
mate similarity by the notion of relevance offered by search
engines, so that the user inspects a prioritized list of models
where the first ones are more similar to m.

To label Ecore meta-models, we have used MAR [35], a
search engine of models which takes into account the model

osate/osate2
FaultTree.ecorea

osate/ErrorModelV2
FaultTree.ecoreb

kit-sdq/Fault-Tree-Analysis
FaultTree.ecorec

cmu-sei/em�a
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wrwei/Jorvik
�a.ecoref

RobertDuda/incremental
dynamicFaultTree.ecoreg

DEIS-Project-EU/ODEv2
failureLogic.ecoreh

1 2 4

1 3 6

12

Fig. 3 Algorithm execution starting with a fault tree model. Edges are
annotated with the position in the search in which the result appeared

structure to perform accurate searches. It takes a model as
an input query and returns a ranked list of models sorted by
their relevance, so that more similar models are ranked first.
The first models of the list will be very similar to m so it is
highly probable that they are assigned exactly the same label
as m. At some point the models in the list will not share the
same label as m, and the user may decide to move on to the
next suggestion (see retrieval refinement below).

If there is not an available search engine specific for the
type of artifact being labelled, it is still possible to obtain good
results using a text-based search engine like Whoosh [54]
or Apache Lucene [6]. In the case of software models, the
strategy would be to generate text documents with the values
of string attributes of the model and index these documents
using the search engine. We have used this strategy to label
UML models using Whoosh.

3.1.3 Model retrieval refinement

. This part aims to continue the current streak by identify-
ing additional models that can still be annotated with the
same label used for the previous models. We are interested
on selecting one or more models already labelled as candi-
dates for a new similarity search.

In our case, we select for refinement all models annotated
by the user4 (e.g., all models ofA of line 11). Figure 3 illus-
trates the behavior of the algorithm for the running example
by showing the models obtained as part of the search (the
edges are annotated with the rank of the model in the search).
First, amodel is picked to start a new streak (model a ). From
this model, a ranked list of unlabelled models to explore is
obtained.We labelwith fault-tree the originalmodel plus three
models in the list (models b , c and d which were ranked
first, second and fourth). This starts a streak of four elements,
which is now further refined by using the already labelled

4 This is possiblewhen the search engine is responsive enough to handle
this load interactively. In other cases, only a few models should be
selected.
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Fig. 4 Dataset creator. Main labelling window

models as input queries for new searches. In the example,
we focus on c . Three new models can be labelled with the
category fault tree, and thus they belong to the same streak
(which has now seven models). If we take model f the
search now produces several non-related models, except a
model ranked in position 12 (model g ). If the user selects
it for exploration, the streak would be expanded. If not, the
model would appear later within another streak.

The goal of our approach is to let the user interactively
expand the set of models that may end up with the same
label, ideally without interruption (i.e., in the same streak).
This is a form of dynamic, interactive clustering. It mirrors
the style of DBSCAN [20], but with no need to establish any
parameters (ε and the minimum number of points required to
form a dense region, minPts) because the user interactively
creates a cluster (labelling a model in a streak) and expands
it (labelling models in related searches).

3.2 Tool support

We have implemented an Eclipse plug-in which provides a
concrete instantiation ofGMFL to createmodel datasets. The
plug-in relies on EMF and extends Eclipse to provide a rich
user interface to follow the methodology steps. The current
implementation supports the connection to a MAR server or
a Whoosh engine to perform the searches. The labelling data
is stored in a SQLite database file and there is a dedicated
Java API to easily access the dataset programmatically.

Figure 4 shows a screenshot of the main labelling screen.
A labelling session starts by clicking the Next button (marker
a ). It re-starts the algorithm by picking the next unlabelled
model in the exploration order (emfta.ecore in this case), and it
shows the user this model followed by a ranked list of poten-

tially similar unlabelled models (marker b ) based on the
chosen similarity method (using the MAR search engine in
this case). The user starts inspecting the list from the begin-
ning and tries to label the models. A tree view to inspect
each model individually is available (marker c ) plus spe-
cific visualizations crafted for each type of model (e.g., UML
class diagrams, state machines, activity diagrams and inter-
action diagrams). To navigate large models an outline is also
presented (marker d ). To help understand the model we
present two sources of information when available: (i) the
URL of the model (marker e ), to explore it and read some
documentation (if any); and (ii) other models available in
the same project (marker f , which shows models obtained
from the sameGitHub repository).With this information, the
user writes one or more labels for the model with the format
label: value (marker h ). For ModelSet, we have the con-
vention of using the label category as the primary label, and
have additional labels like tool and tags.

The user inspects the first models and try to do a labelling
streak (the tool provides shortcuts to navigate and duplicate
labels easily). For instance, Fig. 4 (marker i ) shows the
beginning of a streak of 5 models. Each time that a model of
the list is labelled, the system automatically schedule a search
in the background to find other similar models, in an attempt
to provide more unlabelled models related to it. The results
of the search are stacked in another tab (marker j ) as they
become available and the user can inspect them. By clicking
on the “Related” button (marker k ) the current model list
is replaced by the top of the search stack. The user repeats
the process with this new list of related models. This imple-
mentation of the model retrieval refinement step attempts to
use the time that the user is inspecting models to execute the
inner loop of the algorithm in parallel and asynchronously.
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In addition, the tool includes a GUI for on-demand searches
(Search tab) which is often useful to inspect models similar
to a given one. Moreover, the Review tab provides a GUI to
inspect the labels and the models, to refactor labels, to export
the data toCSVfiles and to compute statistics. Figure 5 shows
a number of label values (for the category label in this case)
and for the particular case of fault-tree the set of models that
has been annotated with this value.

3.3 Evaluation

We want to systematically evaluate GMFL with respect to
its ability to enable labelling streaks, that is, to produce lists
of similar models that the user would label together. To this
end, we have performed a simulation of the labelling pro-
cess using the labels assigned to the models in the dataset to
emulate the action performed by a real user. To perform the
simulation, we use the category of the model as its main label
(see Sect. 4). The simulation emulates the manual actions in
Algorithm 1 (lines 5 and 12) with a lookup in the dataset to
obtain the category of the model and pretends that the model
is annotated with such category. The procedure is sketched
in Algorithm 2. The main idea of the simulation is that once
a model is annotated with category cbase using the set of
already labelled models T (see line 6), we count the number
of times that subsequent models in the sorted search results
(obtained in line 13) are annotated with the same category.
Each time that this happens (line 20) we add the model to
the current streak (line 21). When subsequent models are
not annotated with the same category (line 23), we register
the number of times this happens, referred to as window
(line 24). We define a maximum value for window, called
WindowSize, which represents the number of models with-
out the same label that we are allowed to skip before finishing
a streak (controlled in lines 26–27). This emulates the behav-
ior of a user inspecting models in the result list until she or
he finds that there is no point in further inspecting the current
list because they are now too dissimilar.

We propose two evaluation metrics. The streak size S is
the number of models annotated in a row with the same cat-
egory allowing a certain WindowSize tolerance value. For
instance, in Fig. 3 using as tolerance WindowSize = 2 the
streak size is 6 (i.e., includes models a–f). We report stan-
dard statistics Savg and Smax . The other metric is repetition
size, that is, the number of times that a streak re-appears with
the same label. We report the ratio of the repetition size per
category, Rcat . Ideally, Rcat is 1, meaning that all labels are
assigned to the corresponding models in a single streak.

As a baseline we have simulated the algorithm using a
completly random method (model selection is random and
search returns random models), which is roughly equivalent
towhat a user could dowithout anymethod.We also compare
against using three clusterings approaches based on trans-

Data: M: Models in the dataset
Data: T : Set of labelled models along their labels
Result: S: list of created streaks

1 // Simulate the labelling of the (already
labelled) models in the dataset

2 while M has unlabelled models do
3 // Exploration order
4 m ← pick unlabelled model from M
5 // Simulate a user annotating the model
6 cbase ← get category for m through T
7 label m with cbase
8 s ← create streak for category c with size 1
9 add s to S

10 V ← {m}
11 A ← ∅
12 while not isEmpty(V) do
13 m ← pop(V)

14 // Similar model retrieval
15 F ← search for non-labelled models m1, ...,mn sorted by

similarity to m;
16 window ← 0
17 foreach mi in F do
18 c ← get category for mi through T
19 label mi with c
20 if cbase = c then
21 increase size of streak s by 1
22 window ← 0
23 else
24 window ← window + 1
25 A = A ∪ {(mi , c)}
26 if window > WindowSize then
27 break
28

29 end
30 // Model retrieval refinement
31 m’ ← pick relevant models from A
32 add m’ to V
33 end
34 end
Algorithm 2: Sketch of the simulation algorithm. T is the
resulting set of pairs (model, label), V keeps unvisited
models.

forming models into vectors using TF-IDF: K-means (with
TF-IDF vectors normalized), hierarchical clustering (with
cosine distance and complete linkage), and DBSCAN (with
cosine distance). To establish the number of clusters we use
the number of categories already identified, that is, we model
the best scenario for these algorithms which is a perfect esti-
mation of the number of clusters5.

Table 1 shows the main results of the evaluation, using
WindowSize = 3. A random method has a very poor per-
formance since the streak size is typically one, meaning that
the user is often “jumping” between labels (i.e., Rcat = 19
means that each category is re-visited 19 times before it is
completely annotated). DBSCAN also shows a poor perfor-
mance because it identifies too many models as noise. Using

5 ForDBSCANwe adjusted the parameters until we found the expected
number of categories.

123



J.A.H. López et al.

Fig. 5 Dataset creator. Review
window

Table 1 GMFL evaluation results

Ecore UML
Savg Smax Rcat Savg Smax Rcat

Random 1.03 5 19.53 1.06 4 29.95

K-Means 3.51 93 5.74 3.76 373 8.41

HC 3.98 165 5.06 2.57 209 12.30

DBSCAN 1.46 53 13.76 1.26 84 24.99

GMFL 4.45 183 4.52 4.58 277 6.90

K-means or hierarchical clustering (HC), the performance
increases (Savg is larger and Rcat is smaller), but this is the
best possible scenario in which the number of categories is
already known. In large collections of models, like our case,
this approach is not possible since the categories are discov-
ered as the dataset is explored. In this setting,GMFLprovides
even greater performance than clustering approaches with-
out the need of computing the clusters in advance. As can be
observed, both for Ecore and UML the values of the average
streak size (Savg) is larger than other methods, meaning that
the user can label more models in a row, and more impor-
tantly the number of times that categories reappear is smaller
(Rcat ), thus reducing the cognitive load in the process.

4 ModelSet: a dataset for MDE

In this section, we describe ModelSet, a large labelled
dataset of software models, which we have built applying
GMFL and using the provided tool support. We first explain
how we collected the set of models to be labelled, as well as
the labelling processwe have followed, and thenwe detail the

contents of the dataset. We end this section with an assess-
ment of the experience creating ModelSet.

4.1 Collection process

We have collected models from GitHub and GenMyModel
repositories. In particular, we have retrieved Ecore and UML
models serialized as XMI files. In the first case, we used
GitHub’s public API to search for files with extension .ecore,
which corresponds to Ecore models. As GitHub Search API
returns a maximum of 1000 elements per query, we per-
formed searches iteratively slighlty varying the file size
(e.g., 100–124 bytes, 125–149 bytes, etc.) This method was
intended to ensure that the number of returned elements is
within the query limits. We kept querying the API until no
more models were returned. On the other hand, GenMy-
Model is an online modelling service which hosts thousands
of models of several types, like UML, Entity-Relationship,
Ecore models, etc. It provides a public API6 to query the cat-
alogue and download the files selectively by type. In our case,
we focused on the UML models available at this service.

We collected 83,009 valid Ecore models from which we
discarded duplicated files by computing its MD5 hash. This
produced 17,694 files which were the input of the labelling
process. For UML, we downloaded 96,370 models from
GenMyModel. It is not possible to compare file contents to
discard duplicates because GenMyModel adds project spe-
cific metadata to each file. Therefore, we discarded small
models which we found likely to be duplicates (e.g., exam-
ple models) or just automatically created templates (e.g., a
very simple model created by GenMyModel for the user to

6 The API’s entry point is https://app.genmymodel.com/api/projects/
public.
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complete). We also discarded models which contain non-
latin characters since, unfortunately, the authors do not have
enough knowledge to inspect models written in languages
likeKorean, Arabic, etc. Finally, we considered 53,266UML
models.

4.2 Labelling definition and process

The main label of our dataset is category, which represents
a type of models sharing a similar application domain. For
instance, in the running example the different variations of a
fault tree are labelled with the fault-tree category, since all of
them define a modelling language with a similar application.
Given that Ecore is a meta-modelling language, many cate-
gories represent technical domains (e.g., relational models,
feature models, etc.) but there are also domain models (e.g.,
company). On the other hand, in UML the values for the cat-
egory label typically represent non-technical domains (e.g.,
bank or restaurant).

In some cases, we were unable to identify a proper cate-
gory for a model and thus we assigned the value unknown.
We have also identified models which contain mock data or
are clearly created just for testing purposes, in which case we
assigned the category dummy. Figure 6 shows several exam-
ples of dummy models. Models a and b are clearly test
models (we additionally tag this model with testing), whereas
model c is a slice of the UML meta-model used to create
experiments (we additionally tag thismodelwith experiment).
We also checked the corresponding repositories to find out
additional evidence that confirm that these are dummy mod-
els. For instance, typically these type of models are stored in
folders named test, experiment, etc.

During the annotation process we also assigned the label
tags, which specifies keywords characterizing the model and
frequently allows us to specialize the value of the category. In
the Ecore models of the running example, tags may include
safety, but the model in Fig. 1c also includes tags electronics

and components since it is a special fault tree for physical sys-
tems. In UML, amodel categorized as computer-videogames
may include the tag poker to reflect the type of game.

For Ecore models, we included additional labels as we
were able to perform a deeper analysis by exploring the
original GitHub repository. The label purpose indicates the
intended usage of the model (e.g., assignment, for models
used in teaching; or benchmark, for models specifically cre-
ated for benchmarking). The label notation specifies if there
is an associated concrete syntax and the tool used to create it
(e.g., xtext or sirius). Finally, the label tool indicates whether
the meta-model is part of a tool. For the model in Fig. 1c, it
has value CertWare since this meta-model is part of such tool.

In the case of UML models, we found that a model may
have several diagrams but in the labelling process we focused
on the ones that provided more information. Thus, we used

the labelmain-diagram to indicatewhich diagramswere used
to derive the category of the model.

Finally, we used the label confidence in both Ecore and
UML models to indicate the confidence level of the coder
when labelling a model. For instance, the label confidence
with value low indicates that the coder thinks that there is a
high probability of being wrong. If no confidence label is set,
it is then implicitly considered high.

The labelling process was carried out by the second and
third authors of the paper, who have more than 10 years
of experience in modelling. An author worked with Ecore
and the other with UML. While the labelling process was
performed individually, several milestones were established
during the process to discuss the usage of the labels and
unify the labelling criteria. We are aware that this process
may present threats to validity, as identifying the category of
a model is a subjective task and only two participants were
performing such a process. A wrong perception or misunder-
standing on author’s side may result in a mislabelling of the
model. To address this threat, we applied a cross-validation of
the outcomeof the labelling process. For the cross-validation,
authors met together and each one reviewed a random sam-
ple of size 25% of the models labelled by the other author.
All disagreement cases were discussed between the authors
to reach consensus. As a result of the validation process, the
labels of a 3% and 5% of Ecore and UMLmodels were mod-
ified, respectively.

4.3 Dataset description

Thecurrent versionofModelSet is composedof 5,466Ecore
and 5,120 UML labelled models, making a total of 10,586
models. We believe that the current size of the dataset is
enough to validate the methodology and explore potential
future applications, but there are still thousands of models
which will be labelled in future versions of the dataset.

In total, 28,719 labelswere used (15,288 and 13,431 labels
in Ecore and UML, respectively), with an average number of
labels per model of 2.71 (2.80 and 2.62 in Ecore and UML,
respectively). Only a 12.13% and 0.94% of Ecore and UML
models, respectively, were labelled with low ormedium confi-
dence values. The lower value for UMLmodels was because
labels were usually easier to identify due to UML models
being domain models (e.g., it is typically easier to find out
that a model represents a hotels domain than to find out that
a meta-model represents a distributed system).

Table 2 shows the use of labels in ModelSet in Ecore
and UML. The table shows the number of different values
for the label (#values column) and the percentage of models
annotated with such a label (coverage column). As expected,
the label category has extensively been used and reaches a
coverage of 100% for Ecore and UML models. On the other
hand, the tags label has also been used extensively, but given
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Fig. 6 Examples of dummy
models

Table 2 Usage of labels in ModelSet

Label Ecore UML
# values coverage # values coverage

Category 224 100.00% 135 100.00%

Tags 387 117.53% 92 52.99%

Purpose 29 31.16% – –

Notation 8 11.09% – –

Tool 188 7.78% – –

Main-diagram – – 6 108.03%

coverage > 100% when label is assigned more than once

that there is more variability in Ecore than UML, the number
of different values is greater in Ecore. Regarding the Ecore-
specific labels, purpose was approximately assigned to 30%
of the models, when it was possible to determine it. Labels
notation and tool have a lower applicability since they are
only available for some projects. For UML, all models have
been labelled with main-diagram to specify the diagram/s
used to infer the category.

Figure 7 shows the top 15 categories of Ecore and UML
models. As can be seen, categories in Ecoremodels generally
cover application domains related to conceptual modelling
and DSLs (e.g., statemachine, petrinet or class-diagram). On
the other hand, categories in UML models are generally
related to business (e.g., shopping, restaurant or bank). It is also
important to note that a number of Ecore and UML models
are classified as dummy (13.34% and 11.84%, respectively),
thus containing mock data or revealing the presence of mod-
els for testing purposes. Furthermore, 2.85% and 8.69% of
Ecore and UML models, respectively, were categorized as
unknown.

To provide some insights about the contents of the mod-
els in the dataset, we have computed several statistics about
the number and type of model elements in Ecore and UML.
The average model size is 205.84 and 143.57 elements in
Ecore and UML models, respectively. Tables 3 and 4 shows
a detailed analysis of each model element type. We distin-
guish between the normal and dummy models since the latter
are a special category. In both Ecore and UML, the average
amount of elements in normal models is always larger than

Fig. 7 Top 15 categories of Ecore and UMLmodels inModelSet, and
total number of models per category

in dummy models, as expected. Only in UML models, we
observe a higher number of classes in dummy models; how-
ever, the ratio of properties per class reaches much lower
(approximately 1 in dummymodels versus 4.8 in normalmod-
els).

An easy way to explore the full report of ModelSet con-
tents can be found at the companion website of the paper
http://modelset.github.io.

4.4 Assessment

In this section, we highlight our experience in the applica-
tion of GMFL. Altogether, we found it useful as it generally
allowed us to easily discover similar models which might be
difficult to find manually. In practice, we encountered three
main situations, which we illustrate below.

4.4.1 Friends of my friends

This is one of the the main scenarios fostered by GMFL
(illustrated in Fig. 3). Given a model m some similar mod-
els m1, . . . ,mn are annotated with the same category. Then,
additional models related to m1 are annotated thanks to the
model retrieval refinement part of the algorithm, and so on.
We also observed that many times the models obtained by
the retrieval refinement part start belonging to a related, but
different category. For example, a labelling streak that started
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Table 3 Composition of Ecore Models in ModelSet

Element Type Normal (n=4737) Dummy (n=729)
mean std. dev. mean std. dev.

Elements 232.87 429.08 30.16 67.62

Packages 1.51 2.54 1.15 0.64

Classes 28.90 45.56 5.20 8.70

Enums 1.41 5.87 0.15 0.48

Datatypes 1.40 5.72 0.17 1.17

Attributes 18.25 35.44 3.35 13.39

References 30.14 53.94 4.09 10.59

with the category iot (i.e., arduino) evolved through robots,
drones, logo and grafcet. In these cases it was natural to keep
labelling with the new categories.

4.4.2 The gold mine

This is the other scenario boosted by GMFL. This situation
refers to the identification of a large group of very similar
models which can be annotated with the same labels with
very little inspection work. The labelling task is therefore
very fast and becomes an encouraging situation for the coder,
who ismotivated to keep on.We found that in theUMLrepos-
itory this happens very often, mainly because there are a lot
of similar models (i.e., model clones) in specific categories.
For instance, it was common to find large groups of models
aimed atmodelingATMoperations (e.g., enter pin, withdraw
money, make a deposit, etc.).

4.4.3 No clue

It arises when the model under inspection is not known by
the coder. In this case, some investigation about the nature of
the model must be done. In the worst case, we had to label
the model as unknown. This situation was generally easier to
address in Ecore models, as we had the link to the GitHub
repository to further explore the nature of the model. For
instance, to label the model dmtc.ecorewe visited the GitHub
site, which explains that KlaperSuite is a tool for the analysis
of component-based systems. The meta-model was “a kind
of state machine”, but we were unsure. We googled “Klaper-
Suite dmtc” and we find a paper [16], from which we found
that DMTC stands for “Discrete-Time Markov Chain” and
we used it as a category. Moreover, using this information,
we could fix some models that we had labelled incorrectly
because they looked like a state machine.

Table 4 Composition of UML Models in ModelSet

Element Type Normal (n=4514) Dummy (n=606)
mean std. dev. mean std. dev.

Elements 153.48 135.68 69.72 37.17

States 0.14 1.68 0.00 0.12

Transitions 0.20 2.41 0.00 0.04

Interactions 0.26 0.73 0.04 0.24

Activities 0.53 1.53 0.14 0.45

Components 0.25 0.78 0.09 0.56

Packages 1.29 1.13 1.13 0.59

Classes 5.64 6.92 12.00 8.84

Enums 0.28 0.76 0.01 0.11

Datatypes 0.75 2.86 0.31 1.76

Properties 27.11 26.20 12.47 8.05

Operations 8.56 16.98 4.42 5.99

Generalizations 2.20 4.38 1.83 2.27

Actors 1.52 2.71 0.40 1.29

UseCases 5.69 10.16 1.08 3.24

Associations 8.30 8.32 3.04 2.34

5 Case study: enhancing theMAR search
engine

MAR is a search engine specifically designed for mod-
els [35]7, which allows users to locate relevant models by
providing example-based queries. MAR currently indexes
more than 500,000 models of different type, which makes
their manual treatment infeasible. For instance, should we
want to implement faceted search using categories it would
be infeasible to manually annotate all the models. Therefore,
an interesting direction is the use of ML techniques to train
models which help us maintain and enhance MAR. In this
section, we focus on how to implement three features using
ModelSet:

• Detecting dummy models MAR blindly collects models
from repositories like GitHub, GenMyModel, etc. Some
of these models are too low quality to be useful in a
general search. We have devised a method to detect them
automatically.

• Inferring categories for faceted search Faceted search is
a method to allow users to interactively search complex
information spaces. The user is presented with controls
to refine queries by means of tweaking facets [52]. An
important facet that we are interested in is the main cate-
gory of the model.We have trained a classificationmodel
to determine the category of a model.

7 MAR is available at http://mar-search.org
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Fig. 8 Pipeline for applying trained ML models toMAR models. Dashed lines represent the actual route of the input model in the pipeline

• Inferring tags Some of the models indexed by MAR

have tags attached which provide insights about what
the model is about. For instance, topics obtained from
GitHub repositories are tags usedbyMAR.However,most
models in MAR do not have any tags, which is a short-
coming to easily inspect them. We have trained a ML
model able to produce relevant tags for models.

Figure 8 shows how the trained ML models are applied to
the models collected by MAR before being indexed. In this
case, we focus on Ecore models. First, each input model is
introduced into the dummy classifier (marker a ). If it deter-
mines that the model is a dummy model, the artifact will be
put in quarantine; otherwise, the model will be introduced as
input in the classification model trained to infer the category
of a model (marker b ). Then, the model is introduced in
the ML model trained to infer tags (marker c ). Finally, the
model is indexed in MAR, storing the meta-data provided by
the ML models in order to show it to the user when needed.

Figure 9 illustrates how the trained ML models have been
integrated into MAR. On the left, the user writes a query
(marker a ) which is used by MAR to perform a search.
The results are listed on the right and include those models
matching the query. Dummy models are discarded as MAR

internally uses the trained ML classifier. For each model,
MAR shows information like structural data (e.g., number
of elements) and quality evidences (e.g., number of smells),
which can be used to filter themodels (see top part of results).
Notably, in this work, we are interested on metadata that has
been inferred using our trained ML models. The main cate-
gory of themodel (marker b ) provides a simple guideline to
categorize the results, and we also use it to allow user to filter
the results (marker c ). For instance, the main category of
Ale.ecore is simple-pl. In addition, for eachmodel in the results,
there are several informative tags which represent its main
topics (marker d ). Some of these tags come from GitHub
(e.g., many of the tags shown for Ale.ecore), but most models
do not have tags attached originally, and so the tags that the
user sees have been inferred using a trained ML model. For

instance, for kermeta.ecore the inferred tags are imperative and

classes.
The following sections describe how the MLmodels have

been built.

5.1 Detecting dummymodels

The detection of dummy models helps us to automatically
filter out those models whose purpose is not to represent in a
faithful way some domain of interest, and thus they only add
noise to the search results. In the following, we describe how
we build a ML model that is used in MAR to detect dummy
models and filter them out from the search results.

5.1.1 Extracting features of the models

To implement the task of detecting dummy models, we have
considered the following input features for a classification
model:

• Counts of the number of elements
For each concrete meta-class, we count the number of
times they appear in themodel. For instance, in Ecore, we
have EClass, EAttribute or EReference features, among
others.
We use these features because during the labelling pro-
cess we noted that most of the dummy models are small,
as commented in Sect. 4.3. For instance, for the model
in Fig. 6a we would have EPackage = 1, EClass = 4,
EReference = 3, EAttribute = 0, EDataType = 0.

• Median of the number of characters in string attributes
We collect the string attributes of a model, and then
we compute the median of their length. This feature is
considered since many times the string attributes of the
dummy models are short (e.g., abbreviations). For the
model in Fig. 6a, we would have a median value of 1.

• Count of dummy names Given an string attribute, we
consider it a dummy name if it contains the name of a
meta-class or a significant part of it. For instance, inUML
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Fig. 9 Screenshot of MAR illustrating how the inferred metadata is integrated

a class whose name is ClassA is considered a dummy
name. In Ecore we consider TestClass (see Fig. 6b) a
dummy name as well.

Considering these features, we derive 16 features in
ModelSet-Ecore and 195 from ModelSet-UML. This difference
between the number of features is caused by the fact that the
UML meta-model is larger than the Ecore meta-model.

5.1.2 Training and preparation phase

Once the feature extraction process is performed, we remove
non-English models whose category is unknown. In Ecore,
we have 5290 samples (∼ 14% of the models belong to the
dummy category and∼ 86%of themodels are notdummy). In
UML, we have 4479 samples (∼ 13% of the models belong
to the dummy category and ∼ 87% of the models are not
dummy).

Both datasets are split into the train set (80%) and test set
(20%). Using the train set, we eliminate features whose vari-
ance is close to zero (in order not to consider non-informative
features). As a result, for training we consider 9 in Mod-
elSet-Ecore and 39 in ModelSet-UML.

We apply 10-fold cross-validation with three repetitions
and with upsampling of the minoritary class in order to select
the hyperparameters of the classifiers. We use upsampling
to avoid issues caused by an unbalanced dataset (e.g., non-
informative gradients in neural networks). The paired t-test
is used to check whether there is a difference between the
performance of two models. The considered hyperparame-
ters and classifiers are summarized in Table 5, where k−NN
stands for k-nearest neighbors, RF for Random Forest, NN is
a neural network andC5.0 is an algorithm to create tree-based
models and rule-based models.

5.1.3 Results

Since our main aim is to detect dummy models and Mod-
elSet is unbalanced, we take F1 as evaluation metric
considering the class dummy as the positive class. This met-
ric is the harmonic mean of the precision and recall. In this
context, precision, recall and F1 are defined as:

Precision = tp

tp + f p

Recall = tp

tp + f n
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Table 5 Models and hyperparameters considered

ML Model Hyperparameters

k-NN k ∈ {5, 7, 9, 11, 13}
Random Forest Ecore→ m ∈ {2, 3, 4, 5, 6, 7, 8, 9}

UML→ m ∈ {2, 6, 10, 14, 18, 22, 26, 30, 34, 39}
NN units∈ {10, 20, 50, 100, 150}
(1 hidden layer)

C5.0 model∈ {rule, tree}
winnow∈ {F, T}
trials∈ {1, 10, 20, 30, 40, 50, 60, 90}

F1 = 2 · Precision · Recall
Precision + Recall

where f p are the false positives, f n are the false negatives
and tp are the true positives. F1 will be used as evaluation
metric to select the hyperparameters in the cross-validation.

The results of the cross-validation are presented inTable 6.
In ModelSet-Ecore, C5.0 outperforms the Neural Network,
k−NN and Random Forest (RF) in terms of F1 and pre-
cision (with statitical diferences p−value< 0.05). In terms
of recall, C5.0 is the worst. Despite that it achieves a high
score (0.8136).

In ModelSet-UML, C5.0 outperforms the Neural Network,
k−NN and RF in terms of F1 and precision (with statistical
differences p−value< 0.05). In terms of recall, C5.0 is not
the best model but it achieves a high score (0.9255).

For this task, we are interested on ML models with high
precision since we do not want to make the mistake of dis-
cardingmodels that are not dummy (that is, wewant low false
positives). In other words, it is preferable to show the user
a dummy model than to fail to show a non-dummy model.
Thus, according to the experiments we select the C5.0model.

Finally, we evaluate the C5.0 model in the test set with
the selected hyperparameters. Figure 10 shows the confu-
sion matrix of C5.0 in the test set using ModelSet-Ecore. C5.0
achieves a precision of 0.8258, a recall of 0.7517 and a F1
of 0.7870. Furthermore, it achieves an accuracy of 0.9442
which is greater than the proportion of non-dummy models
in the test set (0.8628). On the other hand, Fig. 11 shows the
confusion matrix of C5.0 in the test set using ModelSet-UML.
The model achieves a precision, a recall and F1 of 0.9573.
The accuracy is 0.9888 which is higher than the proportion
of non-dummy models in the test set (0.8693).

5.2 Model classification

Model classification is an important task to automate the
organization of model repositories and enhance exploration
facilities for end-users by allowing the automatic filtering of
large collections of models. In our case study, we use model

not dummy

dummy

dummy not dummy
Reference

Pr
ed

ic
tio

n

200
400
600
800

Freq
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Fig. 11 Confusion matrix of the C5.0 in the test set using ModelSet-
UML

classification to help end-users navigate search results shown
by MAR.

We kick-start the construction of our model classifier by
looking for other similarworks in the literature. In [39] a feed-
forward neural network with one hidden layer was trained to
classify Ecore meta-models according to its category using
a dataset of 555 meta-models [7]. To build our classifier,
we propose to follow a similar approach and replicate the
original experiment but usingModelSet, which also allows
us to evaluate whether we obtain more accurate conclusions
as our dataset is larger.

5.2.1 Training and preparation phase

We use the category of the models as the target variable of
the classification problem. Three datasets are considered:

1. The dataset of 555 meta-models [7] used in [39] (referred
to as Ecore-555)

2. The 5,466 Ecore models available inModelSet referred
to as ModelSet-Ecore.

3. The 5,120 UML models available in ModelSet referred
to as ModelSet-UML.
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Table 6 Results of the
cross-validation in terms of F1,
precision and recall

Model Best Metrics
parameters F1 Precision Recall

ModelSet-Ecore k−NN 5 0.6637 0.5349 0.8771

RF 4 0.8144 0.7881 0.8444

NN 10 0.6832 0.5714 0.8536

C5.0 rules, F, 80 0.8303 0.8498 0.8136

ModelSet-UML k−NN 5 0.8369 0.7545 0.9411

RF 10 0.9359 0.9485 0.9248

NN 50 0.9240 0.9116 0.9382

C5.0 rules, F, 30 0.9443 0.9653 0.9255

From these datasets, we consider categories with more
than 7 elements tomake the learning process as faithful as the
process performed in [39] (i.e., the smallest category in Ecore-

555 includes 7 meta-models). Thus, Ecore-555 is composed of
9 categories and 555 models, ModelSet-Ecore is composed of
80 categories and 4230 models and ModelSet-UML is com-
posed of 50 categories and 3768 models.

The models of each dataset are split into train and test sets
(with a distribution of 70%/30% for train/test). We apply
10-fold cross-validation (as it is done in [39]) in order to
select the hyperparameters of the classifiers and the paired
t-test to check whether there is a difference between the per-
formance of two models. The classifiers that we train are:
(i) linear SVM, (ii) a feed-forward neural network, and (iii)
k−NN. The hyperparameters considered are k ∈ {1 . . . 10}
for k−NN (number of neighbors), C ∈ {0.01, 0.1, 1, 10,
100, 1000} for SVM (C controls how much you want to
avoid misclassifying each training example and behaves as a
regularization parameter) and one hidden layer with {5, 10,
20, 50, 100, 150, 200} units for the neural network (size of
the hidden layer). To select the hyperparameters, we con-
sider Accuracy as the evaluation metric (number of correct
predictions divided by the number of total cases).

Each software model is encoded as a vector of features
computed using a TF-IDF, treating all string attributes as
words. (This is the encoding technique used in [39].)

5.2.2 Results

The results of the cross-validation are shown in Fig. 12 for the
considered datasets. In Table 7, for each dataset, we display
the best hyperparameters and the average of the accuracy
of the 10 folds. Once the cross-validation is done with the
hyperparameter selection, we train the models using all the
train set and then the test set is used to evaluate the models
with the chosen hyperparameters. The last column of Table
7 shows the results of the test sets.

In Ecore-555 and Modelset-Ecore, SVM and the neural
network model outperform k−NN (p−value<0.05). SVM

Table 7 Results of crossvalidation and test. NN stands for neural net-
work and CV for cross-validation

Model Best Accuracy
parameter CV Test

k−NN 5 0.9278 0.9401

Ecore-555 SVM 1 0.9512 0.9520

NN 50 0.9563 0.9401

k−NN 3 0.8639 0.8873

ModelSet-Ecore SVM 10 0.9236 0.9393

NN 100 0.9148 0.9369

k−NN 1 0.9127 0.9168

ModelSet-UML SVM 10 0.9343 0.9442

NN 150 0.9355 0.9434

outperforms the neural network (p−value<0.05) inModelset-

Ecore. However, in Ecore-555, there are no differences between
the performance of the SVM and the neural network. In gen-
eral, all models have better accuracy in the Ecore-555 dataset
(in cross-validation and the test set). This is caused by the fact
that the classification problem is more difficult in Modelset-

Ecore (80 versus 9 different categories).
According to these results, we can say that this classifi-

cation problem seems not to be difficult because a simple
machine learning model (k−NN) gets good results in both
datasets. The encoding technique used (TF-IDF) is a good
choice for this task. Regarding UML, the cross-validation
results show that SVM and the neural network model out-
perform k−NN (p−value< 0.05). Furthermore, there are
no differences between the performance of the SVM and the
neural network.

If we compare the performance of the classifiers in
ModelSet-UML and in ModelSet-Ecore (in cross-validation and
the test set), we see that the performance is better inModelSet-

UML. This is caused by the fact that the classification problem
in ModelSet-UML is easier than the classification problem in
ModelSet-Ecore (50 categories in UML against 80 in Ecore)
and because the UML models tend to be more similar.
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Fig. 12 Boxplots of the crossvalidation measures of the models with
the best hyperparameters

Finally, we have to remark that the scalability seems ade-
quate in the sense that increasing the complexity of the
problem (i.e., number of different categories) does not impact
too much in the performance of the machine learning model.

As a concrete example of the usage of this ML model,
Fig. 8 shows that if we introduce the Ecore model which
contains concepts like StateMachine, Region, etc., the trained
classifier predicts that thismodel belongs to category statema-

chine.

5.3 Inferring tags

Similarly to model classification based on categories, infer-
ring tags is also an important task to provide insights about
the contents of a model. Given a model, we want to infer its
tags automatically based on the tags annotated in the dataset.
This classification problem differs from inferring categories
in the fact that amodel can havemore than one tag. Therefore,
the problem of inferring tags is a multi-label and multi-class
classification problem [51], which we describe in the follow-
ing.

5.3.1 Neural model

To tackle this problem, we use a simple neural model that
learns theweights of two layers:W1 ∈ R1024×din ,b1 ∈ R1024,
W2 ∈ Rdout×1024 and b2 ∈ Rdout . Given a model as input
represented by its TF-IDF vector or its word count vector
v ∈ Rdin , the neural model does the following:

o = σ (W2ReLU (W1 · v + b1) + b2)

where ReLU and σ are the ReLU and sigmoid activations,
respectively. din is the input dimension (number of words
in the vocabulary which is computed by taking all unique
string values in the dataset models) and dout is the output

Fig. 13 Proposed neural model to infer tags

dimension (number of tags). The coordinate i of the output
vector represents the probability of m to belong to the tag
i . Figure 13 shows the architecture of the proposed neural
network. At inference time, if oi > threshold, then the tag
i will be assigned to the model m (by default we establish
a threshold = 0.5). This neural model is trained using the
binary cross entropy and Adam [30] as optimizer.

5.3.2 Training and preparation phase

From Modelset-Ecore and ModelSet-UML, we consider models
that have at least one tag and whose language is English. As a
result, Modelset-Ecore and ModelSet-UML will be composed by
3782 and 1867 models, respectively. Both datasets are split
into three sets training (72%), test (20%) and validation (8%).
For each dataset, the validation set is used to perform early
stopping (i.e., we stop trainingwhen there is no improvement
over the validation set) and the test set is used to evaluate the
model.

5.3.3 Results

As evaluation metrics we use precision and recall that are
measured using the test set. Precision is the fraction of out-
put tags that are correctly inferred, recall is the fraction of
correct tags that are successfully inferred and F1 is the har-
monicmean of precision and recall. Given the test set T , these
metrics are computed using the following formulas [51]:

Precision = 1

|T |
|T |∑

i=1

Preci , where Preci = |Yi ∩ Zi |
|Zi |

Recall = 1

|T |
|T |∑

i=1

Reci , where Reci = |Yi ∩ Zi |
|Yi |
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F1 = 1

|T |
|T |∑

i=1

F1,i , where F1,i = 2 · Preci · Reci
Preci + Rec

where Zi is the set of the inferred tags and Yi is the set of real
tags. For instance, let us assume that Fig. 8 shows a model
belonging to the test set and that the trained neural network
predicts two tags: behavior and uml. However, the actual tag
of the input model is just behavior. Therefore, in this case,
Preci = 0.5 (since uml does not belong to the real set of
tags) and Reci = 1 (since we retrieve all actual tags, that is,
behavior). Finally, computing the harmonic mean between
Preci and Reci , we get F1,i = 0.67.

After training, the network achieves a precision of 0.8791,
a recall of 0.8593 and F1 of 0.8621 using the test set in
ModelSet-Ecore, which tell us that this model has a good
performance. In particular, it has a high precision, thus imply-
ing that the inferred tags by the neural network are likely to be
correct. On the other hand, in ModelSet-UML, the model
achieves a precision of 0.9117, a recall of 0.9135 and F1 of
0.9121.

6 Related work

The research line that studies the application of ML to
software engineering has made a lot of progress in recent
years [50,56]. To handle source code there are three types of
MLmodels typically considered: code-generatingmodels [4,
55], representational models of code [5,57] and pattern min-
ingmodels [3]. Thesemodels havemany applications such as
recommender systems (e.g., code autocompletion [4]), infer-
ring coding conventions [3], clone detection [57], code to
text and text to code [34], etc. We believe that most of these
ML models can be extended to be applied to modelling arti-
facts, but this requires the existence of large and high-quality
datasets of software models.

Up to date the possibilities of applying ML to MDE have
not been fully explored yet [13]. Therefore, with this work,
we attempt to encourage researchers to use this first version
ModelSet to adapt existingMLmodels to handlemodelling
artifacts. In the followingwediscussworks related to datasets
of software models, as well as concrete applications already
developed.

6.1 Datasets

The closest dataset to ours is [7] which contains 555
Ecoremodels labelledwith its category.ModelSet provides
more than 10,000 labelled models. The LindholmenDataset
contains about 93,000UMLmodels [47].An important short-
coming of this dataset is the difficulty of processing its
models in practice, due to a number of reasons including:

variety of formats and versions (e.g., EMF, StarUML, etc.),
invalid models and models of poor quality (i.e., many mod-
els are just toy examples, other extracted from images, etc.).
A curated dataset of 2420 meta-models is reported on [10].
Although the meta-models are not labelled, it comes with an
analysis tool chain to facilitate experiments. A large dataset
of OCL expressions is contributed in [37]. The goal is to
enhance OCL-related research, which is demonstrated by
replicating several studies about OCL with the dataset. A
dataset of 8904 BPMNmodels is mined fromGithub in [25].
Its goal is to foster empirical research about business pro-
cess models. The dataset is not labelled but the models have
been validated for correctness. A dataset of APIs classified
usingMaven Central tags is used to analyze the effectiveness
of hierarchical clustering[22]. Some of the identified tags for
APIsmay be used to enrich ours.Works about empirical stud-
ies on the usage of MDE artifacts have built ad-hoc datasets
to perform specific analysis. In [32], a large number of MDE
artifacts retrieved from GitHub are analysed. The analysis
is performed by collecting information about specific file
types at the commit level. The usage of EMF in Open Source
projects hosted in GitHub is addressed in [23]. Similarly, the
usage of graph query languages in Java projects is studied
in [49], and the projects are classified according to its appli-
cation domain.

6.2 Applications

There are several research lines in the application of AI and
ML to address MDE problems. One direction is applying
search-based algorithms, for instance to address co-evolution
problems [29]. Another direction is reinforcement learning,
which has been recently applied to addressmodel repair [26].
These approaches do not need a dataset. We focus on those
which require the support of a dataset.

The task of classifying UML class diagrams between
manually created (for forward engineering) and reverse engi-
neered is tackled in [41]. Several classification and features
are tried, over a dataset of 999 UMLmodels. AURORA [39]
is a classifier of Ecore meta-models according to its category.
It uses a TF-IDF approach to train a neural network with a
dataset of 555 Ecore meta-models. We have replicated this
work with our dataset, obtaining comparable results.

The application of clustering techniques to relatively large
collections of models, in particular Ecore meta-models, has
been researched in some depth [8,9,11]. However, these
models were not made available and the results are barely
replicable. Our dataset would improve the replicability of
new experiments. Moreover, it could be used to analyze the
effectiveness of existing approaches.

A recommender system for UML activities is presented
in [33]. It is based on a predefined catalogue of possible
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suggestions. EXTREMO is a meta-model recommendation
tool which recommends interesting terms based on flexi-
ble queries evaluated over Wordnet[38]. Similarly, DoMoRe
uses semantic networks to aid in domain modelling tasks [1].
Kögel proposes the use of model history as a means to iden-
tify possible actions to be recommended [31]. Our dataset
would be applicable to implement alternative approaches
based on neuralmodels. Additionally, the labels associated to
the models in the dataset can be used to enhance the selection
of models. For instance, when training a ML system (e.g., a
recommender system [53]) it is typically advisable to use
stratified sampling to make sure that the split of the models
is balanced in terms of the categories of the dataset. In the
same line, for model-set selection approaches [12], having a
balanced set in terms of the labels can be used as a another
criteria of the search process.

7 Conclusions

In this paper we have presented the initial version of Mod-
elSet, a large labelled dataset of software models composed
of 5,466 Ecore meta-models and 5,120 UML models. To
speed up the labelling process, we have devised a novel
labelling method, named GMFL, and created a supporting
tool. ModelSet is freely available and we hope it becomes
a milestone in development of ML applications for MDE. To
this end, we have shown how ModelSet has been used in
a case study to address the detection of dummy models and
inference of categories and tags.

As futureworkweplan to continue enhancingModelSet.
We also want to create a web version of our tooling and
apply it to use crowdsourcing and collaborative approaches
for labelling newmodels.We believe that crowdsourcing and
collaborative approaches would allow us to better address
the subjectivity threat when labelling models, as several
label proposals would help on identifying the most com-
monly accepted one for a model. Finally, we aim at analysing
the dataset from other perspectives, like model quality, tool
usage, etc.
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