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Abstract. OCL is a important element of many Model-Driven En-
gineering tools, used for different purposes like writing integrity con-
straints, as navigation language in model transformation languages or to
define transformation specifications. There are refactorings approaches
for manually written OCL code, but there is not any tool for the simpli-
fication of OCL expressions which have been automatically synthesized
(e.g., by a repair system). These generated expressions tend to be com-
plex and unreadable due to the nature of the generative process. However,
to be useful this code should be as simple and resemble manually written
code as much as possible.

In this work we contribute a set of refactorings intended to optimise OCL
expressions, notably covering cases likely to arise in generated OCL code.
We also contribute the implementation of these refactorings, built as a
generic transformation component using bentō, a transformation reuse
tool for ATL, so that it is possible to specialise the component for any
OCL variant based on Ecore. We describe the design and implementation
of the component and evaluate it by simplifying a large amount of OCL
expressions generated automatically showing promising results. More-
over, we derive implementations for ATL, EMF/OCL and SimpleOCL.

Keywords: Model-Driven Engineering, Model Transformations, OCL,
Refactoring

1 Introduction

OCL [25] is used in Model-Driven Engineering (MDE) in a wide range of scenar-
ios, including the definition of integrity constraints for meta-models and UML
models, as a navigation language in model transformation languages and as
input for model finders, among others. The most usual scenario is that OCL
constraints are written by developers who can choose their preferred style, and
thus tend to write concise and readable code. An utterly different scenario is
the automatic generation of OCL constraints. In this setting, the style of the
generated constraints is frequently sub-optimal, in the sense that it may contain
repetitive expressions, unnecessary constructs (e.g., too many let expressions),
trivial expressions (e.g., false = false), etc. This is so since synthesis tools typ-
ically use templates (or sketches in program synthesis [28]) whose holes are filled
by automatic procedures.
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Faced with the task of writing a non-trivial OCL synthesizer, the implemen-
tor could try to design it in a way that favour the generation of concise and
simple expressions, but this introduces additional complexity at the core of the
synthesizer which can be hard to manage. An alternative is to generate the OCL
constraints in the easiest way from the synthesizer’s implementation point of
view, and then have a separate simplifying process to handle this task. In this
work we propose a catalogue of simplifications for OCL expressions, especially
targeted to OCL code generated automatically. The simplifications range from
well-known rewritings for integers and booleans to more specific ones related to
type comparisons (i.e., oclIsKindOf). This work fills the gap between refactor-
ings and conversions targeted to manually written code [6, 5] and the initial work
by Giese and Larsson [19] about OCL simplifications.

On the other hand, there are several OCL implementations like EMF/OCL [17],
SimpleOCL [31], the embedding of OCL in the ATL language [21], etc. Hence,
commiting to a single variant would limit the practical applicability of the cata-
logue. To overcome this issue we have implemented it as a generic transformation
component using bentō [8]. Bentō is a transformation reuse tool for ATL, which
allows the development of generic transformations that are later specialized to
concrete meta-models. In this paper we describe the design and implementation
of this component and the main elements of the catalogue. Finally, we have
evaluated the catalogue by applying it to a large amount of OCL expressions
and specializing it for ATL, EMF/OCL and SimpleOCL in order to show its
reusability

Altogether, this work presents the following contributions. (1) A new set
of simplification refactorings for OCL, which complements the ones proposed
in [19] and reuses some of ones described in [6, 26]. (2) A design based on the
notion of generic transformation [8] which allows mapping one definition of the
refactorings to several variants of OCL. (3) A working implementation (Beau-
tyOCL) implemented with bentō1, for which the ATL/OCL specialization has
been integrated in anATLyzer2, our IDE for ATL model transformations. The
catalogue can be easily extended with new simplifications and specializations by
submitting pull requests to the available GitHub repository.3

Organization. Section 2 presents related work, and Sect. 3 motivates the
work through a running example. Section 4 introduces the framework used to
develop the catalogue of simplifications, and Sect. 5 describes the catalogue. The
work is evaluated in Sect. 6, and Sect. 7 concludes.

2 Related work

The closest work to ours was proposed by Giese and Larsson [19]. The motivation
was to simplify constraints generated for UML diagrams in the context of de-
sign patterns. Simplifications for primitive types and collections are proposed by

1 http://github.com/jesusc/bento
2 http://anatlyzer.github.io
3 http://github.com/jesusc/beautyocl
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means of examples. More complex cases including conditionals, let expressions
and the treatement of oclIsKindOf expressions are not handled. We depart from
this work and propose a more extensive catalogue. Moreover, we have developed
the catalogue using a reusable approach, with the aim of fostering its usage.

Correa et al. investigated the impact of poor OCL constructs on understand-
ability [7], finding that refactored expressions are more understandable. The
experiments were carried out on hand-written expressions, thus, it is likely that
refactorings for expressions generated automatically have an even bigger impact
on understandability. In [32], a catalogue of refactorings for ATL transforma-
tions is presented. Some of them are applicable to OCL, but they do not target
simplifications. Moreover, the authors point out the possibility of implement-
ing the refactorings in a language independent way, which is now achieved with
our framework. The work of Correa and Werner presents a set of refactorings
for OCL [6]. Some of them are of interest for our case, particularly refactorings
for verbose expressions, while others are particularly useful for hand-written
OCL expressions. A complementary work with additional refactorings is pre-
sented in [26]. Cabot and Teniente [5] proposes a set of transformations to derive
equivalent OCL expressions. Some of these transformations are simplifications,
but they generally focus on equivalent ways of writing a given OCL expression.
Similarly, a set of optimizations patterns to improve the performance of OCL
expressions in ATL programas is presented in [15]. Another source of related
works is expression simplification rules developed with program transformation
systems [22].

Regarding the applicability of our approach, it is targeted to complement
tools which generate or transform OCL constraints. Some of them are based
on filling in a pre-defined template from a given model [19, 29, 1]. Other works
modify OCL expressions as a response to meta-model evolution [20]. These ap-
proaches could be benefited by our implementation. Nevertheless, given that our
target is automatically generated code, it is specially well suited to complement
approaches related to the notion of program synthesis and program repair. This
is so since they tend to generate “alien code” [23] which may be problematic
when humans need to maintain the generated code. To the best of our knowl-
edge, there are only a few systems of this kind in the MDE and OCL ecosystem,
like our work in quick fixing ATL transformations [11] and the generation or
pre-conditions [24, 12, 14]. Hence, we believe that this work will be also valuable
to complement OCL synthesis tools likely to appear in the future.

3 Motivation and running example

In this section we present the running example which will be used throughout
the paper. We also use it to motivate the need for our catalogue of simplification
refactorings. In previous work we implemented a large set of quick fixes for ATL
transformations [11], with which it is possible to fix many types of non-trivial
problems. This is integrated in the anATLyzer IDE [13] allowing users to au-
tomatically generate and integrate pieces of OCL code that fixes problems in
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their transformations. From the usability point view the main concern of our
tool was that the generated OCL expressions where often accidentally complex
due to the automatic procedure used to generate them. In practice, this means
that users may not use the quick fix feature because the OCL expressions which
are automatically produced are unnecessarily too complex, difficulting its under-
standing. This problem is not exclusive of our approach, but it is acknowledged
in other works [19][23].
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Fig. 1: Source and target meta-models of the running example.

To illustrate this issue we will use an excerpt of the PNML2PetriNet transfor-
mation, from the Grafcet to PetriNet scenario in the ATL Zoo4, slightly modified
to show interesting cases. Fig. 1 shows the source and target meta-models of the
transformation and Listing 1 shows an excerpt of the transformation.

1 rule PetriNet {
2 from n : PNML!NetElement
3 to p : PetriNet!PetriNet (
4 elements ← n.contents,
5 arcs ← n.contents→select(e | e.oclIsKindOf(

PNML!Arc))
6 )
7 }
8

9 rule Place {
10 from n : PNML!Place
11 to p : PetriNet!Place ( ... )
12 }
13

14 rule Transition {
15 from n : PNML!Transition
16 to p : PetriNet!Transition ( ... )
17 }
18

19 rule PlaceToTransition {
20 from n : PNML!Arc (
21 n.source.oclIsKindOf(PNML!Place) and
22 n.target.oclIsKindOf(PNML!Transition)

23 )
24 to p : PetriNet!PlaceToTransition (
25 ”from” ← n.source,
26 ”to” ← n.target
27 )
28 }
29

30 rule TransitionToPlace {
31 from n : PNML!Arc (
32 −− The developer forgets to add n.source.

oclIsKindOf(PNML!Transition)
33 n.target.oclIsKindOf(PNML!Place)
34 )
35 to p : PetriNet!TransitionToPlace (
36 ”from” ← n.source, −− Problem here, n.

source could be a Place
37 ”to” ← n.target
38 )
39 }

Listing 1: Excerpt of the
PNML2PetriNet ATL transformation.

4 http://www.eclipse.org/atl/atlTransformations/
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rule PlaceToTransition { 
  from a : PNML!Arc ( 
     a.source.oclIsKindOf(PNML!Place) and 
     a.target.oclIsKindOf(PNML!Transition) 
  ) 
  to   p : PetriNet!Place2Transition ( … ) 
} 

rule TransitionToPlace { 
  from a : PNML!Arc ( 
     a.target.oclIsKindOf(PNML!Place) and 
     a.source.oclIsKindOf(PNML!Transition) 
  ) 
  to   p : PetriNet!Transition2Place ( … ) 
} 

rule1 filter(v) 

PNML!Arc.allInstances()->forAll(v| 

if v.oclIsKindOf(                ) then 
 
 
else 
  false 
endif     
or 
if v.oclIsKindOf(                ) then 
 
 
else 
  false 
endif   
or ...   
 
 

rule1 in-element 

rule2 in-element 

rule2 filter(v) 

) 

compatible with Arc? 

replace a by v 

Fig. 2: Schema for constraint generation.

Consider the bug introduced in line 32 due to a missing check in the filter
which enables the assignment of a Place object to a property of type Transition. A
valid fix would be to extend the rule filter with not n.source.oclIsKindOf(PNML!Place).
This is, in fact, what anATLyzer generates by default since it just uses the typing
of the from ← n.source binding (line 36) to deduce a valid fix. However, a simpler
and more idiomatic expression would be n.source.oclIsKindOf(PNML!Transition).

Once fixed, we could be interested in generating a meta-model constraint for
PNML to rule out invalid arcs (e.g., an arc whose source and target references
point both to places (or both to transitions)). The implementation of quick fixes
in anATLyzer will generate a constraint like the one shown in Listing 2. The
constraint is generated in the most general way, not taking into account the
possible optimizations that could be made.

1 Arc.allInstances()→forAll(v1 |
2 if v1.oclIsKindOf(Arc) then
3 v1.source.oclIsKindOf(Transition) and v1.target.oclIsKindOf(Place)
4 else false endif or
5 if v1.oclIsKindOf(Arc) then
6 v1.source.oclIsKindOf(Place) and v1.target.oclIsKindOf(Transition)
7 else false endif

Listing 2: Automatically generated invariant to rule out invalid arcs in a Petri net

In general, a synthesizer uses a template and tries to fill the holes using some
automated procedure. Fig. 2 shows the schema to generate pre-conditions used
in anATLyzer. To generate a constraint that will be attached to the PNML
meta-model, our system would identify all rules dealing with Arc elements, that
is, any rule whose input pattern has Arc or one of its subtypes (if any). Then,
it would merge rule filters replacing occurrences of the a variable defined in the
input pattern of the rules with the iterator variable v. Please note that this
schema based on “if-then-else” is cumbersome, but it is necessary because there
is no short-circuit in OCL and therefore a simple and expression would not work
in the general case. Hence, our goal is to simplify these kind of expressions into
more idiomatic code, as shown in the Listing 3.
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1 Arc.allInstances()→forAll(v1 |
2 (v1.source.oclIsKindOf(Transition) and v1.target.oclIsKindOf(Place)) or
3 (v1.source.oclIsKindOf(Place) and v1.target.oclIsKindOf(Transition))

Listing 3: Simplified invariant to rule out invalid arcs in a Petri net

In the rest of this paper we present our approach to beautify OCL code,
in particular targeting automatically synthesized OCL code. As we will see,
it is expected that such code has unnecessary complexity, contains repetitive
expressions and it is many times difficult to read. The next section describes the
framework and the following presents the current catalogue.

4 Framework

This section describes the design of the reusable component to simplify OCL ex-
pressions. We have designed the catalogue of simplifications as a set of reusable
transformations using the notion of concept-based transformation components [8].
Our aim is to deal with the fact that there are several implementations of OCL
which could be benefited from automatic simplifications. In the EMF ecosys-
tem, we can find the standard OCL distribution (EMF/OCL), SimpleOCL, OCL
embedded in the ATL language, the OCL variant of Epsilon, etc. These imple-
mentations are incompatible among each other, due to a number of reasons,
including different representations of the abstract syntax tree, questions related
to the integration of OCL in another language, different OCL versions, different
supported and unsupported features (e.g., closure operation is not supported in
ATL), access to typing information, etc.

4.1 Overview

Our framework is based on the notion of concept and generic transformation
component. A concept is a description of the structural requirements that a
meta-model needs to fulfil to allow the instantiation of the component with a
concrete meta-model (e.g., a particular OCL implementation in this case). A
generic transformation component consists of a transformation template and
one or more concepts. To instantiate the component for a specific meta-model, a
binding describing the correspondences between the meta-model and the concept
is written, which in turn induces an adaptation of the template to make it
compatible with the meta-model. Please note that the approach of rewriting the
original transformation is more adequate than using a pivot meta-model plus a
transformation since the OCL expressions need to be modified in-place.

Figure 3 shows the architecture of the solution, which is technically imple-
mented using the facilities provided by bentō to develop reusable transformation
components [10]. In this design the simplification component has a set of small
transformations, each one targeting only one kind of simplification. On the con-
trary to previous approaches which assumed one concept per transformation [27,
8], in this work all transformations share a common OCL-based concept plus
two additional concepts to enable parameterized access to type information and
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Fig. 3: Architecture of the generic component and its application to simplify ATL/OCL
expressions.

expression comparison facilities (see Section 4.2). The output is a set of rewrit-
ing commands, which will be intepreted by a custom in-place engine. Given a
specific OCL implementation for which we want to reuse the simplification com-
ponent, we must implement a binding between the concrete OCL meta-model
and the OCL concept meta-model. The binding establishes the correspondences
between the concrete language meta-model (ATL/OCL in the figure) and the
OCL concept. The bentō tool takes the binding and the component and derives
a new simplification component specialised for ATL. This is fed into the in-place
engine to apply the simplifications to concrete ATL expressions.

4.2 Transformation templates

We use ATL as our implementation language to develop the transformation tem-
plates. The in-place mode of ATL is quite limited, and it is not adequate to per-
form the rewritings required to implement our catalogue. Thus, we extended the
in-place capabilities of ATL by creating a simple command meta-model to repre-
sent rewriting actions, which is later interpreted by a custom in-place engine. The
rationale of choosing ATL despite of its limitations for in-place transformations is
due to practical matters. First, we wanted to reuse the infrastructure provided by
bentō, which currently supports ATL as the language to develop templates. Sec-
ondly, given the motivation of integrating the simplications within anATLyzer

it seems logical to use ATL to avoid extra dependencies. Finally, Henshin [2]
was also considered but developing rewritings like the ones of this work is not
very natural either, since one needs to specify every possible container type of
an expression that is going to be replaced, so that the replacement action can
be “statically” computed. Other languages like Viatra [30] or EOL [18] have ac-
tion languages which are imperative which complicates its integration with bentō

(i.e., it is not a declarative language and thus is is difficult to write a HOT for
it, which is the main mechanism used by bentō to adapt transformations).
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Listing 4 shows a simplification rule written in ATL. An if expression like if

true then thenExp else elseExp endif is rewritten to thenExp. The execution of the
rule creates a Replace command which indicates which element (source) needs to
be substituted by which element (target).

1 helper context OCL!OclExpression def: isTrue() : Boolean = false;
2 helper context OCL!BooleanExp def: isTrue() : Boolean = self.booleanSymbol;
3

4 rule removeIf {
5 from o : OCL!IfExp ( o.condition.isTrue() )
6 to a : ACT!Replace
7 do {
8 a.source ← o;
9 a.target ← o.thenExpression;

10 }
11 }

Listing 4: Simplification rule

After the execution of the transformation our in-place transformation en-
gine interprets and applies replacement commands over the source model. If
there are no applicable actions, another transformation of the catalogue is tried.
Thus, the in-place engine works by executing transformations and evaluating
commands using an iterative, as-long-as-possible algorithm. We support com-
mands for replacing elements, cloning and modifying pieces of abstract syntax
tree and setting properties. This simple approach is enough for our implemen-
tation needs. All the transformations are executed in a pre-defined order, and
termination has to guaranteed by ensuring that the generated commands only
reduce the given expression. In this sense, it is possible to extend anATLyzer to
enforce this property, which is part of our future work.

4.3 Concept design

The transformation template is a regular ATL transformation, typed against
Ecore meta-models which act as transformation concepts. A key element in a
generic component is the design of such concepts. Our framework requires three
concepts, which are depicted in Figure 4. The OCL concept represents the ele-
ments of the OCL language which will be subject to simplifications. The Typing
concept provides a mechanism to access typing information for OCL expressions,
whereas the Comparison concept provides a way to determine if two expressions
are equal. These latter two concepts are hybrid concepts, as defined in [16], since
they provide hook methods which will be implemented by each specialization.
OCL concept. A concept should contain only the elements required by the
transformation template. This is intended to facilitate its binding when it is go-
ing to be reused and to remove unneccesary complexity from the transformation
template implementation. However, if we strictly use this approach to implement
the catalogue, we would have many transformations whose concepts have many
shared elements. For example, all simplification transformations which use op-
erators would need to define a new OperatorCallExp class. It is thus impractical
to build each concept separately. Moreover, it would require to have as many
bindings as reused transformations. Therefore, we have designed a superimposed
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Fig. 4: Concepts used in the simplification component.

concept which contains all the elements required by the transformations of the
catalogue. From this concept we automatically extract the minimal concept of
each transformation using the approach described in [9], so that each individual
rewriting could be used in isolation if needed. Please note that the superimposed
OCL concept (i.e., it merges all the concepts used by the individual rewritings)
do not necessarily need to be exactly like the OCL specification, but it may
have less elements which are not handled by the simplifications (e.g., the prop-
erty name in a navigation expression is irrelevant, while the name of an iterator
is important). The OCL concept currenly implemented contains only 20 classes
and 27 features. This is much smaller than the 85 classes of the ATL meta-model
and the 54 classes of the EMF/OCL meta-model.
Typing concept. There are a number of transformations in the catalogue which
require access to the types of the abstract syntax of the OCL expression. One
alternative would be to extend the OCL concept with elements to represent typ-
ing information. However, this approach is not flexible enough since it assumes
that concrete OCL meta-models have their expressions annotated with types.
An alternative design is to have a separate concept with operations to retrieve
the typing information. Each concrete binding is in charge of providing access
the typing information computed by underlying OCL type checker. This design
is, to some extent, similar to the idea of mirrors [3].
Comparison concept. The comparison concept is also a hybrid concept, but
it addresses the problem of comparing two OCL expressions to determine if they
are equivalent. The concept does not prescribe any mechanism to compare the
expressions, but the implementations may decide to use simple approaches (e.g.,
comparing string serializations) or more complex ones (e.g., clone detection).
The only requirement is that it must be reliable, in the sense that it cannot be
heuristic.

5 Catalogue

This section describes through examples the most relevant simplifications cur-
rently implemented in the catalogue. The catalogue has been created based on
the author’s experience building anATLyzer, but it can be easily extended as
new needs arise from other tools.
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5.1 Literal simplifications

This set of simplifications replaces operations over primitive values by their
results. For instance, an operation like 1 < 0 is replaced by false by applying
a constant folding simplification . This category also covers the simplification of
collection expressions like Set { Set { 1 } }→flatten() ⇒ Set{1}.

It is worth noting that this kind of expressions will be rarely written by a
developer, but are likely to appear in synthesized OCL code, hence the need for
the catalogue in this setting.

5.2 Iterators

This set of simplifications deals with iterator expressions which can be removed
or whose result can be computed at compile time. The following listing shows the
three simplifications implemented up to now. The simplifications for select also
apply to reject just by swapping the behaviour of True select and False select.

Original

−− Unnecessary collect
Place.allInstances()→collect(p | p)→select(p | ...)
−− True select
Place.allInstances()→select(p | true)→collect(p | ...)
−− True forAll
Place.allInstances()→forAll(p | true)

Simplified

−− Unnecessary collect
Place.allInstances()→select(p | ...)
−− True select
Place.allInstances()→collect(p | ...)
−− True forAll
true

5.3 Noisy let expressions

Let expressions are useful when a large expression is used many times, otherwise
it tends to introduce unnecessary noise. This simplification takes into account
the size of the assigned expression and the number of usages in order to remove
such let expressions. The following listing shows an example.

Original

let src = arc.source in
let tgt = arc.target in

src.oclIsKindOf(PNML!Place) and
tgt.oclIsKindOf(PNML!Transition)

Simplified

arc.source.oclIsKindOf(PNML!Place) and
arc.target.oclIsKindOf(PNML!Transition)

The main concern with this simplification is that it may break well-crafted
code, when the developer intended to organize a set of logical steps into let
variables. Thus, the simplification should only be applied for synthesized code
which is known to generate repetitive let expressions.

5.4 Type comparison simplifications

These simplifications are aimed at removing unnecessary type comparisons using
oclIsKindOf / oclIsTypeOf or to simplify a complex chain of type comparisons
into a simpler one.

Remove if-then type comparison. An example of this simplification has been
shown in Fig. 2 and Listing 3. If the condition cond of an if expression is a single
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type comparison in the form expr.oclIsKindOf(T) we check if typeOf(expr) = T.
In such case, we can safely replace the whole expression with true, which may
enable other simplifications (see for instance if-else elimination below).

Full subclass checking to supertype. This simplification takes a chain of or
expressions in which each subexpression checks the type over the same variable
and tries to simplify it to a unique type check over a common supertype.

For example, the listing below (left) is intended to rule out arcs from the
contents reference. This simplification recognizes that all subtypes of NetCon-

tentElement are checked, and the simpler n.oclIsKindOf(PNML!NetContentElement)

can be used instead.

Original

aPetriNet.contents→select(n |
n.oclIsKindOf(PNML!Place) or
n.oclIsKindOf(PNML!Transition))

Simplified

aPetriNet.contents→select(n |
n.oclIsKindOf(PNML!NetContentElement))

The application condition of this simplification is relatively complex to im-
plement, hence the advantage of implementing it in a reusable module. A binary
operator must be composed by only “or” sub-expressions and each subexpres-
sion must apply an oclIsKindOf operator to the same source expression. Then,
we extract the set of types used as arguments of the oclIsKindOf operations
(types). From this set we obtain the most general common supertype (sup)
of all of these classes (if any), with the constraint that all subclasses of such
supertype are “covered” by the classes in types, that is the following OCL con-
straint must be satisfied: sup.allSubclasses→forAll(sub | types→forAll(c | c = sub or

c.superTypes→includes(sub)))

In the example, the most general supertype satisfying this constraint is Net-

ContentElement. This is so because its set of subtypes is completely covered by
Transition and Place. In contrast, NetContent is not a valid result because Arc is
not in the set of types compared by the expression. One concern with this sim-
plification is that for some cases explicitly checking the subtypes could be more
readable than the simplified code, since it evokes more clearly the vocabulary of
the transformation meta-model. An alternative is to parameterize the simplifica-
tion with a threshold indicating the minimum number of “oclIsKindOf checks”
that need to exists in the original code to trigger it.

5.5 Unshort-circuiting.

OCL does not have short circuit for boolean expressions. Thus, automatic syn-
thesis procedures need to take special care to produce safe boolean expressions.
For instance, the expression arc.source.oclIsKindOf(PNML!Place) and arc.source.tokens

is unsafe because the tokens feature will be accessed regardless of the result of
the first type comparison (i.e., if arc.source is a Transition). Hence, a runtime error
will be raised. The usual solution is to write nested ifs, one for each boolean
sub-expression, which typically leads to unreadable code. In the case of syn-
thesized code the situation is exacerbated since it is likely that the synthesizer
implementation always generate nested ifs to stay on the safe side.
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For example, the following listing (left) shows a piece of code in which short
circuit evaluation is not actually necessary because the name feature is defined
in a superclass of Place. Therefore, it can be simplified as shown in the right part
of the listing.

Original

if arc.source.oclIsKindOf(PNML!Place) then
if arc.source.name <> OclUndefined then

’plc’ + arc.source.name
else

’no−name’
endif

else
’no−name’

endif

Simplified

if arc.source.oclIsKindOf(PNML!Place) and
arc.source.name <> OclUndefined then
’plc’ + arc.source.name

else
’no−name’

endif

Please note that this simplification makes use of the Comparison concept to
be able reason more accurately about what can be simplified and the Typing
concept to check typing correctness. Another variatns of this simplification can
also be implemented, for instance for checking OclUndefined conditions.

5.6 Conditionals

Remove dead if/else branch. This is the most basic simplification of condi-
tionals. Given a true or a false literal in the condition, the corresponding then
or else parts are used to replace the conditional in the AST. For instance, if true

then ’a’ else ’b’ endif can be simplified to ’a’.

Remove equals condition and then expression. A simple but useful simpli-
fication is recognizing that the condition and the “then” branch (or else branch)
of an if expression are the same, and thus they always yield the same result.

Original

if place.tokens→size() = 1 then
place.tokens→size() = 1

else
false

endif

Simplified

place.tokens→size() = 1
−− If the else branch of the original expression
−− is true, then whole expression can be
−− replaced by true

If fusion. This simplification takes a binary operation between the results of
two if expressions whose conditions are the same. In this case, it is safe to inline
the then and else branches of the second expressions in the first one, as in the
following example:

Original

if elem.oclIsKindOf(PN!Place) then
elem.tokens→size() > 1

else false endif
and
if elem.oclIsKindOf(PN!Place) then
not elem.name.oclIsUndefined()

else true endif

Simplified

if elem.oclIsKindOf(PN!Place) then
elem.tokens→size() > 1 and
not elem.name.oclIsUndefined()

else
false and true

endif

The simplified version is more concise, and at the same time enables more
simplification opportunities.
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6 Evaluation

This section reports the evaluation of our approach. We have evaluated whether
the simplifications are able to reduce the complexity of expressions synthesized
automatically (usefulness) and to what extent it is possible to reuse the cata-
logue (reusability) for different OCL dialects, reflecting on the advantages and
limitations of the approach.

6.1 Usefulness

We have applied the simplifications of the catalogue to two different kinds of au-
tomatically generated OCL constraints, both for the ATL variant of OCL. The
first experiment consisted on simplifying OCL preconditions generated from tar-
get invariants of model transformations as described in [14]. We simplified 24
constraints coming from invariants defined in three transformations used by
existing literature HSM2FSM, ER2REL and Factories2PetriNets. The second
experiment applied the simplifications to the quick fixes generated by anAT-

Lyzer for the 100 transformations of the ATL Zoo, focussing on those quick
fixes which generate rule filters, binding filters or pre-conditions since they are
the most interesting in terms of complexity of the generated expressions. Table 1
summarizes the results of the experiments. The complete data, and the scripts
and instructions to reproduce the experiments are available at the following
URL: http://sanchezcuadrado.es/exp/beautyocl-ecmfa18.

Pre-conditions Quick fixes
#Simp. % Avg. Median #Simp. % Avg. Median

Literals 6 1.4% - - 2397 36.5% - -
Iterators 6 1.4% - - 712 10.6% - -
Noisy let 0 0.0% - - 177 2.7% - -
Type comparison 38 8.6% - - 31 0.5% - -
Unshort-circuiting 362 82.3% - - 63 0.9% - -
Conditionals 28 6.6% - - 3182 48.5% - -
Total simplifications 404 100% 18.3 5 6562 100% 3.8 2
% of nodes removed by simplifications 19.3% 16.8% 33.5% 15.8%

Table 1: Summary of the results of the experiments.

For the preconditions, a total of 440 simplifications were applied to 24 ex-
pressions. In average, 18.3 simplifications were applied for each expression, how-
ever the median was 5 simplifications. This is because some expressions were
particularly large and involved more simplifications. For instance, two of the ex-
pressions had more than 3000 nodes, which enabled the application of more than
150 simplifications for each one. In the quick fixes experiment a total of 6562
simplifications were applied to 1729 expressions. We express the simplification
power of the catalogue (shown in the “% nodes removed by simplifications” row)
by counting the number of nodes of the AST before and after the simplifications.
In both experiments the obtained reduction is similar, around 20% in average
and 16% in the median.

Regarding which simplification categories are more useful, the results are
disparate. Some simplifications occur much more often in one experiment than in
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the other. For instance, simplifications for literals and conditionals are very useful
for quick fixes, whereas unshort-circuiting is more useful for pre-conditions. This
suggests that simplifications are to some extent specific to the kind of generated
code and the method used to generate such code.

At first glance some of the simplifications are quite simple, others are most
complex (e.g., those based on the typing and comparison concepts). Combining
all of them, the user gets a much better experience. For instance, the follow-
ing listing shows the situation before and after the use of BeautyOCL. The
simplifications applied has been the following: (1) replacing the oclIsKindOf
operation by true, then (2) replacing the if expression by its condition and
finally (3) simplifying the remaining expr and expr by expr where expr = not

i.hasLiteralValue.oclIsUndefined(). As can be observed the result is much more read-
able. In other evaluated expressions the results are not so “beauty”, but the
user would expect an even simpler expression. Nevertheless, the results are very
promising, and it is expected to have very good results as the catalogue grows.

Original

if not i.hasLiteralValue.oclIsUndefined() then −− #2
i.hasLiteralValue.oclIsKindOf(RDM!Literal) −− #1

else
false

endif
and not i.hasLiteralValue.oclIsUndefined() −− #3

Simplified

not i.hasLiteralValue.oclIsUndefined()

The catalogue instantiated for ATL has been integrated into anATLyzer

through a dedicated extension point, so that the generated quick fixes are auto-
matically simplified. Moreover, a quick assist to let the user simplify a piece of
expression on demand is also available. A screencast demonstrating this feature
in more detail is available at https://anatlyzer.github.io/screencasts/.

Regarding threats to validity, the main threat to the internal validity of these
experiments is that we have only used code synthesized by AnATLyzer. The main
reason is the lack of availability of similar tools for other OCL variants. Another
issue is that we use the number of nodes to measure the improvement of an
expression after simplifications. This metric can be misleading sometimes. For
instance, the removal of let expressions generates a simpler expression, but it can
introduce a few more nodes. A controlled experiment with final users is required
to effectively assess this question. A threat to the external validity is the number
of OCL variants reused. Variants like Epsilon or USE are not considered due to
not using Ecore meta-models. This is so because our simplifications work at the
abstract syntax level, specified with Ecore. Please note that many of them are
complex transformations (e.g., use type information or compare sub-expressions)
which cannot be addressed with text-based transformations.

6.2 Reusability

The catalogue of simplifications has been designed with reusability in mind in
order to be able to easily instantiate the catalogue for a specific OCL variant.
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To assess to what extent this is possible we have instantiated the component for
ATL/OCL, EMF/OCL and SimpleOCL.

The catalogue was first tested and debugged by writing a binding to ATL.
The binding was relatively straightforward. The binding for EMF/OCL was also
simple except for one important issue. The designed concept expects that an Op-

eratorExp has a name to identify the concrete operator. However, in EMF/OCL
an operation is identified by a pointer to an EOperation defined in the stan-
dard OCL meta-model. Our binding for the target model (i.e., to support the
creation of operator expressions) is not powerful enough to handle this natively.
The solution to overcome this has been to extend the typing concept with a
“setOperation” so that it is possible to programmatically find and assign the
proper EOperation if needed. For SimpleOCL the main limitation is that it does
not compute any typing information, and thus we could not reuse those sim-
plifications making use of the typing concept. This means that the instantiated
catalogue for SimpleOCL needs to be smaller.

Regarding the size of the implementations, the ATL transformation tem-
plates consists of 791 SLOCs, whereas the bindings for ATL, EMF/OCL and
SimpleOCL are 38, 49 and 48 SLOCs respectively. The bindings are relatively
simple mappings specifications. These figures provide some evidence of the ad-
vantage of building transformations as reusable components.

Altogether, the catalogue has proved useful to optimise OCL expressions in
terms of their size, thus having simpler and perhaps more beautiful expressions.
The effort invested in the creation of the catalogue is amortized by allowing
multiple instantiations. Moreover, this work is also non-trivial case study of the
application of genericity techniques to model transformations, which can be a
baseline to improve these techniques.

7 Conclusions

In this paper we have presented a catalogue of OCL simplifications for OCL
expressions, which targets code which has been automatically generated. This
catalogue has been implemented as a generic transformation component, with
the aim of making it applicable to any OCL variant based on Ecore. The current
implementation fully supports ATL and has also been partially instantiated for
EMF/OCL and SimpleOCL. The evaluation shows that the proposed simplifica-
tions are useful and they can generally reduce the size of the expressions around
30%. As future works we plan to add new simplifications to the catalogue in or-
der to be able to reduce generated expressions by anATLyzer even more. Also,
we would like to extend bentō to allow using rewriting languages like Stratego [4]
to develop the transformation templates for the generic transformation compo-
nents. Another line of work is to reflect on how to optimise other kinds of MDE
artefacts generated automatically, like models or meta-models.

Acknowledgements. Work funded by the Spanish MINECO TIN2015-73968-
JIN (AEI/FEDER/UE).
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