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Abstract—The automatic generation of software models is an
important element in many software and systems engineering
scenarios such as software tool certification, validation of cyber-
physical systems, or benchmarking graph databases. Several
model generators are nowadays available, but the topic of
whether they generate realistic models has been little studied.
The state-of-the-art approach to check the realistic property in
software models is to rely on simple comparisons using graph
metrics and statistics. This generates a bottleneck due to the
compression of all the information contained in the model into a
small set of metrics. Furthermore, there is a lack of interpretation
in these approaches since there are no hints of why the generated
models are not realistic. Therefore, in this paper, we tackle the
problem of assessing how realistic a generator is by mapping it to
a classification problem in which a Graph Neural Network (GNN)
will be trained to distinguish between the two sets of models (real
and synthetic ones). Then, to assess how realistic a generator is we
perform the Classifier Two-Sample Test (C2ST). Our approach
allows for interpretation of the results by inspecting the attention
layer of the GNN. We use our approach to assess four state-
of-the-art model generators applied to three different domains.
The results show that none of the generators can be considered
realistic.

Index Terms—Model generators, Realistic models, Graph neu-
ral networks, Two-Sample Test

I. INTRODUCTION

Model generators aim to create synthetic models automat-

ically by taking one or more input parameters to configure

the expected bounds or shape of the generated models. These

types of tools can be applied to many areas of software and

system engineering such as the testing and benchmarking

of graph databases [1], [2], to create complex test stubs in

the object-oriented field [1], [3] or automated synthesis of

prototypical test contexts in the assurance of smart cyber-

physical systems [1], [4], [5].

Recent works [1], [5] have established four properties that a

model generator should satisfy: 1) consistency (the generator

creates consistent models which satisfy all well-formedness

constraints), 2) diversity (the generated models include a

sufficiently wide variety of shapes [6]), 3) scalable (with

respect to the size of a generated model) and 4) realistic
(models generated cannot be distinguished from the real ones).

In particular, a generator is structurally realistic if the set

of generated models cannot be distinguished from the real

ones just by looking at the typed graph structure (ignoring

the attribute values) [5], [7], [8]. Currently, a set of graph

metrics and statistics (such as out-degree, dimensional degree,

multiplex participation coefficient, etc) are used to assess

whether a set of models can be considered similar to a

dataset of realistic models [5], [7], [8]. This technique has

three important shortcomings. Firstly, summarizing an entire

graph model into a set of graph metrics causes an information

loss. Secondly, a subset of graph statistics has to be chosen

to perform the assessment, but not all metrics are equally

effective to perform this task [7]. Thirdly, this approach is

not interpretable, in the sense that it does not give us hints to

determine why the generator is not realistic.

In this paper, we address the task of determining whether

a model generator is realistic using a different technique,

which overcomes these aforementioned issues. Our approach

follows this idea: given two set of models, one generated by

a given generator and the other composed by real models.

Under the supposition that the generator is realistic (i.e., the

synthetic models are realistic), if we build a Graph Neural

Network (GNN) [9] trained to distinguish between these two

sets, it will not be able to achieve a good performance since

the classification problem is impossible. In order to evaluate

how realistic a generator is, we use the non-parametric test

called Classifier Two-sample Test (C2ST) [10]. The test tells

us whether the GNN actually distinguished between real and

generated models. Following this approach, we have assessed

how realistic four state-of-the-art generators are in three do-

mains.

Altogether, this paper presents a novel approach for assess-

ing model generators, which is more robust than previous

approaches and has the additional advantage of being inter-

pretable (i.e., by inspecting the weights of the attention layer

of the GNN). Moreover, to the best of our knowledge, this is

the first work that applies GNN to software models. Thus, our

proposed GNN architecture can be adapted to face other model

classification problems (e.g., meta-model classification [11],

[12], UML classification [13], etc).

Organization. Section II gives a brief explanation of the

technical background that underlies our approach, which is

described in detail in Sect. III. In Sect. IV, we report our

experiments assessing four state-of-the-art generators for three
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Fig. 1. Excerpt of the Ecore meta-model.

domains. Section V presents the main contributions of this

paper and the limitations of our method. Finally, Sect. VI

discusses the related work and Sect. VII concludes.

II. BACKGROUND

This section presents background information about the

elements of our approach. As a running example to illustrate

the paper, let us consider an scenario in which we want to

generate Ecore models [14]. An excerpt of the Ecore meta-

model is presented in Fig. 1, and an instance of this meta-

model representing a Finite State Machine (FSM) is depicted

in Fig. 2.

A. Models as graphs

A model can be seen as a graph [7], [15]–[17]. In our

approach, models will be mapped to a labeled and directed

multigraphs in which nodes and edges are labeled. Therefore,

we consider G = (V,E, f, μV , μE), where V is the set of

nodes, E is the set of edges, f : E → V × V establishes

the source and the target for each edge, and μV , μe are

the labelling functions (i.e., given a node or an edge, they

provide its corresponding label). Given a model, the mapping

is performed as follows:

• Each object of the model is mapped into a node in V and

it is labeled with the name of the class that the object

belongs to.

• Each edge in E is associated with a reference in the

model and it is labeled with the name of the reference.

If a reference does not have an opposite reference, we

add another edge whose label is the concatenation of the

reference name and inv.

• In this work we do not consider attributes, since we are

only interested on the graph structure.

For instance, the model in Fig. 2 is transformed into the

graph in Fig. 3. This graph has 8 nodes (one per different

object): 3 nodes/objects of type EClass, 4 nodes/objects of

type EReference and 1 node/object of type EPackage. Edges

labeled with eType inv are added since the reference eType

FSM

State Transition

[0..*] states

[0..*] transitions

[1..1] target

[1..1] source

Fig. 2. Ecore meta-model of a finite-state machine.

FSM

Transition

State

target

source

transitions

states

Fig. 3. Multigraph for model in Fig. 2.

that connects the meta-classes ETypedElement and EClassifier
does not have an opposite (Fig. 1).

B. Realistic model generators

Models generators aim to generate software models au-

tomatically. In this work we have considered four differ-

ent model generators: EMF Random Instantiator [18], VIA-

TRA [1], Alloy [19], [20] and Random EMF [21]. Depending

on the generator, it will receive as input one or more of the

following parameters:

• A meta-model M that the generated models will con-

form to.

• A set of well-formedness constraints Ψ. This set refers

to a set of conditions that the generated models must

verify. For instance, in Ecore, no cycles in hierarchy is a

constraint.

• A scope that controls the size of the output e.g. the

number of objects that the output models will have.

• A set of rules G that guides the model generation.

For example, VIATRA generator [1] receives a meta-model,

a set of constraints and a scope. However, RandomEMF [21]

receives a meta-model and a set of rules that guide the process

of the model generation.

On the other hand, Varró et al. [5] presented the Graph

Model Generation Challenge in which four properties that a

generator should satisfy are established: a model generator

has to be consistent, scalable, diverse, and realistic. In this

paper we will focus on this last property. In particular, we

will deal with the structurally realistic property (studied in [5],

[7], [8]). A generator is structurally realistic if the generated
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models cannot be distinguished from real models just by

looking at the typed graph structure i.e., ignoring attributes.

In this work, we refine the notion of realistic generator as

follows: Given a classifier trained with a sample of realistic
and synthetic models, a generator is realistic if the classifier
does not achieve a good performance distinguishing between
synthetic and real models.

C. Graph neural networks

A Graph Neural Network (GNN) or Graph Convolutional

Neural Network (GCNN) [9] is a type of neural network

that receives as input the nodes of a graph and generates

node embeddings based on local network neighborhoods.

More concretely, given a node v ∈ V and its initial vector

representation xv , a GNN of L layers consist on the calculus

of the final node embedding in this way:

h0
v = xv (1)

hl
v = gl

(
hl−1
v ,

{
hl−1
w : w ∈ N (v)

})
(2)

for l = 1, . . . , L, N (v) = {w ∈ V |∃e such that f(e) =
(w, v)} (neighborhood of v) and gl is a non-linear function that

computes hl
v using the vectors hl−1

v and
{
hl−1
w : w ∈ N (v)

}
.

Therefore, the final embedding hL
v will have information of all

neighbors in the L−hop neighborhood of v. To summarize, a

GNN receives a set of nodes V in a graph and outputs node

embedding vectors {hL
v }v∈V that contain information of the

L−hop neighborhood of each node.

The application of this type of layer can be seen as a

message passing layer in which the embedding of a node

is calculated by using the messages that it receives from its

neighborhood. For example, Fig. 4 shows the application of

a graph convolutional layer on our running example. Thick

arrows are the messages that the vector v receives from its

neighbors. Therefore, the new embedding associated to the

node v (i.e., hl
v) is calculated by applying gl to its last

embedding hl−1
v and the embeddings of its neighborhood

hl−1
w1

, hl−1
w2

, hl−1
w3

and hl−1
w4

(dotted arrows).

GNNs are used in problems such as node classification, link

prediction or graph classification [22]. We are interested in

the last one. In this task, the embedding vectors {hL
v }v∈V are

normally summarized in one vector:

hG = AGG
{
hL
v : v ∈ V

}
(3)

where AGG is an order-invariant operation such as vector

average, max operation, attention mechanisms, etc. This last

vector represents the entire graph. Finally, hG will be the

input to a fully connected neural network which performs the

classification using the sigmoid activation in its last layer (or

softmax if the problem has more than two classes).

D. Classifier Two-Sample Test

The main aim of a two-sample test is to assess whether

two samples x1, . . . , xn ∼ P and y1, . . . , yn ∼ Q come from

Fig. 4. Application of a layer in a GNN.

the same distribution, i.e., whether P = Q. In particular, the

following test is considered:

H0 : P = Q,

H1 : P �= Q

The Classifier Two-Sample Test (C2ST) [10] tries to solve this

problem using this idea: under H0 (i.e., both distributions P
and Q are the same), if we train a classifier to distinguish

between P and Q (using the original samples), the classifier

will not be able to achieve a good performance because

both samples contain similar elements as they come from the

same distribution. Thus, the expected accuracy (proportion of

correctly predicted data samples) will be ∼ 0.5 (near chance-

level).

In details using the notation of [10], let us consider the

dataset constructed using the samples {xi}ni=1 and {yi}ni=1

and associating a label to each sample (0 if it comes from P
and 1 if it comes from Q):

D = {(xi, 0)}ni=1 ∪ {(yi, 1)}ni=1 = {(zi, li)}2ni=1.

D is randomly split into Dtrain and Dtest. After that, a

classifier is trained using Dtrain to distinguish between labels

0 and 1. This model has the form h(z) = P (l = 1|z) and

it estimates the probability of a sample belonging to label 1.

Then, it is evaluated on Dtest. The accuracy, t̂, will be the

statistic used to perform the hypothesis test:

t̂ =
1

|Dtest|
∑

(zi,li)∈Dtest

I (I (h(zi) > 0.5) = li) , (4)

where I denotes the indicator function. Basically, t̂ is the

proportion of correctly predicted data samples in the test set.

The idea of C2ST is that, under H0, t̂ should be close to 0.5,

but if we assume H1, t̂ should be greater than 0.5.

Following the procedure of the framework of statistical

hypothesis testing [23], once the statistic t̂ has been com-

puted, we are interested in the p−value, i.e., P (T ≥ t̂|H0).
Under H0, the null distribution can be approximated by
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Fig. 5. Schema of the proposed approach.

N
(

1
2 ,

1
4|Dtest|

)
[10]. Therefore, the p−value can be computed

in practice using this formula:

P (T ≥ t̂|H0) ≈ Φ

⎛
⎝− t̂− 0.5√

1
4|Dtest|

⎞
⎠ . (5)

Where Φ is the cumulative distribution function of a N (0, 1)
distribution. If p−value< α (significance level), then H0 (P =
Q) is rejected, and accepted otherwise. Typically, α is set to

0.01 or 0.05.

III. APPROACH

Our approach to assess whether a generator is realistic or

not is depicted in Fig. 5. The first step (label 1 ) is to split

the dataset of real models in two sets (one used to perform

the parameter estimation and the other one to perform the

C2ST). Given a model generator, we make the assumption

that the generated models are drawn (implicitly or explicitly)

from some probability distribution to obtain diversity in the

output models. Therefore, the second step in our approach

is to map a model generator into a probability distribution

over models (Pgen in Fig. 5 2 ). To achieve that, we have to

estimate the parameters of the generator (which are reflected in

its associated probability distribution) in order to force them

to generate models that are as close as possible to the real

ones (label 3 ). Using these parameters we generate a set

of synthetic models (label 4 ). The assessment (label 5 ) is

performed using CS2T by relying on a GNN-based classifier

trained using a subset of real models and a set of synthetic

models generated by the Pgen.

A. Model generators as distributions over models

Given a model generator, we need to determine which is its

induced distribution (Pgen) from which models are sampled.

This is a manual process which needs to be done for each

particular generator by examining its features. In the following,

we describe these processes for the four generators considered

in this paper.

1) EMF random instantiator (RANDOM): This generator

produces random instances for EMF meta-models [18]. It re-

ceives a meta-modelM as input, the number of objects (o) that

the output must have and the average number of references per

EObject (d). It does not support well-formedness constraints.

rule 1

rule 2

Fig. 6. Rules in RandomEMF.

Therefore, some of the generated output models could not be

valid. We can see this generator as the following distribution

over models (applying the law of total probability):

Pgen(M) =
∑

(o,d)∈O
P (o, d)PRANDOM(M |M, o, d).

Therefore, to sample a model from this distribution we have

to sample (o, d) ∼ P and then use the generator to sample M .

In practice, the distribution P is approximated using pairs of

(o, d) from reals models (see next section).

2) VIATRA: This generator [1] receives a meta-model M,

the scope (normally the number of objects, o) of the output

models and a set of well-formedness constraints Ψ. VIATRA

maps the generation problem into a search problem of consis-

tent models. It uses a back-end graph solver which makes this

generator scalable. Similar to the EMF random instantiator,

VIATRA can be seen as the following distribution:

Pgen(M) =
∑
o∈O

P (o)PVIATRA(M |M,Ψ, o).

Therefore, to sample a model from this distribution we have

to sample o ∼ P and then use VIATRA to sample M .

3) Alloy: Alloy Analyzer [19], [20] is a SAT-based model

finder that can be used as generator of consistent models. It

receives the same input as VIATRA and maps the generation

problem into logic problem. Therefore, this generator can be

seen as the following distribution:

Pgen(M) =
∑
o∈O

P (o)PAlloy(M |M,Ψ, o).

When sampling from PAlloy(M |M,Ψ, o), we add a random

amount of extra true statements (as it is done in [8], [24]) to

prevent the solver from running deterministically.

4) RandomEMF (rEMF): This generator is a rule-based

generator in which the generation process is driven by user-

defined rules. It belongs to the category of generators that

are based on formal and graph grammars [21]. There are two

types of random rules, which are illustrated in Fig. 6. In this

example, the first rule (called Package) corresponds to the

root rule, and it indicates that an object of type EPackage
must be generated and the number of its children classifiers

must follow a negative binomial distribution with parameters

1 and 0.9784. The second rule is an alternative rule, and it can

randomly derive in one of these three rules: Enum, DataType
or Class with priorities 1, 4 and 22 respectively.
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Since this generator receives a meta-model and a set of

grammar rules (G), it can be seen as the following distribution

over models:

Pgen(M) = PrEMF(M |M,G).
Similar to EMF random instantiator, this generator does

not support well-formedness constraints. The set of gram-

mar rules must be designed to enforce the generation of

consistent models as much as possible. In our experiments,

when designing the rules we have attempted to respect the

majority of constraints. However, due to the limitations of

the RandomEMF grammar definition language, we could not

assure all constraints to be respected in the generated output

models. For instance, in Ecore, there is no guarantee that the

generated models will respect the restriction of no cycles in
hierarchy.

B. Parameter estimation

To sample models from Pgen we need to estimate or

approximate its parameters from a set of realistic models.

This process is different depending on the parameters of the

generators.

1) Parameter estimation for VIATRA and Alloy: To approx-

imate P (o) we use the Kernel Density Estimation (KDE),

which is a well-known method to estimate the density function

of a distribution. Let us suppose that we have a set of samples

{o1, . . . , on} corresponding to the number of objects in each

realistic model. As estimation of the density function KDE

takes:

f̂h,K(o) =
1

nh

n∑
i=1

K

(
o− oi
h

)
.

Where K is a kernel function and h > 0 is called bandwidth.

K and h are hyperparameters and they are chosen using

cross-validation over the set of samples. Once these hyper-

parameters are fixed, we can sample from f̂h,K and obtain

{o′1, . . . , o′m} ∼ f̂h,K . Due to the fact that the new samples

are not integers, we apply the floor function to them obtaining

{
o′1�, . . . , 
o′m�}.
2) Parameter estimation for RANDOM: In this case, we

need to approximate P (o, d) since RANDOM depends on the

number of objects and the average number of references. We

apply the same idea as before, but to pairs (o, d) by using

f̂h,K in 2 dimensions.

3) Parameter estimation in rEMF: As explained before, to

generate models with rEMF, we need to define a set of rules G.

Our approach is to manually define these rules for the relevant

meta-model elements, and then we estimate the parameters of

each rule individually. Since rEMF supports two types of rules,

we need to estimate two types of parameters:

Shape of distribution. For normal rEMF rules, we are

interested in determining which is the distribution that best

represents the characteristics of each type of meta-model

element in the set of realistic models. To do so, we estimate

the parameters of each distribution associated to the rules. For

each different rule, we build a set of samples. For instance,

for rule 1 in Fig. 6, a sample is the count of the number

of classifiers of a EPackage. As a result, the set of samples

{c1, . . . , cs} is obtained. Then, for each available distribution

in rEMF (Uniform, Normal, Negative Binomial and Poisson),

we estimate its parameters using maximum likelihood. Finally

we take the best distribution that fits {c1, . . . , cs}, using the

log-likelihood as the comparison criteria.

Priority in alternative rules. In rule 2 of Fig. 6, the priorities

of each one of the alternative rules (Enum, DataType, Class)

need to be fixed. To do so, for each model we count the

proportion of classifiers that it has (i.e. EEnum, EDataType
and EClass). Then, we compute the mean with respect to all

models. Finally, these averages are divided by the minimum

average. Since priorities are integers, we round them.

C. Applying GNNs to graph models

In the previous section we have explained how we estimate

the parameters needed to force the generator to generate

synthetic models that are as similar as possible to the dataset

of real models. At this point, we have two sets of models

(realistic models and synthetic models). We need a classifier

to distinguish between these two sets in order to perform the

C2ST. Therefore, we choose a GNN as our classifier. This

neural network will receive a model (previously converted into

a graph as described in Sect. II-A) as input and determine

if it is real or not. Since we are dealing with graphs with

labeled edges and nodes, we will consider the PyTorch [25],

[26] implementation of the graph convolutional layer proposed

in [27]. Therefore, the node embeddings are calculated using

the following formulas:

h0
v = Enode(v) (6)

hl
v = ReLU

⎛
⎝W 1

l h
l−1
v +

∑
r∈R

∑
w∈Nr(v)

1

|Nr(v)|W
r
l h

l−1
w

⎞
⎠

(7)

where Enode is the embedding layer of node labels (inital

embedding of the nodes), R is the set of references (edge

types) and Nr(v) is the neighborhood of v restricted to r.

Note that equations 6 and 7 are adaptations of equations 1

and 2 respectively. In particular, the initial node embedding is

given by an embedding layer and gl is a function that takes

into account the labels of the edges.

In order to have an embedding at the graph level, we will

use an attention vector to summarize all the node embeddings

i.e., the AGG operator in Eq. 3 is defined as follows:

hG =
∑
v∈V

αvh
L
v where αv =

exp
(
ααα · hL

v

)
∑

w∈V exp (ααα · hL
w)

. (8)

Finally, since we are interested in a binary classification

problem, the output of the model is computed as

Pmodel(is real?|G) = σ (WF · hG + bF ) ,
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Fig. 7. Attention mechanism and last linear layer.

Backpropagation

Ground
truth

Fig. 8. Training phase and global architecture of the neural network.

where σ is the sigmoid function. Fig. 7 shows the attention

mechanism and the last linear layer applied to the run-

ning example. There, once the graph convolutional layers

are applied, each node v1, . . . , v8 has an embedding associ-

ated hL
v1
, . . . , hL

v8
. Each hL

vi
contains the information of the

L−hoop neighborhood of vi. To obtain the embedding of

the entire graph, a weighted averaged is performed over the

node embeddings using Eq. 8 (dotted lines that connect each

hL
vi

with ααα). The greater the weight associated to a node is,

the more influence it has on the output. For example, if the

attention weight associated to the node v2 is 0.3 while the

weights associated to the rest are 0.1, then the neural network

focuses more in v2 and its L−hoop neighborhood than in other

nodes. Finally, hG is passed through a dense layer followed

(WF and bF ) by a sigmoid function (σ) to output probabilities.

In our experiments, all dimensions of the layers and vectors

are fixed to 64. We take L = 2 since the diameter of the

inputs graphs is relatively small. With this setting, the GNN

takes into account the 2−hoop neighborhood. Therefore, all

metrics studied in [7] are implicitly considered by our neural

model. Finally, the neural network is trained using the binary

cross-entropy loss and the Adam optimizer [28].

The training phase of the final model is depicted in Fig. 8.

Each node of the graph is mapped to an initial vector by using

the embedding layer Enode. These vectors are passed through

a two layer GNN. After that, they are summarized into a

vector that represents the entire graph by using the attention

vector ααα. The graph vector is the input of a fully connected

layer (WF , bF ) that outputs probabilities. Finally, the output

is compared with the ground truth (using the binary cross-

entropy loss) and all weights of the neural model are updated

(i.e., weights of Enode, GNN1, GNN2, ααα, WF and bF ) using

backpropagation and the Adam optimizer.

D. Assessing realistic generators

Putting all together, a generator (gen) is a black box that

receives as input a set of conditions (that can be a meta-model,

some restrictions, etc) and outputs or samples a model M (that

is consistent with the input conditions, i.e., conforms to a meta-

model, satisfy some restrictions, etc). As it was explained,

this black box can be seen as a probability distribution over

models Pgen(M). We can suppose that all realistic models

(models that people make) are sampled from a probability

distribution Qreal. Thus, we can say that a generator is realistic

if Pgen is similar to Qreal.

In practice, we have a set of real models {R1, . . . , Rn}
sampled from Qreal and a set of models {S1, . . . , Sn} sampled

from Pgen. To determine if Pgen ≈ Qreal, we apply the

following hypothesis test:

H0 : Pgen = Qreal

H1 : Pgen �= Qreal

Using C2ST (Sect. II-D) and a classifier (the GNN model

explained in Sect. III-C), we can compute the accuracy statistic

and the p−value. If p−value < α, then we reject H0 and

the generator is not realistic. The bigger p−value the better.

Moreover, if the accuracy is ∼ 0.5, the generator outputs

realistic models. On the other hand, if the accuracy is high,

it means that the generator is not realistic with respect to the

dataset.

The application of this procedure to assess concrete model

generators is explained in detail in the next section.

IV. EXPERIMENTS

In this section we report the results of our experiments

applying our approach to assess whether state-of-the-art model

generators are able to produce realistic models. We focus on

the generators already explained in Sect. III-A, that is, EMF

random instantiator [18], RandomEMF [21], VIATRA [1] and

Alloy [19], [20].

A. Domains

Our experiments were based on three case studies, each one

corresponding to a different domain. The selection of the case

studies was driven by the availability of public models. In

particular, we obtained these models from the MAR search

engine1 [16].

• Ecore. We considered a reduced version of Ecore [14],

as depicted in Fig. 1, which included six well-formedness

constraints (denoted Ψ in Sect. III-A). Then, we down-

loaded 500 real models from MAR (which were crawled

from GitHub) and transformed them into our reduced

version. To ensure that the generators could generate

similar models, we chose models that verify the following

1http://mar-search.org
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Table
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Index
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[0..*] elements
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[1..1] foreignKeyColumns[0..*] foreignReferences

[1..1] primaryKeyColumns[0..*] primaryReferences

[0..*] indexes

[0..1] column [0..*] indexColumns

Fig. 9. Simplified version of the database model meta-model in GenMyModel.

two conditions: the model must have just one EPackage
as root and the model does not contain attributes of type

EInt, EString, etc.

• Yakindu Statecharts [29] is an industrial modeling

environment. We reused the meta-model and the ten

well-formedness constraints defined in [5]. Regarding the

dataset real models, a set of 369 has been considered

(which were crawled from GitHub).

• Database models from GenMyModel2. We considered

a manually constructed version of its meta-model (de-

picted Fig. 9) that includes tables, indices and references.

Regarding well-formedness constraints, we manually de-

rived three constraints according to our observations

using the platform. Then, we built a dataset of 500 real

models.

B. Procedure

Given an initial set of real models R and a generator, each

experiment is performed by following these steps, which are

illustrated in Fig. 10:

1) R is split into RI (50%) and RII (50%). This step

corresponds to label 1 in Fig. 10. The goal is to ensure

that the assessment procedure (C2ST) is not biased by

the parameter estimation.

2) RII is used to estimate some parameters of the generator

(i.e., P (o) in VIATRA and Alloy, P (o, d) in RANDOM,

shapes and priorities of G in rEMF). This step corre-

sponds to label 2 in Fig. 10.

3) Once the parameters of the generator are fixed, the

generator is used to generate n = |RI| models, which

form the set of synthetic models S (label 3 in Fig. 10).

4) The sets RI and S are merged and shuffled (label 4 ).

5) Finally, we apply C2ST considering that S ∼ Pgen and

RI ∼ Qreal (label 5 ). To do so, the merged set of mod-

els is split into training/validation/test (60%/15%/25%),

label 5.1 . The training set is used to train the GNN

model and the validation set is used to perform early

stopping3 (label 5.2 ). As a result, a trained GNN model

is obtained. This model is evaluated using the test

2https://www.genmymodel.com/
3Regularization mechanism that consists on stopping the training when

there is no improvement over the validation set.

Parameter
estimation

Generator

1

2

3

4

C2ST

Trained
GNN

Train Val Test

Training
phase Evaluation

5.1

5.2 5.3

GNN

5

Fig. 10. Experimental procedure.

set (label 5.3 ). Finally, the accuracy and p−value are

calculated using equations 4 and 5 respectively. The

results are used to determine whether the generator is

realistic or not.

C. Results

The results of the C2ST for each generator and for each

domain are shown in Table I. According to them, we can draw

the following conclusions:

• No generator can be considered realistic since all

p−values are less than α = 0.01. Therefore, we cannot

accept H0 : Pgen = Qreal.

• The least realistic generator is RANDOM. This is caused

by the fact that it actually generates models that conform

to a meta-model, but the majority of the generated models

are inconsistent with the well-formedness constraints.

This is because we did not apply OCL validators to

rule out invalid models before applying the classifier, for

two reasons. First, to follow the same procedure used

in related works [8]), and secondly because RANDOM

was only able to generate valid models when they are

small. For example, in the Ecore case study, 95% of

the generated models are invalid (violate at least one

constraint) and the remaining 5% models are small and

simple. This fact also explains the accuracy value of 1:

the classifier detects the constraint violations or simple

models with small size.

• The most realistic generator is rEMF. This could be justi-

fied for two reasons. First, rEMF is the most customizable

generator since the user has to define the set of rules

G that guides the model generation. And second, there

is more observation of the set RII since we estimate

the parameters of many distributions (for example, in

the Ecore domain, number of classifiers per EPackage,

number of features per EClass, etc) to construct G.

However, in RANDOM, Alloy and VIATRA only P (o, d)
and P (o) are set.

Altogether, these experiments show that the distributions

of realistic models have a complexity which cannot be ap-
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proximated by the distributions implemented by current model

generators. Therefore, new techniques and procedures are

needed to enable the faithful generation of realistic models.

D. Interpretation
The described procedure tells us whether a generator is

realistic or not. However, faced with a negative answer we

need some mechanism to intepret this result and understand

it. Since our procedure is based on C2ST, we can determine

which models of the test set have been correctly or incorrectly

classified by the GNN. Then, for each interesting model, we

can inspect the behavior of the neural network when this

particular model is introduced as input. Our GNN model has

an attention mechanism that can be easily interpreted by just

looking at its weights. This feature is particularly useful when

the input model is large. In this case, we can focus only on

the parts of the model that the GNN has focused on.
As a concrete example, let us consider the worst and best

generators: EMF random instantiator and RandomEMF. For

each generator we show one example model per domain which

is not considered realistic by the corresponding GNN. We use

a custom notation in which each object in the model is given

a color according to the attention that the GNN has put on

it (see Fig. 11 and Fig. 12). These graphics are automatically

generated using specific tooling that we have developed.
EMF random instantiator is not considered realistic because

its generated models violate the well-formedness constraints.

In almost all the analyzed models, the GNN focuses on some

object that violate some constraint. For instance, Fig. 11

shows three examples of invalid models. In the Ecore model

(label a ), the GNN focuses on a EClass that inherits from

itself. In the Yakindu domain (label b ), the model focuses

on transitions whose target state is an entry (this violates a

constraint). Finally, label c shows a synthetic database model,

for which the GNN focuses on references whose target and

source columns are the same column (this again violates a

constraint).
Regarding RandomEMF, the criteria followed by the GNN

to distinguish between generated and real models is more

diverse (Fig. 12). For instance, in the case of Ecore (label a ),

the GNN focuses on EEnum objects that are not referenced by

any EAttribute belonging to an EClass of the same package.

The GNN correctly detects that it is an uncommon situation

to create an EEnum but not using it in the meta-model. In

Yakindu models (label b ), the GNN identifies states that are

isolated (i.e., they are not pointed to any transition). This is

a common pattern in models generated by RandomEMF but

not in real models. In database models (label c ), we can

observe that there are cases in which RandomEMF generates

two objects Reference that are opposites i.e., the target column

of one of them is the source column and vice versa. This

pattern is allowed (you can instantiate it by using the editor

and it does not break any constraint) but it does not make

sense and it is not common in real models.

Data Availability. The replication package together with all

attention heatmaps of the test models for each generator and

for each domain are available at https://github.com/Antolin1/

TCRMG-GNN [30].

V. ASSESSMENT

Our experiments show that our method is able to effectively

address the task to characterizing a model generator in terms of

the realistic property. Nevertheless, we found some limitations.

The main limitation of our approach is that it depends on

the samples of real models. In the experiments, we assumed

that the collected models are a representative sample of real

models. However, they are only a sample of available public

models. This was a threat to validity in our experiments, and

we cannot claim that the evaluated generators are not generally

able to produce realistic models. In practice, our approach will

always be biased by the selection of the set of real models.

Our approach is based on C2ST. Therefore, it depends on

the selected classifier. A very simple classifier would not be

able to distinguish between two distributions even if they

were the same. To mitigate this, we use GNN as classifier.

This neural model has been successfully used in a variety of

complicated graph classification problems [22].

A potential threat to validity of the experiments is the

presence of bugs in the implementation. To prevent this we

have used well-tested libraries like scikit-learn to perform the

density estimation. After the sampling, we compare the density

plot of the new samples with the density plot of the RII .

In the case of rEMF, there is no automatic method to build

the rules so we make them manually. We double checked

and tried several possibilities to ensure the correctness of the

implementation.

There are cases in which the interpretation is difficult to

perform just by inspecting the models in the test set and

the attention weights. Moreover, the interpretation part of our

approach is manual, so it can be time-consuming as one needs

to figure out why the GNN has focused on certain nodes.

As future work we plan to incorporate more sophisticated

interpretation techniques, such as [31] or [32], that can make

the interpretation easier and faster.

Despite these limitations, this work brings a new perspective

to the field of model generators. The presented technique

provides a robust and interpretable method to assess whether

model generators are realistic. Moreover, the key elements of

the approach are also useful contributions on themselves which

can be useful for other purposes, namely:

• A method to interpret a set of models as samples from a

probability distribution over models, combined with the

use C2ST and GNNs to compare realistic and synthetic

models. This can also be applied to other comparison

problems, such as comparing two versions of different

generators and comparing datasets of model (e.g., coming

from different repositories).

• We have also devised a technique to determine which

parameters of a given model generator are more likely to

produce the closest models with respect to a given model

dataset. This is useful to enable the automated tuning of

a model generator.
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TABLE I
RESULTS OF C2ST.

RANDOM ALLOY VIATRA REMF
DOMAIN accuracy p−value accuracy p−value accuracy p−value accuracy p−value
Ecore (|Dtest| = 125) 1 2.544E-29 0.9600 4.078E-25 0.9280 5.326E-22 0.8880 2.050E-18
Yakindu (|Dtest| = 93) 1 2.614E-22 0.9462 3.759E-18 0.9569 6.033E-19 0.7526 5.477E-07
Database (|Dtest| = 125) 0.9920 1.880E-28 0.9200 2.957E-21 0.9680 6.267E-26 0.6880 1.312E-05

a

b

c

a

Fig. 11. Attention heatmap of models generated with EMF random instantiator

a

b

c

Fig. 12. Attention heatmap of models generated with RandomEMF

• Moreover, to the best of our knowledge, this is the

first work that applies GNN to software models. Thus,

our proposed GNN architecture can be adapted to face

other model classification problems (e.g., meta-model

classification [11], [12], UML classification [13], etc).

This paper presents a novel procedure to assess realistic
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model generators. The approach is interpretable since it is

based on the transparent test C2ST and uses a GNN with an

attention mechanism.

VI. RELATED WORK

In this section we review works related to our proposal,

organized in three categories: two-sample tests, assessment of

realistic generators and model generators.

A. Two-sample tests

The aim of these tests is to determine if two sets of samples

come from the same distribution. Traditional examples are

Student t−test and Kolmogorov-Smirnov (KS) test. Although

these tests are widely used, they require strong assumptions

about the data (e.g., normalty assumption) [33]. Furthermore,

they cannot be applied to discrete data (such as graphs or

strings). In this line, the Kernel Two-Sample Test [34] is

a powerful test based on kernels and the Maximum Mean

Discrepancy (MMD). It can be applied to any type of data as

long as you can define a kernel function. On the other hand,

another popular test is the Classifier Two-Sample Test [10].

The idea is that under the assumption of the null hypothesis,

the classification problem of distinguishing between samples

from a distribution and the other is impossible. It can be

proved that this test is a particular case of the Kernel Two-

Sample Test [33]. We use the Classifier Two-Sample Test in

our approach.

B. Assessment of realistic model generators

In [7], the authors propose the use of multidisciplinary

graph metrics to characterize realistic models. The work in [5]

uses these metrics to compare two generators. Given a graph

statistic (degree distribution, multiplex participation coeffi-

cient, pairwise multiplexity, etc), they measure how realistic

a generator is by using the average value of the KS statistic

between each pair of models (A,B) where A belongs to the

set of real models and B to the set of generated models.

This technique has three important shortcomings. Firstly, sum-

marizing an entire graph into a set of graph metrics causes

an information loss. Secondly, a subset of graph statistics

have to be chosen to perform the assessment, but not all

metrics are equally effective to perform this task [7]. Thirdly,

this approach is not interpretable. Moreover, the KS based

measure is not consistent since it does not take into account

the differences inside the set of real models and inside the

set of synthetic models. On the other hand, [8] claims that a

generated model is realistic if its distance (considering graph

metrics and statistics) with respect to its nearest neighbor real

model is less than a threshold. To measure how realistic a

generator is, the authors propose to take the average of all the

distances and the percentage of realistic synthetic models. This

proposed method is not consistent since it can be hacked by

a generator that always generates the same realistic model. In

our approach, the GNN learns the structure of realistic models

by looking for differences between both synthetic and realistic

sets of models, so it is robust to this scenario. An evaluation

metric based on the Maximum Mean Discrepancy [34] is

proposed in [35]. This metric is used to assess generative

models of graphs and it is similar to the one proposed in [5]

(except that it takes into account the differences inside the

groups which makes it a consistent measure).

C. Model generators

Some model generators are based on mapping the meta-

model and constraints to logical formulas and use SAT-solvers

to obtain consistent models. It possible to build this type of

generators using model finders like Formula Framework [36],

Alloy [20] and EMF2CSP [37]. In rule-based generators, the

generation process is guided by rules. Examples of this type of

generators are RandomEMF [21], [38] or [39]. Search-based

generators transform the generation into a search problem.

Examples are VIATRA [1], [40] and [41]. Random models of

graphs (such as Erdös-Rényi [42] or Watss-Strogatz [43]) can

be considered model generators. However, they are mostly for

unlabeled graphs. Since there exist networks whose complex-

ity is beyond these random models, some generative models

of graphs have been proposed. For instance, GraphRNN [35]

uses a two-level recurrent neural network to generate a graph.

GraphVAE [44] uses variational autoencoders. [45] transforms

the generation of a graph into a sequence of actions and uses

a GNN to decide which action should be taken in each step.

These generative models need a training set and they are able

to generate graphs whose properties are close to the training

set. They can be used in model generation because they can

be adapted to generate labeled graphs.

VII. CONCLUSION

In this work we have presented a novel method to assess

whether a given generator is realistic or not. Our approach

is based on training a GNN in the task of distinguishing

between real models and synthetic models. If the classifier

does not achieve a good performance, the generator is realistic.

The proposed method is interpretable and some hints of why

the generator is not realistic can be derived by looking at

the samples in the test set and the attention weights of the

GNN model. On the other hand, the results of applying the

proposed assessment to four state-of-the-art generators in three

different domains show that none of the generators is realistic.

Therefore, more research is needed to obtain realistic model

generators.

As future work, we will try to automate the interpretation of

our approach. Furthermore, we plan to include this approach

in a generator in order to guide the generation process and

obtain realistic models.
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[6] O. Semeráth, R. Farkas, G. Bergmann, and D. Varró, “Diversity of graph
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[16] J. A. H. López and J. S. Cuadrado, “Mar: A structure-based search
engine for models,” in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
2020, pp. 57–67.
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