
21

Automated Reuse of Model Transformations through Typing
Requirements Models

JUAN DE LARA and ESTHER GUERRA, Universidad Autónoma de Madrid (Spain)

DAVIDE DI RUSCIO and JURI DI ROCCO, University of L’Aquila (Italy)

JESÚS SÁNCHEZ CUADRADO, Universidad de Murcia (Spain)

LUDOVICO IOVINO, Gran Sasso Science Institute, L’Aquila (Italy)

ALFONSO PIERANTONIO, University of L’Aquila (Italy)

Model transformations are key elements of model-driven engineering, where they are used to automate the

manipulation of models. However, they are typed with respect to concrete source and target meta-models,

making their reuse for other (even similar) meta-models challenging.

To improve this situation, we propose capturing the typing requirements for reusing a transformation with

other meta-models by the notion of a typing requirements model (TRM). A TRM describes the prerequisites

that a model transformation imposes on the source and target meta-models to obtain a correct typing. The key

observation is that any meta-model pair that satisfies the TRM is a valid reuse context for the transformation

at hand.

A TRM is made of two domain requirement models (DRMs) describing the requirements for the source

and target meta-models, and a compatibility model expressing dependencies between them. We define a no-

tion of refinement between DRMs and see meta-models as a special case of DRM. We provide a catalogue

of valid refinements and describe how to automatically extract a TRM from an ATL transformation. The

approach is supported by our tool TOTEM. We report on two experiments—based on transformations devel-

oped by third parties and meta-model mutation techniques—validating the correctness and completeness of

our TRM extraction procedure and confirming the power of TRMs to encode variability and support flexible

reuse.

CCS Concepts: • Software and its engineering → Model-driven software engineering; Domain spe-

cific languages; Reusability; System modeling languages;

Additional Key Words and Phrases: Model transformation, model transformation reuse, refinement, ATL,

meta-modelling

ACM Reference format:

Juan de Lara, Esther Guerra, Davide di Ruscio, Juri di Rocco, Jesús Sánchez Cuadrado, Ludovico Iovino, and

Alfonso Pierantonio. 2019. Automated Reuse of Model Transformations through Typing Requirements Mod-

els. ACM Trans. Softw. Eng. Methodol. 28, 4, Article 21 (September 2019), 62 pages.

https://doi.org/10.1145/3340108

Authors’ addresses: J. de Lara and E. Guerra, Departamento de Ingeniería Informática, Universidad Autónoma de Madrid,

Campus Cantoblanco 28049 Madrid (Spain); emails: {Juan.deLara, Esther.Guerra}@uam.es; D. di Ruscio, J. di Rocco, and A.

Pierantonio, Dipartimento di Ingegneria Science dell’Informazione e Matematica, Università degli Studi dell’Aquila, Via Ve-

toio, 67100 Coppito – L’Aquila (Italy); emails: {davide.diruscio, juri.dirocco, alfonso.pierantonio}@univaq.it; J. S. Cuadrado,

Facultad de Informática, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); email: jesusc@um.es; L.

Iovino, Gran Sasso Science Institute, Via F.Crispi, 67100 L’Aquila (Italy); email: ludovico.iovino@gssi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1049-331X/2019/09-ART21 $15.00

https://doi.org/10.1145/3340108

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

https://doi.org/10.1145/3340108
mailto:permissions@acm.org
https://doi.org/10.1145/3340108

21:2 J. de Lara et al.

1 INTRODUCTION

Model-driven engineering (MDE) employs models as the main assets during the software develop-
ment life cycle (Schmidt 2006; Whittle et al. 2014). Models are typically constructed using domain-
specific languages (DSLs) tailored to a particular domain. In MDE, the abstract syntax of a DSL
is specified through a meta-model, which describes the structure of the models considered valid.
Therefore, meta-models proliferate in MDE as a means of formalising application domains (van
Deursen et al. 2000). Sometimes, meta-models are variants of known languages such as state-
machines or workflow languages (Pescador et al. 2015), for which services, like transformations,
already exist.

Model transformations are key to MDE, because they leverage automation in model manipu-
lation. However, MDE frequently relies on domain-specific modelling, which fosters the creation
of meta-models for the domain at hand, even on a per-project basis. Unfortunately, in general, it
is not possible to reuse a transformation developed for a meta-model with a different one, even if
they are similar. For example, the ATL zoo (an open repository of transformations) contains dif-
ferent transformations to calculate metrics for UML class diagrams and for KM3 models1 (Sánchez
Cuadrado et al. 2014a). Both transformations provide essentially the same functionality but were
created separately, because they apply to different meta-models, even though UML class diagrams
and KM3 share many concepts. With proper reuse techniques, just one transformation would be
applicable to both languages and to other similar ones. Developing non-trivial transformations is
typically complex, time-consuming, and error-prone (Troya et al. 2018; Sánchez Cuadrado et al.
2017). Hence, mechanisms to enhance transformation reusability are needed (Basciani et al. 2014;
Kusel et al. 2015; Bruel et al. 2018) to scale MDE techniques to industrial use.

Model transformations are typed with respect to source and target meta-models. Therefore,
reusing transformations is difficult, because they are not immediately applicable to other meta-
models different from the ones they were initially conceived for. In previous works, we proposed
transformation reuse based on concepts to express meta-model requirements (de Lara and Guerra
2011). Concepts can be bound to meta-models, which permits obtaining a new version of the trans-
formation adapted to the bound meta-models. However, concepts have limitations: on the one
hand, they have to be manually created, and on the other, they present limited expressiveness to
describe variability (e.g., when a required field can be typed according to a set of allowed types).
Other approaches extract effective meta-models (Sen et al. 2009) by pruning unused typing informa-
tion from the source/target meta-models according to the syntactical needs of the transformation.
Similarly to concepts, requirements based on effective meta-models have limited expressiveness,
although their computation can be partly automated.

Contributions. In this article, we propose a novel automated approach to model transformation
reuse that relies on a transformation typing requirements model (TRM) to express the syntacti-
cal needs of a transformation with respect to its source and target domains. This way, the TRM
becomes the reuse interface for a model-to-model transformation. A TRM contains two domain
requirement models (DRMs) declaring requirements to be satisfied by the source and target meta-
models over which the transformation is to be reused. DRMs support variability regarding the type
for attributes, the allowed target for references, the inheritance relations between classes, or the
existence of classes with certain features but for which the class name is irrelevant. In addition, the
TRM captures the dependencies between the two DRMs by means of a feature model (Kang et al.
1990). In this way, a transformation can be reused with any pair of meta-models that conform to
the TRM. We show that this conformance relation can be expressed as a refinement relation and

1KM3 is a meta-modelling notation similar to class diagrams (Jouault and Bézivin 2006).

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:3

that meta-models can be seen as a special case of DRM. Moreover, we identify refinement opera-
tions useful to constrain a TRM while ensuring that the original transformation remains applicable
to the meta-models conforming to the refined TRM.

The advantages of TRMs with respect to existing techniques for transformation reuse are the
following: (i) TRMs can be automatically extracted from transformations by means of a static
analysis that is agnostic of the declared meta-models (i.e., source and target meta-models are not
needed to define TRMs); (ii) TRMs are more expressive than current techniques to represent re-
quirements (e.g., they allow expressing variability), leading to improved reuse possibilities; (iii) our
method is able to extract the dependencies cross-linking requirements over the source and target
meta-models, and express those in terms of feature models.

TRMs can be employed with any transformation language, but we illustrate their use for the
Atlas Transformation Language (ATL) (Jouault et al. 2008), one of the most widely used transfor-
mation languages nowadays. For this purpose, we provide an algorithm to automatically build a
TRM from an ATL transformation so the transformation can be reused as is with any pair of meta-
models conforming to the extracted TRM. The extraction of a TRM from an ATL transformation is
supported by our tool TOTEM,2 which also permits graphical visualization and refinement of the
extracted TRMs and conformance checking of meta-models with respect to TRMs.

Finally, we report on an evaluation of our approach with the aim of answering the following
research questions:

RQ1: Is the TRM extraction mechanism from ATL transformations correct and complete?
RQ2: To what extent does the variability encoded in the extracted TRMs enable transformation
reuse?

To this end, we have considered seven ATL transformations developed by third parties. In partic-
ular, we have extracted the TRM of these transformations and have built more than 26K variants of
their source and target meta-models using model mutation. Then, we have empirically assessed the
correctness and completeness of our method by measuring the degree in which the transformation
is correctly typed with meta-models conformant to the TRM, and incorrectly with meta-models
not conformant to the TRM. The obtained results are very positive, confirming that TRMs are a
suitable technique to automate transformation reuse in MDE. Using the extracted TRMs, a sec-
ond experiment evaluates their power to encode variability and support flexible reuse. Overall, we
found that TRM constructs such as anonymous classes and untyped features contribute to express
variability in comparison to plain meta-models, while the extracted compatibility models were
able to capture hundreds of thousands of valid feature combinations (i.e., of reuse contexts).

This is an extended version of our preliminary work in de Lara et al. (2017). Specifically, we have
extended the formal theory of our approach, providing proofs of refinement correctness supported
by Alloy (Jackson 2006).3 We have recast meta-models as special cases of DRMs and defined a
catalogue of formally proven correct refinements. We have improved our tool to support refining
TRMs and visualize the dependencies of source and target DRMs as a feature model. We have
also extended the evaluation with new transformations, whose result strengthens the confidence
in our method, and report on an additional experiment evaluating the power of TRMs to express
variability.

Article organization. Section 2 introduces the ATL model transformation language and a running
example, and Section 3 discusses applicability scenarios of our reuse approach. Next, Section 4

2Tool and source code available at http://github.com/MDEGroup/totem.
3Alloy specifications available at http://miso.es/trms/.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://github.com/MDEGroup/totem
http://miso.es/trms/

21:4 J. de Lara et al.

Fig. 1. Fragment of a sample ATL transformation (left) and its source and target meta-models (right).

defines DRMs, and Section 5 introduces the notion of refinement, proposing a catalogue. Section 6
presents TRMs and extends the notions of refinement for them. Then, Section 7 explains how to
extract TRMs from ATL transformations and provides hints on how to generalize the procedure to
other languages. Section 8 introduces our tool TOTEM. Section 9 validates the approach over a set
of transformations developed by third parties. Finally, Section 10 compares with related work, and
Section 11 draws some conclusions and lines for future work. The appendix contains the proofs of
the main results presented in the article.

2 BACKGROUND AND RUNNING EXAMPLE

Model transformations are the main mechanism for achieving automation in MDE (Sendall and
Kozaczynski 2003), whether it be code generation, traceability, or model management. Transfor-
mations are typically used to generate new models starting from existing ones, and they are often
used in toolchains that automate complex tasks within modelling environments (Di Ruscio et al.
2012; Basciani et al. 2014). If we restrict our attention to unidirectional transformations, we cannot
neglect one of the most prominent transformation languages represented by ATL (Jouault et al.
2008).

ATL provides a mixture of declarative and imperative constructs to develop model-to-model
transformations, being the source model read-only, and the target model write-only. The listing
to the left of Figure 1 shows our running example, based on a transformation from the ATL Zoo4

(a public repository of model transformations written in ATL). Given a piece of Java code repre-
sented as a model, the transformation creates a table with the number of times each Java method
is called from any declared method. The transformation is defined by a module specification con-
sisting of a header section (lines 1–2), a helper (lines 4–8), and transformation rules (lines 10–27).
The header specifies the source and target models of the transformation together with their corre-
sponding meta-models. This way, the JavaSource2Table module is a transformation that generates

4http://www.eclipse.org/atl/atlTransformations/#Java2Table.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://www.eclipse.org/atl/atlTransformations/#Java2Table

Typing Requirements Models 21:5

a target model conforming to the Table meta-model from a source JavaSource model (see line 2).
For convenience, Figure 1 shows both involved meta-models to the right.

Helpers and rules are the main ATL constructs to specify the transformation behavior. The
source pattern of rules (e.g., line 11) consists of types from the source meta-model. Thus, a rule
gets applied for any instance of the given source types that satisfies the optional OCL (Object
Management Group 2005) rule guard. Each rule also specifies a target pattern (e.g., line 12) indi-
cating the target objects to be created and a set of bindings to initialize their features (attributes
and references). In case of references, a binding may assign them objects of the source model. In
that case, a binding resolution mechanism takes place, which assigns to the reference the target
objects created by some rule from the specified source objects. For example, the binding rows←
s.methods in line 12 initializes the reference rows of the Table object with the target objects cre-
ated by rule MethodDefinition from the source elements (of type MethodDefinition) referred by
s.methods.

The rule MethodDefinition (lines 15–21) creates a target Row from each source MethodDefini-
tion. The binding in this rule assigns to reference cells a sequence of objects created by an OCL
expression. This expression selects all source MethodDefinition objects and applies on them the
lazy rule DataCells. Differently from matched rules such as Table and MethodDefinition, lazy rules
are executed only when explicitly called and use the received parameters. The DataCells lazy rule
(lines 23–27) takes two MethodDefinition objects as input and generates a target Cell containing
a number calculated by the helper computeContent. Helpers are auxiliary operations that permit
defining complex model queries using OCL. In particular, the computeContent helper (lines 4–8)
returns a string with the number of occurrences of the received MethodDefinition object.

The transformation so defined can be applied to instances of the specified meta-models. In the
following section, we present scenarios that require reusing a transformation for meta-models
different from the specified ones and outline our proposal to tackle these scenarios.

3 MOTIVATING SCENARIOS

Model transformations can be complex and, therefore, they require development techniques akin
to traditional software artifacts. Consequently, for increasing both the development productivity
and the model transformation quality, advanced reuse mechanisms are necessary (Chechik et al.
2016). Even though over the past years there have been several proposals to deal with the problem
of model transformation reuse (Bruel et al. 2018), it is a problem still far from being satisfactorily
solved (Kusel et al. 2015). In this article, we describe mechanisms to cope with the following two
reuse scenarios (cf. Figure 2):

—Transformation reuse via meta-model querying and synthesis: Instead of building a new
transformation from scratch, a more cost-effective solution is to reuse an existing trans-
formation from a public repository such as GitHub or Bitbucket. Unfortunately, such
repositories are not specialized in managing the dependencies among transformations and
meta-models. Thus, it might happen that the developer wants to reuse an available trans-
formation T : MMs → MMt , but it is not clear for which other meta-models T is reusable.
It might even be the case that the definitions of MMs and MMt are missing (e.g., a process
that is mining a software repository). To be able to reuse the transformation, it is important
to extract the requirements expected from potential meta-models to understand whether
it would work with other alternative meta-models. Hence, in this scenario illustrated in
Figure 2(a), the developer retrieves from a repository a set of meta-model pairs that can
be used instead of MMs and MMt to execute the transformation T . Alternatively, such a
meta-model pair could be synthesized on purpose.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:6 J. de Lara et al.

Fig. 2. Motivating scenarios for transformation reuse.

Fig. 3. Proposed approach to support the scenario transformation reuse via meta-model querying and

synthesis.

—Transformation reuse via transformation querying: In this scenario, illustrated by Figure 2(b),
a developer looks in a repository for transformations that fulfill a set of given requirements.
The typical example is a developer that has built a meta-model and now wants to collect ex-
isting transformations applicable to it. To eventually select one among all applicable trans-
formations, the developer may perform several searches, each time refining the previous
requirements to gradually discard transformations from the retrieved set.

In the remainder of this section, we outline our approach to tackle these two scenarios.

3.1 Transformation Reuse via Meta-model Querying and Synthesis

Model transformations are typed with respect to source and target meta-models. However, these
meta-models might not be available (e.g., for transformations found in code repositories), or we
might want to reuse a transformation with meta-models different from the ones the transforma-
tion was designed for (Bruel et al. 2018). To tackle both cases, we propose the approach depicted
in Figure 3. Given an existing transformationT , we extract its so-called typing requirements model
(TRM, see label), which describes the structural requirements that meta-models have to fulfill
to be used as source or target of the transformation. A TRM consists of three parts: the require-
ments for the source and target meta-models—named source and target domain requirement models
(DRMs)—and a compatibility model specifying dependencies between them. The transformation
T can be reused with any meta-model satisfying the TRM, and not just with the ones used for its
definition. Please note that in general, a transformation may involve more than two models. For

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:7

simplicity, we restrict to the case of transformations between two meta-models, but our approach
could be applicable to transformations involving more meta-models as well.

In this scenario, the TRM can be used to query a meta-model repository to find meta-model

pairs conforming to the TRM (see). In this article, we provide a conformance test between
meta-model pairs and TRMs.5 In this way, any meta-model pair 〈MMs ,MMt 〉 conforming to the
TRM can be used as source/target of the transformation. Moreover, the TRM can also be used to

generate suitable meta-model pairs (see), so the transformation can be executed on instances
of them (see). This last possibility is useful when no meta-model is available, but the engineer
wants to execute the transformation to understand its behavior.

As an example, from rule Table in lines 10–13 of Listing 1, our approach would extract a TRM
consisting of two DRMs and one compatibility model specifying the following requirements,
among others detailed later in the article:

—Source DRM: The meta-models that can be sources of the transformation must contain a class
named ClassDeclaration due to the source input pattern of rule Table. As the rule defines
the binding rows← s.methods, ClassDeclaration must have a feature named methods. The
transformation does not provide enough information to statically identify if this feature is a
reference or an attribute. Thus, the DRM represents this variability point and permits both
possibilities;

—Target DRM: The meta-models that can be target of the transformation must contain a class
Table with a feature rows, requirements that are derived from the output pattern and bind-
ing in rule Table. Again, it is not possible to determine whether rows is an attribute or a
reference. In any case, it has to be compatible with the type of feature s.methods, because
the binding assigns one to the other. This dependency justifies the need for compatibility
models as discussed below;

—Compatibility model: This model declares the dependencies between the source and target
DRMs. In this example, it establishes a dependency between the types of features rows in
class Table and methods in class ClassDeclaration. If the developer resolves the variability
related to feature methods, e.g., by indicating that it is a string attribute, then rows needs
to have the same type.

Sections 4–6 will provide the definitions of DRM, compatibility model, and TRM, while Section 7
will detail the algorithm to extract a TRM from an ATL transformation.

3.2 Transformation Reuse via Transformation Querying

While the previous scenario implies the automated extraction of TRMs from existing transforma-
tions, developers can also define TRMs by hand with the aim of querying existing repositories
of reusable transformations (see in Figure 4). In this case, the TRM would be the input to a
discovery mechanism that selects all transformations compatible with the TRM (see). Intu-
itively, a model transformationT : MMs → MMt is compatible with a TRM if the meta-model pair
〈MMs ,MMt 〉 conforms to the DRMs in the TRM and satisfies the conditions in its compatibility

model (see). The result of this exploration is a set of transformations compatible with the TRM.
If this set is too large to be inspected by the developer, the TRM can be refined by adding more re-
quirements and thus reducing the number of candidate transformations (see). This refinement
operation induces a hierarchy of TRMs, as we will discuss in Sections 5 and 6.

5Actually, we provide a notion of refinement between TRMs and consider a meta-model pair as a special case of TRM.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:8 J. de Lara et al.

Fig. 4. Proposed approach to support the scenario transformation reuse via transformation querying.

The described scenario starts with a general TRM that is used to find transformationsTi whose

input and output meta-models are more specific than the TRM (variant in Figure 4). Alterna-
tively, we may wish to find transformations Ti whose TRM is more general than a given input
meta-model pair. In such a case, the input TRM would consist of a pair of meta-models with

no variability and no compatibility model (variant in Figure 4), and the result would con-
sist of all transformations that can be reused with the given meta-model pair. As a meta-model
pair is a special case of TRM, the two variants of this scenario amount to either extracting the
most specific reuse interface of a transformation (the meta-model pair) and then checking the ex-
tracted TRM against a more general input TRM; or extracting the most abstract reuse interface of
a transformation (the TRM) and then checking the extracted TRM against a more specific input
TRM.

In both scenarios, we assume a syntactical approach to reuse; that is, we look for compatible
meta-models or transformations that together are syntactically correct. However, in some cases, it
is useful to express expectations on the semantics of the source and target languages—e.g., using
transformation intents (Salay et al. 2016)—to discard semantically meaningless reuse attempts. We
leave the investigation of the combination of TRMs and intents for future work.

4 DOMAIN REQUIREMENTS MODELS

Next, we introduce the notion of domain requirement model (DRM) as an abstraction mechanism to
decouple model operations from concrete meta-models. A DRM describes the typing requirements
that a given model operation (a transformation) needs from the meta-model it is typed on.

We start by providing an overview of the rationale and use of DRMs in Section 4.1. This overview
will be used to structure the following sections. Then, Section 4.2 defines DRMs.

4.1 Using DRMs: Overview

The left of Figure 5 depicts a schema of the usage of DRMs for transformation reuse. Given a model
operation q defined over a meta-model MM , we derive a DRM that: (i) slices the portion of MM
required by q and (ii) abstracts the elements of the slice to the minimum typing requirements from
the point of view of q. A (possibly infinite) set of meta-models, including MM , are said to refine
this DRM. While q was originally defined over MM , it can now be seen as defined over the DRM

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:9

Fig. 5. DRMs as abstractions for model operations (left). Correctness property for DRMs (right).

and applicable to every meta-model refining the DRM. We will show how to extract a DRM given
an ATL model transformation in Section 7.

We say that operation q can be used as if defined over the DRM (denoted qDRM), as for every
model M typed over MM , we can find a typing type∗ from M to the DRM such that qDRM (M) =
q(M). This is so any instance model M of a meta-model MM that conforms to a DRM can be typed
over the DRM. The existence of this typing type∗, which makes the triangle (1) in the left of Figure 5
commute, provides the semantics of our notion of refinement between a meta-model and a DRM.

The right part of Figure 5 depicts the correctness property that is expected from the DRM of an
operation q; namely, q is well-defined over any meta-model MM ′ refining the DRM.

In the remainder of this section, we introduce the notion of DRM. Refinement between DRMs
(relation refinedBy in Figure 5) is presented in Section 5.1. Section 5.2 defines extra conditions
enabling the composition of atomic refinements and provides a catalogue of refinement operations.
This catalogue is useful to developers aiming at transformation reuse via querying (Figure 4) to
increasingly refine an initial DRM. Then, in Section 5.3, we make the observation that meta-models
can be seen as a special case of DRM. Finally, Section 5.4 gives a semantics of refinement in terms
of instantiation and proves the existence of the type∗ relation in the diagram of Figure 5.

4.2 Defining DRMs

We use the meta-model in Figure 6 to represent structural requirements for single meta-models.
Its instances, called DRMs, resemble meta-models, but some decisions can be left open if they are
irrelevant for the transformation at hand, like class names, attribute types, the target of references,
or the cardinality of features. This way, a potentially infinite set of meta-models may refine a DRM.

We consider two kinds of classes: named and anonymous. While the former have a name (which
is assumed unique, cf. constraint i6), the name of the latter is irrelevant, meaning that the class is
allowed to have any name. Classes have a flag isAbstract with a three-valued enum type UBoolean,
which allows stating whether a class is abstract, concrete, or any of both. A class defines a col-
lection of features. The flag mandatoryAllowed permits a class to have more mandatory features
than those indicated in collection feats, while there is no constraint on the number of extra non-
mandatory features. A class may defer the conformance checking to all its concrete subclasses,
which is indicated by the subsAllowed flag. A class may be required to inherit (directly or indi-
rectly) from another class, and this is specified through relation ancs. Conversely, a class is for-
bidden to inherit from those in relation antiancs. More precisely, if B ∈ A.antiancs, then we reject
meta-models in which B is an ancestor of A, or both share a common (direct or indirect) subclass.
The meta-model invariants on Class ensure that ancs is acyclic; and there is no class with two

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:10 J. de Lara et al.

Fig. 6. Meta-model to define domain requirements models.

ancestor classes one of which is antiancestor of the other. The latter constraint also entails that
ancs and antiancs are disjoint, and antiancs irreflexive.

Features have minimum and maximum cardinality, which can be either a number (class Num-
ber), an indication of many cardinality (Many), or we might allow any cardinality (AnyCardinal-
ity). If the maximum is many, features can also indicate whether they are ordered or unique using
UBoolean values. For the case of a number, it can be specified whether the cardinality is allowed
to be lower (allowLess) or higher (allowMore) than this number. Features always have a name,
and optionally, they may have a set of compatible types, which can be References, Attributes, or
both.

Attributes can specify their data type, or it can be left open using the AnyDT class.
References can indicate the admissible compatible target types (collection targets), some of

which can be anonymous classes. The flag open permits defining whether a reference has open or
closed semantics, being the difference that open references can have a larger set of targets than
specified in collection targets, while closed ones can have less targets. This flag is useful to distin-
guish when a reference is being read (closed) or written (open) by the transformation. We require
each compatible Reference of a given Feature to have the same semantics (invariant i4 in Figure 6).
Section 5.4 will provide more details on the semantics of open/closed references.

We have adopted a specific concrete syntax to denote the different characteristics of DRMs
(see, e.g., Figure 7). Specifically, the upper-right corner of a class shows whether (i) it can be either

abstract or concrete (), only abstract (), or only concrete (); (ii) it can defer the conformance
checking to its subclasses (encircled inheritance-like triangle); and (iii) it forbids extra mandatory
features (crossed-out circle). The antiancestor relation is shown as a crossed-out red inheritance
relation. The arrowhead of references is filled and closed for closed references and open for open
references.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:11

Fig. 7. (a) Source DRM of Listing 1. (b) Target DRM of Listing 1. (c) Multiple compatible reference targets.

Example. Figure 7 shows three examples of DRM, instances of the meta-model in Figure 6 us-
ing the described concrete syntax. DRM (a) has been extracted from the source domain of the
transformation in Listing 1 (Section 7 will describe the extraction procedure). The DRM requires
two classes named ClassDeclaration and MethodDefinition that cannot inherit from each other.
The latter class should have an attribute name whose type can be any, and two references named
class and invocations to anonymous classes (i.e., their name is unimportant). The lower bound of
invocations can be any. In its turn, ClassDeclaration requires a feature methods that can be an
attribute or a reference (we use a “?” prefix to denote that both possibilities are allowed). The DRM
also demands four anonymous classes for which only certain features are required. These classes
could be matched by the same or different classes in concrete meta-models, or even by the same
classes conforming to the named classes. All references are closed, as the source domain of an ATL
transformation is read-only.

DRM (b) has been extracted from the target domain of Listing 1. It requires three concrete named
classes. Class Table requires a feature rows, which can be an attribute or a reference. As Section 6
will show, the transformation requires the types of Table.rows and ClassDeclaration.methods in
DRM (a) to be correlated, for which we will introduce a compatibility model. None of the classes
are allowed to have extra mandatory features, which is represented with a crossed-out circle. The
rationale is that, as the transformation creates objects of these classes, should the classes have more
mandatory attributes, the transformation will not initialize them, producing ill-formed models.
Reference Row.cells is open, because the target domain of an ATL transformation is write-only.

DRM (c) shows that a reference can be required to be compatible with several target types. In a
concrete meta-model, this could be realized by reference members targeting a (possibly indirect)
common superclass of MethodDefinition and Attribute.

In subsequent sections, we use a semi-formal treatment of DRMs. Hence, we represent them
using an algebraic structure derived from the meta-model in Figure 6. In the following, we use
Str to denote the set of all possible strings, Bool = {true, f alse} for the possible Boolean values,
UBoolean = Bool ∪ {any} for the three-valued Boolean values, Numeric = {Real , Inteдer } for the
supported numeric types, and DataType = {AnyDT , Strinд,Boolean,Numeric,Real , Inteдer } for
the supported data types.

Definition 4.1 (DRM). A domain requirements model (DRM) is a tuple

RM = 〈NC, AC, F , R, A, Number , Many,
ancs, antiancs, f eats, tarдets, types,
name, mandatoryAllowed, subsAllowed, isAbstract ,
min, max , value, allowLess, allowMore, dtype, open〉

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:12 J. de Lara et al.

Fig. 8. Formal encoding of an excerpt of the DRM in Figure 7(a).

made of:

—Sets NC of named classes, and AC of anonymous classes. We define the set C = NC ∪AC .
—Sets F of features, R of reference types, and A of attribute types. We define the set FT =
R ∪A.

—Sets Number of numeric cardinalities, and Many of multiple cardinalities. We define the set
Card = Number ∪Many ∪ {AnyCardinality}.

—Relationsancs ⊆ C ×C;antiancs ⊆ C ×C; f eats ⊆ C × F ; tarдets ⊆ R ×C; and types ⊆ F ×
FT . Relation ancs must be acyclic, and relations f eats and types are restricted to be injective
(left definite).

—Functions name : NC ∪ F → Str ;mandatoryAllowed, subsAllowed : C → Bool ; isAbstract :
C → UBoolean; min,max : F → Card ; value : Number → N0; allowLess,allowMore :
Number → Bool ; dtype : A→ DataType; and open : R → Bool . We demand name |N C to be
injective.

such that the following conditions hold:

(1) ∀c ∈ C,∀c1, c2 ∈ c .ancs∗ • c1 � c2.antiancs
+

(2) ∀f ∈ F •min(f) � Many
(3) ∀f ∈ F ,∀r1, r2 ∈ f .types • {r1, r2} ⊆ R ⇒ r1.open = r2.open.

The previous definition omits enums and the ordered and uniqueness features of Many for
simplicity. Analogously to the meta-model of Figure 6, the definition requires ancs to be acyclic (as
invariant i1 in the meta-model) while conditions (1–3) in the definition are equivalent to invariants
i2, i3, and i4 in the meta-model. Condition 1 implies that antiancs is irreflexive and does not overlap
with ancs. The injectivity of name |N C (the restriction of function name to NC) results in unique
names for named classes (as required by constraint i6 in the meta-model).

Given a tuple RM , we will use RMC to refer to set C , and similarly for the other sets. In the
following, we use an “object-oriented” notation for functions and relations. For example, given an
element c ∈ NC , we use c .name instead of name (c). Moreover, given a relation or a function, we
use + to denote its transitive closure, and ∗ for its reflexive-transitive closure. For example, c .ancs∗

denotes the set of all direct and indirect ancestors of c , and c itself. The encoding of all definitions
and theorems in the article using Alloy is available at http://miso.es/trms.

Example. Figure 8 shows the encoding of a DRM RM using Definition 4.1. The DRM has one
named class (set NC), one anonymous class (set AC), and three features (f1, f2 and f3 in set
F). Among the three features, f3 has reference type (set R), while f1 and f2 have attribute type
(set A).

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://miso.es/trms

Typing Requirements Models 21:13

5 REFINEMENT, COMPOSITION AND SEMANTICS OF DOMAIN

REQUIREMENT MODELS

Once we have defined DRMs, next we introduce a refinement relation between them (Section 5.1)
and then strengthen this relation to make it composable, presenting a catalogue of useful re-
finements (Section 5.2). Then, we show that meta-models can be seen as a special kind of DRM
(Section 5.3) and finish presenting a semantics of refinement in terms of typing (Section 5.4).

5.1 Refinement of Domain Requirement Models

Next, we introduce a notion of refinement between DRMs. This is useful to understand the modi-
fications that can be done to a DRM to obtain a more refined DRM, as well as to be able to narrow
the (possibly infinite) set of meta-model pairs that can be used with a given transformation, as the
scenario described in Section 3.2 requires (cf. Figure 4).

Refinement between DRMs is a special kind of mapping re f : RM → RM ′ from a DRM RM to a
more refined one RM ′. The more general notion of mapping between two DRMs maps classes to
classes, features to features, references to references, and attributes to attributes. We consider two
kinds of mappings for classes, mC and mS , which will impose different conditions in refinement
mappings. Classes must be mapped using either one of the mappings, and somC ∪mS (the union
of both mappings) is a total function. Features should be mapped only if they belong to classes
mapped through mC . The mappings for references (mR) and attributes (mA) are also partial. This
is necessary, as a feature in RM may declare several feature types, and we do not demand all of
them to be mapped, but finding just a compatible one in RM ′ is enough.

Definition 5.1 (DRM Mapping). A DRM mappingm : RM → RM ′ from a DRM RM to a DRM RM ′

is a tuplem = 〈mC ,mS ,mF ,mR ,mA〉 made of:

—Two partial functionsmC ,mS : RMC → RM ′C mapping classes to classes, such that:

(1) their unionmCS =mC ∪mS is a total function;
(2) ∀C ∈ RMC • mS (C) is de f ined ⇒ C .subsAllowed = true ∧ ∀Cs ∈ C .subs •

mS (Cs) is de f ined .

—A partial functionmF : RMF → RM ′F mapping features to features, where:

(1) ∀C ∈ RMC • mC (C) is de f ined ⇒ ∀f ∈ C . f eats •mF (f) is de f ined .

—A partial functionmR : RMR → RM ′R mapping reference types to reference types.
—A partial functionmA : RMA → RM ′A mapping attribute types to attribute types.

As we will see in Definition 5.2, the mappingmC will be used to check refinement of a classC by
the mapped classmC (C), whilemS will be used to check refinement of a class C by each concrete
subclass ofmS (C). The latter checking requires that C permits subclasses (C .subsAllowed = true)
and that all subclasses of C are mapped via mS (we use predicate subs to denote the set of direct
and indirect subclasses). Classes mapped viamC can have any value for subsAllowed .

Example. Figure 9 shows a DRM mapping example. Function mS maps class MethodDefinition
in RM to Method in RM ′, while functionmC maps the anonymous class in RM to the named class
ClassDeclaration in RM ′. SincemCS (the union ofmC andmS) must be a total function, the domain
ofmS andmC cannot overlap (as we would obtain a relation instead of a function), and all classes
in RM must be mapped either bymS ormC (otherwise,mCS would not be total). A DRM mapping is
composed of the mapping of both features (mF) and feature types (mA for attribute data types, and
mR for reference targets). In the figure, we depict mF as links between the names of the mapped
features,mA as links between attribute datatypes, whilemR is empty in this case.mF only needs to

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:14 J. de Lara et al.

Fig. 9. DRM mapping example.

map features of classes that have been mapped throughmC (i.e., feature name from the anonymous
class in the example). This is so classes mapped via mS will be checked structurally against a set
of subclasses (in the figure, MethodDefinition against PublicMethod and InnerMethod), and we
want to avoid mapping features multiple times (reference class in RM to both references class in
RM ′).

A DRM refinement is a special kind of mapping that satisfies a number of conditions, as we
show in the next definition.

Definition 5.2 (DRM Refinement). Given two DRMs RM and RM ′, a DRM mapping m =
〈mC ,mS ,mF ,mR ,mA〉 : RM → RM ′ is a refinement if the following predicate holds:

re f inement (m) �
name_re f inement (m) ∧ abstract_re f inement (m) ∧
ancs_preservation(m) ∧ antiancs_preservation(m) ∧
mand_allowed_re f inement (m) ∧ f eature_re f inement (m) ∧
f eature_type_commut (m) ∧ f eature_type_re f inement (m) ∧
subs_re f inement (m)

Ifm : RM → RM ′ is a DRM refinement, then we say that RM ′ refines, or is a refinement of, RM .

The definition relies on nine predicates that we introduce next. In all of them, we assume that a
DRM mappingm = 〈mC ,mS ,mF ,mR ,mA〉 : RM → RM ′ between DRMs RM and RM ′ is given. The
predicates are defined over the DRM structure presented in Definition 4.1.

� class name refinement: this predicate requires that each named class C in RM that is mapped
throughmC is mapped to a class in RM ′ with the same name. The name of the class an anonymous
class is mapped to does not matter.

Example. The mapping m in Figure 9 satisfies name_re f inement (m), because the only class for
whichmC is defined is anonymous, and hence, it can be mapped to a class with any name.

� abstractness refinement: this predicate requires mapping abstract classes to abstract classes, and
concrete classes to concrete ones. Classes where isAbstract is any can be mapped to either abstract
or concrete classes.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:15

Fig. 10. DRM mapping example illustrating ancestor preservation.

Example. The mappingm in Figure 9 satisfies abstract_re f inement (m), as both classes in RM have
any as required abstractness.

� ancestor preservation: this predicate requires preserving the structure of the ancestor relation-
ship: if Ca is an ancestor of the class C , then Ca should be mapped to an ancestor of the class C is
mapped to, or be this latter class.

Example. The mapping in Figure 10 satisfies the predicate ancs_preservation, because class
MethodDefinition is an ancestor of PublicMethod in RM , and this relation is preserved by mC .
The predicate would allow mapping both classes into the same one as well.

� antiancestor preservation: similar to the previous predicate, this one demands preserving any
forbidden ancestor relationship: if Ca cannot be an ancestor of C (i.e., Ca ∈ C .antiancs+), then Ca

should be mapped to an antiancestor of the class mapped to C .

The antiancs relation enables a fine-grain control of the types of objects that transformation
rules can match, as a rule from class Ca , where Ca ∈ C .antiancs+, is applicable to Ca objects but
not toC objects. If a refinement maps classesCa andC toC ′a andC ′ such thatC ′a is an ancestor of
C ′, the rule would become applicable to the instances of bothC ′a andC ′, hence not preserving the
rule behavior. This predicate avoids this problem. As Section 7 will show, DRMs extracted from
ATL for source meta-models typically contain antiancs relations between the source classes of the
rules.

Example. Figure 11 shows a mapping that violates the predicate antiancs_preservation. It
does not preserve the antiancs relation, because MethodDefinition in RM ′ is an ancestor of

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:16 J. de Lara et al.

Fig. 11. Mapping violating antiancestor preservation.

Fig. 12. DRM mapping example illustrating a violation of mandatory features refinement.

FieldDeclaration and not an antiancestor, as required. If this mapping were allowed, a rule for
MethodDefinition would become unexpectedly applicable on FieldDeclaration. This predicate for-
bids this undesirable situation.

� mandatory features refinement: if a class C does not permit more mandatory features than the
ones it already defines or inherits (i.e., C .mandatoryAllowed = false), then this predicate ensures
that the class C is mapped to has the same number of mandatory features as C . A feature is
mandatory if its minimum cardinality is bigger than 0. This condition only applies to classes
mapped bymC .

with

isMand (f : Feature) � f .min ∈ Number∧
f .min.value > 0 ∧ f .min.allowLess = f alse

Typically, for ATL, classes in DRMs of source meta-models have mandatoryAllowed =
true as their objects are read-only, while classes in DRMs of target meta-models have
mandatoryAllowed = f alse as their objects are write-only. If we allowed target classes with more
mandatory features than those specified in the DRM, the transformation may produce ill-formed
models.

Example. Figure 12 shows a DRM mapping that violates the predicatemand_allowed_refinement.
The reason is that class Table in RM has no mandatory features and does not allow any (indicated
by the crossed-out circle); however, class Table in RM ′ has one mandatory feature (name) inherited
from NamedElement.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:17

� feature refinement: this predicate requires each feature defined in a class C to be mapped to
an equally named feature owned or inherited by the class C is mapped to, provided that C is
mapped throughmC . The cardinality interval of the mapped feature in RM ′ should be the same or
a refinement of the cardinality interval of C’s feature, if the latter cardinality is specified.

with

re f inescard (f , f ′ : Feature) � re f inesmin (f .min, f ′.min) ∧ re f inesmax (f .max , f ′.max)

re f inesmin (c, c ′ : Card) � c = AnyCardinality ∨ re f inesnum (c, c ′)

re f inesmax (c, c ′ : Card) � c = AnyCardinality ∨ re f inesnum (c, c ′) ∨ re f inesmany (c, c ′)

re f inesnum (c, c ′ : Card) � c ∈ Number ∧
((c ′ ∈ Number ∧

(c .value = c ′.value ∨
(c .value > c ′.value ∧ c .allowLess = true) ∨
(c .value < c ′.value ∧ c .allowMore = true))) ∨

(c ′ ∈ Many ∧ c .allowMore = true))

re f inesmany (c, c ′ : Card) � c ∈ Many ∧ c ′ ∈ Many

Predicate re f inescard receives two features—f and f ′—and yields true if the minimum and
maximum cardinality of f ′ refine those of f . This is so if either the minimum (resp. maximum)
cardinality of f is AnyCardinality, if both f and f ′ have the same minimum (resp. maximum)
cardinality, or if the minimum (resp. maximum) cardinality of f ′ is different but it respects the
flags of f allowLess (i.e., it can be smaller) and allowMore (i.e., it can be bigger). Checking the
maximum cardinality admits a fourth possibility that arises when f has cardinality Many.

Example. Given a feature f with cardinality 1..10 and flags allowLess = f alse and allowMore =
true for both the minimum and maximum cardinality values, predicate f eature_re f inement al-
lows its mapping to a feature f ′ with the same name and cardinalities 1..10, 1..∗, or 2..20, but not
to a feature with cardinality 1..1 or 0..∗.
� feature type commutativity: this is a well-formedness condition for the partial mapping of feature
types. It states that if an attribute or reference type is mapped, then it is mapped to one of the types
of the mapped feature.

� feature type refinement: this predicate checks that feature types are refined correctly, taking into
account that a feature can declare several potential compatible types, either attribute types or ref-
erence types (see meta-model in Figure 6). In case of attribute types (predicate re f inesAttr),AnyDT
can be refined by (i.e., mapped to) any type, Numeric can be refined by Real and Inteдer , and oth-
erwise the data type must be preserved. In the case of reference types (predicate re f inesRef), there
are two semantics depending on whether the reference types are open or closed. Let r be a reference
type in RM that is mapped to a reference type r ′ in RM ′. Then, if r is open, all target classes of r

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:18 J. de Lara et al.

Fig. 13. DRM mapping examples illustrating feature type refinement. (a) Closed references. (b) Open
references.

must be mapped into targets of r ′. This means that r can be refined to include more compatible
classes. If r is closed, then all target classes of r ′ must receive a mapping from some target of r .
This means that r can be refined to a more restricted set of admissible target classes.

with

re f inesAttr (a, a′ : FT) � a ∈ A ∧ a′ is de f ined ∧
(a.dtype = AnyDT ∨ a.dtype = a′.dtype
∨(a.dtype = Numeric ∧ a′.dtype ∈ Numeric))

re f inesRef (r , r ′ : FT) � r ∈ R ∧ r ′ is de f ined ∧
(r .open = true ⇒
∀c ∈ r .tarдets •mCS (c) ∈ r ′.tarдets) ∧

(r .open = f alse ⇒
∀c ′ ∈ r ′.tarдets • ∃c ∈ r .tarдets • mCS (c) = c ′)

Example. Figure 13(a) illustrates the refinement of closed references. We depict mF as links
between the names of the mapped features, and mR (i.e., the mapping of reference types) as
links between the reference arrow ends. The reference members in RM declares two reference
types, though only one of them is mapped (the one pointing to Attribute). This is possible be-
cause mappings mR and mA can be partial. Given the reference members in RM , the predicate
f eature_type_re f inement iterates on all targets of the reference members in RM ′ (only class At-
tribute in this case) and checks that they are mapped from some target of the reference members
in RM . In this case, Attribute in RM ′ is mapped from Attribute in RM ; therefore, this is a valid re-
finement. This predicate is useful to characterize read-only source meta-models, as it guarantees
that all objects stored in a reference of RM ′ are compatible with the original reference in RM .

Figure 13(b) illustrates the semantics of open references, which is the converse. In this case,
the predicate iterates on all target classes of the reference in RM and checks that the reference
mapped to it in RM ′ has compatible target classes for them. The refined reference may declare
more compatible classes, as is the case in the figure (see MethodDefinition in RM ′). This is useful
to characterize write-only target meta-models.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:19

Fig. 14. DRM mapping example illustrating subclass refinement.

� subclass refinement: this predicate requires that a class mapped bymS is refined by all concrete
subclasses of the class is mapped to. Recall from Definition 4.1 that a class can only be mapped by
mS if its flag subsAllowed is true .

with:

conc_subs (c : Class) � {c ′ ∈ c .subs ∪ {c} | c ′.isAbstract � true}
f eats_re f inement (f , f ′ : Feature) � f eature_re f inement (f , f ′) ∧

f eature_type_commut (f , f ′) ∧
f eature_type_re f inement (f , f ′)

The predicate checks that every non-abstract subclass of class C is mapped to refine the fea-
tures of C . It also ensures that mS (C) has a non-empty set of non-abstract subclasses, or is itself
non-abstract. The actual class refinement is assessed by predicates mand_allowed_refinement(_,_),
feature_refinement(_,_), feature_type_commut(_, _), and feature_type_refinement(_, _). These pred-
icates are analogous to the previous versions that receive a mapping as a parameter, but perform
the checkings over particular pairs of classes or features.

Example. The mapping in Figure 14 satisfies subs_refinement. This is somS maps NamedElement
to Element, and hence, the predicate checks that every non-abstract subclass of Element refines
NamedElement regarding its mandatory features (predicate mand_allowed_refinement), features
(feature_refinement), and feature types (feature_type_commut and feature_type_refinement). These
predicates hold, because both ClassDeclaration and MethodDefinition declare an attribute ident
compatible with NamedElement.ident.

Once we have defined the predicates involved in DRM refinements, we illustrate this notion
through an example.

Example. Figure 15 shows examples of correct (a, b, c) and incorrect (d) DRM refinements with
respect to DRM (a) in Figure 7 (repeated on top of Figure 15 for convenience). In the figure, we
have indicated the mapping of classes using equal numbers, while the mapping of features can be
deduced by the equality of their names.

The mapping to DRM (a) is a refinement, because it correctly maps the named classes Method-
Definition and ClassDeclaration (demanded by the name_refinement predicate). None of these two
classes is an ancestor of the other, and the antiancs relation is preserved (antiancs_preservation

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:20 J. de Lara et al.

Fig. 15. Correct and incorrect DRM refinements with respect to DRM (a) in Figure 7.

predicate). Both MethodDefinition and ClassDeclaration have features with the same name and
cardinality as the DRM classes they refine (feature_refinement predicate). Among these features,
the attribute name is inherited from an anonymous class, and its type is refined from AnyDT
to String (feature_type_refinement predicate). In addition, MethodInvocation in DRM (a) also re-
fines one of the anonymous classes in the DRM, while MethodDefinition refines another anony-
mous class, and ClassDeclaration refines two of them. Feature ClassDeclaration.methods in the
DRM on top, which can be either a reference or an attribute, is refined by reference ClassDeclara-
tion.methods in DRM (a).

The mapping to DRM (b) is also a refinement. All the classes in DRM (b) are concrete, as the
classes they refine allow any abstractness (permitted by predicate abstract_refinement). In this case,
the name attribute is directly owned by the classes and has different types, both of which are proper
refinements of the more generalAnyDT . The four anonymous classes in the DRM on top are refined
by just two classes. Some reference cardinalities in the refined and refining DRMs are different,
such as the minimum cardinality of invocations that has been refined from AnyCardinality to 1,
which is allowed by predicate feature_refinement.

The mapping to DRM (c) is a refinement, because all concrete subclasses of the abstract class
MethodDefinition in DRM (c) structurally conform to the class MethodDefinition in the upper
DRM (as required by predicate subs_refinement). This abstract class defines the mandatory at-
tribute params that does not appear in the upper DRM, but predicate mand_allowed_refinement
allows this, because class MethodDefinition on top allows extra mandatory attributes in the refin-
ing classes.

Mapping (d) is not a refinement, because the antiancestor relation is not preserved (predicate
antiancs_preservation fails). Class NestedMethod inherits from both MethodDefinition and Class-
Declaration, and so with reference to the transformation in Figure 1, NestedMethod objects would
be matched by rules Table and MethodDefinition, causing a runtime error.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:21

5.2 Refinement Composition

Transformation reuse via transformation querying requires being able to perform a stepwise re-
finement of a DRM, likely concatenating simple refinement steps (see scenario in Section 3.2).
However, the predicate refinement(m) in Definition 5.2 is too weak to ensure compositionality of
refinements. We need to strengthen it to ensure the value of flags mandatoryAllowed, allowLess,
allowMore, and open is preserved. The next three predicates capture this.

with:

same _bounds (f , f ′ : Feature) � f .min ∈ Number ∧ f ′.min ∈ Number ⇒
f .min.allowLess = f ′.min.allowLess ∧
f .min.allowMore = f ′.min.allowMore (and similar for f .max)

Predicates card_preservation and re f _sem_preservation have two parts. The first one checks
cardinality (resp. reference semantics) preservation for those features mapped via mF , which
means their owner classes were mapped throughmC . The second part checks the same conditions
for those features owned by classes mapped via mS . As those features are not explicitly mapped,
the checks need to use predicate f eats_re f inement .

Next, we introduce the notion of strong refinement as a special type of refinement.

Definition 5.3 (DRM Strong Refinement). Given two DRMs RM and RM ′, the mappingm = 〈mC ,
mS ,mF ,mR ,mA〉 : RM → RM ′ is a strong refinement if the following predicate holds:

srefinement(m) � refinement(m) ∧mand_allowed_preservation(m) ∧
card_preservation(m) ∧ re f _sem_preservation(m)

Example. In Figure 15, refinements (b) and (c) are strong. Refinement (a) is not strong, because
reference class does not preserve its semantics (it is closed in the DRM on top and open in DRM
(a)). Refinements (b) and (c) are strong, because they preserve the semantics of references and
mandatoryAllowed. Please note that strong refinements are not required to preserve subsAllowed .

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:22 J. de Lara et al.

Fig. 16. Example of DRM mapping composition.

The following definition describes when two DRM mappings are composable and how to com-
pose them. Then, Lemma 5.5 states that composing two DRM mappings yields a well-formed DRM
mapping. Finally, Theorem 5.6 defines the conditions under which the composition of two strong
refinements leads to a strong refinement.

Definition 5.4 (DRM Mapping Composition). Given two DRM mappings m1 = 〈m1
C ,m

1
S ,m

1
F ,

m1
R ,m

1
A〉 : RM → RM ′ andm2 = 〈m2

C ,m
2
S ,m

2
F ,m

2
R ,m

2
A〉 : RM ′ → RM ′′ such that:

∀C ∈ RMC • m2
S (m1

C (C)) is de f ined ⇒ (C .subsAllowed = true ∧
∀Cs ∈ C .subs • m1

S (Cs) is de f ined ∨ m2
S (m1

C (Cs)) is de f ined)

the composition m2 ◦ m1 yields the DRM mapping m = 〈mC ,mS ,mF ,mR ,mA〉 : RM → RM ′′ de-
fined componentwise as follows:

—mX =m
2
X ◦m

1
X for X ∈ {C, F ,R,A};

—mS =m
2
S ◦m

1
S ∪m

2
S ◦m

1
C ∪m

2
C ◦m

1
S .

The composition of DRM mappings is calculated componentwise. The composability condition
in the definition ensures on the one hand that the resulting functionmS is only defined for classes
with subsAllowed = true , as required by the definition of DRM mapping (cf. Definition 5.1). On
the other hand, it also ensures that if the resultingmS is defined for a classC , it is also defined for
all its subclasses Cs , as also required by the definition of DRM mapping.

Example. Figure 16 shows an example of DRM mapping composition. In the composed mapping,
ClassDeclaration in RM is mapped to ClassDeclaration in RM ′′ via mC , while the anonymous
classes are mapped into DataMember and DataType viamS .

Before proving properties of refinement compositions, we deal with a more basic prop-
erty of composed DRM mappings: that they are well-formed (i.e., they fulfill the conditions in
Definition 5.1).

Lemma 5.5 (Composition of DRM Mappings is Well-formed). Given two composable DRM
mappings m1 : RM → RM ′ and m2 : RM ′ → RM ′′, then m2 ◦m1 : RM → RM ′′ is a well-formed
DRM mapping.

Proof. In Appendix A.1. �

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:23

Fig. 17. Composition of strong refinements that violates the precondition to yield a strong refinement
(cod (m1

S
) ∩ dom(m2

CS
) is not empty).

Finally, we are ready to characterize when the composition of two strong refinements yields
a strong refinement. We use cod(m) to refer to the codomain of the mapping m (i.e., the target),
and dom(m) for its domain (i.e., the source). This theorem is important, as it enables the stepwise
refinement of DRMs.

Theorem 5.6 (Composition of Strong Refinements is Strong Refinement). Given two com-
posable DRM mappings m1 : RM → RM ′ andm2 : RM ′ → RM ′′ such that

cod (m1
S) ∩ dom(m2

CS) = ∅,

we have that

srefinement(m1) ∧ srefinement(m2) ⇒ srefinement(m2 ◦m1).

Proof. In Appendix A.2. �

Example. Mappings m1 and m2 in Figure 16 are strong refinements, and no class in RM ′ be-
longs to both the codomain of m1

S and the domain of m2
CS ; hence, their composition m =m2 ◦m1

is a strong refinement. This means that the predicate name_refinement holds for m, because
the name of both ClassDeclaration and mC (ClassDeclaration) is the same; class ClassDeclara-
tion is concrete in both RM and RM ′′, and the abstractness of both anonymous classes in RM
is any; ancs_preservation and antiancs_preservation hold, because ancs and antiancs are empty
in RM ; mand_allowed_refinement and mand_allowed_preservation hold, because all classes have
the flag mandatoryAllowed set to true; f eature_refinement holds, because members in RM is
mapped to a feature named analogously in RM ′′, and their owner classes are mapped as well;
f eature_type_commut and f eature_type_refinement hold, because the type of members is pre-
served; subs_refinement holds, because the subclasses of DataMember and DataType in RM ′′

refine the anonymous classes in RM and their features type and name; re f _sem_preservation
holds, because all references have close semantics; and card_preservation holds, because allowLess
and allowMore are preserved (even though Figure 16 does not represent this information
visually).

Example. Figure 17 shows the composition of two strong refinements that does not fulfill the
precondition to obtain a strong refinement, as DataType in RM ′ belongs to both the codomain
of m1

S and the domain of m2
C . This composition is not a refinement, because it maps DataType in

RM to DataType in RM ′′ usingmS (see Definition 5.4); however, Numeric is a concrete subclass of
DataType that does not own or inherit a feature defValue, as needed.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:24 J. de Lara et al.

Fig. 18. Cheat sheet with refinement operations.

5.2.1 Refinement Operations. In the following, we present a catalogue of refinement operations
that can be successively applied to a given DRM and ensure that the resulting DRM is a strong re-
finement of the initial one. This is relevant for the scenario described in Section 3.2, where TRMs
are refined to reduce the number of retrieved transformations. The proposed catalogue is not ex-
haustive, but other refinements are possible and can be added to our catalogue if proved to be
strong refinements. Figure 18 gives minimal examples of each refinement operation in the cata-
logue, while the appendix contains the proofs of correctness for each of them.

(1) Adding new class. Given a DRM RM , adding a new class C ′ yields a modified DRM RM ′

that strongly refines RM .

Proof. In Appendix A.4. �

(2) Assigning fresh name to anonymous class. Given a DRM RM with an anonymous classC ,
assigning a fresh name to the class yields a modified class C ′ (which therefore becomes
a named class) and a modified DRM RM ′, which strongly refines RM .

Proof. In Appendix A.5. �

(3) Setting class to abstract or concrete, provided it allows any abstractness. Given a DRM RM
with a classC such thatC .isAbstract = any, changing isAbstract to true or f alse yields
a modified class C ′ and a modified DRM RM ′, which strongly refines RM .

Proof. In Appendix A.6. �

(4) Adding feature to class, which must be optional if the class does not allow mandatory fea-
tures. Given a DRM RM and a classC , adding a new feature f toC . f eats yields a modified

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:25

classC ′ and a modified DRM RM ′, which strongly refines RM . IfC .mandatoryAllowed =
f alse , then f .min must be a Number n with n.value = 0 and n.allowMore = f alse .

Proof. In Appendix A.7. �

(5) Refining the possible types of a feature. Given a DRM RM with a feature f such that
| f .types | = 0 (meaning that f can have any type), adding a feature type to f .types yields
a modified DRM RM ′, which strongly refines RM . This effectively implies that f is re-
fined into an attribute or a reference (see Figure 18). Conversely, if | f .types | > 1, then
deleting one element from f .types yields a modified DRM RM ′, which strongly refines
RM .

Proof. In Appendix A.8. �

(6) Refining type of attribute. We consider the refinement of untyped and numeric
attributes. In the first case, given a DRM RM with an attribute f such that
f .dtype = AnyDT , the operation changes f .dtype to a datatype from the set
{Strinд,Boolean,Numeric,Real , Inteдer , Enum}, yielding a modified attribute f ′ and a
modified DRM RM ′, which strongly refines RM . In the second case, f .dtype = Numeric ,
and the operation changes the datatype by one from the set {Real , Inteдer }, which also
yields a strong refinement.

Proof. In Appendix A.9. �

(7) Splitting class in hierarchy. Given a DRM RM with a class C , creating a new class Csuper

that is added toC’s ancestors yields a modified classC ′ and a modified DRM RM ′, which
strongly refines RM . Optionally, any feature f ∈ C . f eats can be pushed up to Csuper ,
yielding a modified feature f ′. As an example, Figure 18 (7) shows a class C that is split,
and its feature f1 is moved to the new superclass.

Proof. In Appendix A.10. �

(8) Adding/deleting target of reference. This effectively implies refining the type of a ref-
erence. Given a DRM RM with a reference r such that r .open = true , adding a new
or existing class to r .tarдets yields a modified reference r ′ and a modified DRM RM ′,
which strongly refines RM . Conversely, given a reference r such that r .open = f alse ∧
|r .tarдets | > 1, removing a class from r .tarдets also yields a strong refinement. Even
though the condition for closed references to have more than one target is not needed
according to predicate f eature_type_re f inement , we require it, because closed refer-
ences without targets cannot be further refined, and hence, no meta-model (in which all
references have exactly one target) would “conform” to the DRM.

Proof. In Appendix A.11. �

(9) Adding subclass consistent with antiancs. Given a DRM RM with classes RC and C s.t.

∀Ca ∈ C .ancs∗•(�Cs ∈ Ca .antiancs
∗ •Cs ∈ RC .ancs∗∧

�Cs ∈ RC .ancs∗ •Ca ∈ Cs .antiancs
∗)

adding RC to C .ancs yields a DRM RM ′, which strongly refines RM . If the subclass C is
new, we also obtain a strong refinement. Figure 18 (9) shows two examples of subclassing,
the upper one corresponding to a valid refinement, and the second one not, because the
subclass C inherits from a class RCA that belongs to RC .antiancs .

Proof. In Appendix A.12. �

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:26 J. de Lara et al.

(10) Refining minimum cardinality. Given a DRM RM with a feature f , any of the follow-
ing changes yields a modified feature f ′ and a modified DRM RM ′ that strongly re-
fines RM : if f .min = AnyCardinality, assigning to f .min any Number n; if f .min =
Number ∧ f .min.allowLess = true , assigning a lower value to f .min.value; and if
f .min = Number ∧ f .min.allowMore = true , assigning a higher value to f .min.value .

Proof. In Appendix A.13. �

(11) Refining maximum cardinality. Given a DRM RM with a feature f , any of the follow-
ing changes yields a modified feature f ′ and a modified DRM RM ′ that strongly refines
RM : if f .max = AnyCardinality, assigning to f .max any Number n or Many; if f .max =
Number ∧ f .max .allowLess = true , assigning a lower value to f .max .value; if f .max =
Number ∧ f .max .allowMore = true , assigning either a higher value to f .max .value or
Many to f .max .

Proof. In Appendix A.14. �

5.3 Meta-models as Domain Requirement Models

Regular meta-models can be considered a special case of DRM. This observation permits unifying
the notions of DRM refinement and conformance of meta-models to DRMs by a unique relationship
between DRMs. The following definition enumerates the features that an encoding of meta-models
as DRMs yields:

Definition 5.7 (Meta-model). A DRM RM is called a meta-model if:

(1) classes have a name: AC = ∅;
(2) classes are either abstract or concrete: ∀c ∈ C • ¬c .isAbstract = any;
(3) features are either references or attributes: ∀f ∈ F • | f .types | = 1;
(4) features have a concrete cardinality value: ∀f ∈ F • { f .min, f .max } ⊆ Number ∪Many;
(5) attributes have a concrete type: ∀a ∈ A • ¬a.dtype = AnyDT ∧ ¬a.dtype = Numeric ;
(6) references have exactly one target type: ∀r ∈ R • |r .tarдets | = 1;
(7) references are closed: ∀r ∈ R • r .open = f alse;
(8) cardinalities are strict: ∀n ∈ Number • n.allowLess = f alse ∧ n.allowMore = f alse;
(9) all possible antiancestors are declared: ∀c1, c2 ∈ C • c1 � c2.ancs

∗ ∧ c2 � c1.ancs
∗ ⇒ ((c1 ∈

c2.antiancs ∧ c2 ∈ c1.antiancs) ∨ ∃c ′ ∈ C • {c1, c2} ⊆ c ′.ancs∗).

These conditions are necessary to faithfully capture the instantiation semantics of meta-models,
which for example requires named classes and features with a defined type. The last condition
reflects the fact that, implicitly, meta-models declare all possible antiancestors (i.e., those not con-
flicting with the ancs relation, so the meta-model is a valid DRM according to Definition 4.1). This
is because, in the standard meta-model semantics, an object o cannot be typed by two classes un-
less one is subclass of the other. The antiancs relation is used in this case to make explicit this
restriction. As we will see in Section 5.4, general DRMs admit objects typed by several classes not
related by inheritance, provided the antiancs relation is not violated. In meta-models, references
are closed, as a link typed by a certain reference can only contain instances of the target classes of
the reference. The definition does not state any conditions on subsAllowed or mandatoryAllowed,
as these express expectations on other refining DRMs, and hence any value is allowed.

Example. In Figure 15, only DRM (b) is a meta-model. DRM (a) is not a meta-model, because
it contains an anonymous class, some classes have no defined abstractness, some references are
open, and some cardinalities are not concrete (i.e., min or max have the value AnyCardinality).

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:27

Fig. 19. Retyping a model with respect to a DRM.

DRM (c) is not a meta-model, because several antiancs relations are missing. DRM (d) is not a
meta-model either, because it contains open references.

5.4 Semantics of Refinement

Similarly to the instantiation relationship of models with respect to meta-models (type : M →
MM), we can type models with respect to DRMs (type∗ : M → DRM). This way, a transformation
q defined over a DRM can be applied to any model typed by the DRM (see left of Figure 5). This
typing is in general non-constructive due to the variability that DRMs entail. Moreover, whereas
the typing of models by meta-models is normally total, their typing with respect to DRMs is partial,
as DRMs have open-world semantics. This is so models are allowed to contain objects that are not
typed by any DRM class, and objects can assign a value to features not declared by the object’s
class. Some typing rules for DRMs are also less strict than those for meta-models. For instance,
in DRMs, the typing of objects is nominal for named classes but structural for anonymous ones,
the checking of cardinalities is not performed for features that admit any cardinality, the validity
of reference and attribute values is not checked unless the DRM specifies their type (recall that
the DRM can omit the type of features if it is unimportant for the associated transformation), and
objects may be typed by an abstract class. The latter is needed, as an abstract class in a DRM may
abstract away a hierarchy of classes viamS .

Example. Figure 19 shows a model M typed by a meta-model MM (encoded as a DRM), and its
retyping type∗ with respect to a DRM RM of which MM is a refinement. Object m is retyped by
the named class MethodDefinition and provides a value to its attribute name. The type of such
attribute is String in the type to MM , but becomes AnyDT in the typing to RM . Object c is retyped
by both anonymous classes, AC1 and AC2, because ClassDeclaration is mapped from both classes.
Object c provides a value to both attributes name using a single slot that is typed by both name
attributes. Object p gets no type from RM , because class Package is not mapped from any class in
RM .

Next, we capture this intuition formally. First, we define a simple notion of model.

Definition 5.8 (Model). A model is a tuple M = 〈O, F ,L, slots, tarдet〉 made of:

—A set O of objects.
—Sets F and L of fields and links. We use S = F ∪ L to denote the set of slots.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:28 J. de Lara et al.

—An injective relation slots ⊆ O × S assigning slots to objects.
—A function tarдet : L → O assigning target objects to links.

For simplicity, the previous definition abstracts away field values, as they are not essential for
our purposes. Given a model M , we write MO to refer to its set of objects (and similar for sets F , L,
and S). We use the auxiliary function owner : S → O to return the object owning a given slot. As
before, we sometimes use an “object-oriented” notation for functions and relations (e.g., o.owner
instead of owner (o)).

Next, we define the typing of a model by a DRM.

Definition 5.9 (Model Typing). Given a model M and a DRM RM , a model typing type : M → RM
is a mapping type = 〈typeobjs , typeslots 〉 made of two relations:

—typeobjs ⊆ MO × RMC mapping objects to classes,
—typeslots ⊆ MS × RMF mapping slots to features.

This definition permits objects with zero, one, or multiple typings. The latter is needed when an
object is typed by two or more classes, each describing a different object facet. For example, object
c in Figure 19 receives two types from RM , because ClassDeclaration in MM is mapped from two
classes in RM (AC1 and AC2). Similarly, slots may receive no typing, one, or many. In the figure,
slot c.name is typed both by the name attribute of the two anonymous classes in RM .

Next, we provide the well-formedness conditions for model typings.

Definition 5.10 (Well-formed Model Typing). A typing type : M → RM is well-formed iff:

(1) Objects are not typed by two classes such that one class is antiancestor of any ancestor of
the other:

∀o ∈ MO , ∀c1, c2 ∈ RMC •{c1, c2} ⊆ typeobjs (o) ⇒
�c ′1 ∈ c1.ancs

∗ • c ′1 ∈ c2.extantiancs

with extantiancs (c : Class) � {c ′ : Class | ∃d ∈ c .ancs∗ • c ′ ∈ d .antiancs+}.
(2) Slots are typed by features owned or inherited by some of the object types:

∀s ∈ MS , ∀f ∈ typeslots (s) • ∃c ∈ typeobjs (s .owner) • f ∈ c . f eats∗.
(3) The type of every slot is not contradictory with that of the feature:

∀s ∈ MS , ∀f ∈ typeslots (s) • s ∈ MF ⇒ f .types = ∅ ∨ ∃a ∈ f .types • a ∈ RMA ∧
s ∈ ML ⇒ f .types = ∅ ∨ ∃r ∈ f .types • r ∈ RMR .

(4) Slots obey the minimum cardinality of their types:

∀o ∈ MO , ∀c ∈ typeobjs (o), ∀f ∈ c . f eats∗ •
f .min ∈ Number ∧ f .min.allowLess = f alse ⇒
|{s ∈ slots (o) | f ∈ typeslots (o)}| ≥ f .min.value .

(5) Slots obey the maximum cardinality of their types:

∀o ∈ MO , ∀c ∈ typeobjs (o), ∀f ∈ c . f eats∗ •
f .max ∈ Number ∧ f .max .allowMore = f alse ⇒
|{s ∈ slots (o) | f ∈ typeslots (o)}| ≤ f .max .value .

(6) Every link target is coherent with its type:

∀f ∈ RMF ,∀l ∈ ML •f ∈ typeslots (l) ⇒
∀r ∈ f .types • r .open = f alse ⇒
∀c ′ ∈ typeobjs (l .tarдet) • c ′.ancs∗ ∩ r .tarдets � ∅.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:29

A typing is called write well-formed if in addition it satisfies the following condition:

(7) Objects do not have an abstract typing:

∀o ∈ MO , ∀c ∈ RMC • c ∈ typeobjs (o) ⇒ c .isAbstract � true .

Next, we show how a model typed by a DRM RM ′ can be retyped with respect to another DRM
RM that is refined by RM ′. The scheme to the left of Figure 5 showed the usefulness of this retyping
in our context: a model is typed by a meta-model over which a transformation q is defined, and
then it gets retyped by the DRM extracted from the transformation.

Definition 5.11 (Retyping by Refinement). Given a DRM refinement m : RM → RM ′ and a well-
formed model typing type : M → RM ′, we can retype M w.r.t. RM by applying a function back to
type , yielding back (type) = type∗ : M → RM , where type∗ = 〈type∗

objs
, type∗

slots
〉 is calculated as

follows:

type∗
objs
= {(o, c) ∈ objBck (type,m) | (mC (c) is de f ined ⇒

∀d ∈ RMC • (o,d) ∈ objBck (type,m) ∧
c ∈ d .ancs+ ⇒mS (d) is de f ined) ∧

(mS (c) is de f ined ⇒
(�d ∈ RMC • (o,d) ∈ objBck (type,m) ∧
d ∈ c .ancs+ ∧mC (d) is de f ined) ∧

(�d ∈ RMC • (o,d) ∈ objBck (type,m) ∧
c ∈ d .ancs+ ∧mS (d) is de f ined))}

type∗
slots

= {(s, f) | s ∈ MS ∧ f ∈ RMF ∧mF (f) is de f ined ∧
mF (f) ∈ typeslots (s) ∧ ∃d ∈ type∗

objs
(s .owner) ∧ f .owner ∈ d .ancs∗} ∪

{(s, f) | s ∈ MS ∧ f ∈ RMF ∧mF (f) not de f ined ∧
∃da ∈ type∗

objs
(s .owner) • f .owner ∈ da.ancs∗∧

∃t ∈ typeobjs (s .owner) • mS (f .owner) ∈ t .ancs∗∧
∃f ′ ∈ t . f eats∗ • (f ′ ∈ typeslots (s) ∧ f eature_re f inement (f , f ′) ∧
f eature_type_re f inement (f , f ′) ∧ f eature_type_commut (f , f ′)) ∧
(f .max ∈ Number ∧ f .max .allowMore = f alse) ⇒
|{s ∈ o.slots | type∗

slots
(s) = f }| < f .max .value}

with:

objBck (type,m) � m−1
C ◦ typeobjs ∪
{(o, c) | o ∈ MO ∧ c ∈ RMC ∧ o � dom(m−1

C ◦ typeobjs) ∧
∃d ′ ∈ typeobjs (o) • mCS (c) ∈ d ′.ancs∗}.

The retyping of objects uses the auxiliary function objBck . This function obtains the classes
in RMC by inverting the mC map, and for those objects that remain untyped, it adds the classes
mapped to an ancestor of any of the object’s types. Then, to build type∗

objs
for a given object o,

from all candidate classes in objBck , we take either a class c mapped via mC for which all its
subclasses (compatible with o) are mapped viamS , or else we take a class c mapped viamS having
no compatible ancestor mapped via mC and no compatible subclass mapped via mS . This means
thatmC has preference overmS to build type∗

objs
, and then, we take the most specificmC ormS .

For slots, we consider two cases. The first one is for slots typed by features of classes mapped
through mC ; in such cases, mF should be defined, and the mapping traverses it back. The second
one is for slots typed by features of classes mapped through mS ; in such cases, there is no ex-
plicit mapping of features, so we reconstruct it using the predicates required by subs_refinement

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:30 J. de Lara et al.

Fig. 20. Retyping a typed model to a more abstract DRM.

(feature_refinement, feature_type_refinement, feature_type_commut) and ensuring proper maxi-
mum cardinality.

Example. Figure 20 illustrates how a model M typed by a DRM RM ′ is retyped to a more abstract
DRM RM . The figure depicts the refinement m : RM → RM ′ using dashed arrows, and the typing
type : M → RM ′ as a set of tuples, the first two belonging to typeobjs and the rest to typeslots .
The objects in M also show the type received by the typing type . The typing type∗ : M → RM is
calculated by applying the function back of Definition 5.11. For slots, it amounts to “following”
typeslots to RM ′, and then the arrows from RMF to RM ′ backwards. In addition, both objects get
retyped by the anonymous class (identified by “a”). This is so the refinement maps both classes in
RM to ClassDeclaration in RM ′, and then the retyping assigns the most specific one (which is the
anonymous class) as the type of the objects.

Retyping through arbitrary refinements does not necessarily yield a well-formed typing. Instead,
as the following theorem states, we require the refinement to be strong, or the target DRM to be a
meta-model. This result is exactly the one we need as, in practice, we will start with a model typed
by a meta-model and then extract a DRM of which the meta-model is a refinement. To retype the
model using more abstract DRMs, strong refinements are required.

Theorem 5.12 (Retyping is Well-formed). Given a DRM refinement m : RM → RM ′ and a
write well-formed model typing type : M → RM ′, back (type) : M → RM is well-formed if:

(a) RM ′ is a meta-model, or

(b) sre f inement (m) holds

Proof. In Appendix A.15. �

6 TRANSFORMATION TYPING REQUIREMENTS MODELS

A DRM describes the possible choices for a meta-model (or more generally another DRM) to sat-
isfy the source/target typing requirements of a transformation. However, a choice for an open el-
ement of the source (resp. target) DRM may forbid some options of the target (resp. source) DRM
in case such options break the syntactic correctness of the transformation. For instance, in the
transformation shown in Figure 1, the binding rows← s.methods constrains the possible types of
the rows and methods fields to those that yield a non-faulty execution.

Hence, we gather the dependencies between the source and target DRMs in a compatibility
model that makes explicit how the choices for one DRM restrict the choices in the other DRM. We

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:31

Fig. 21. Excerpt of the compatibility model for the running example.

represent this compatibility model as a feature model where the different choices are depicted as
nodes, and the compatibility requirements are dependencies between leaf nodes so the occurrence
of a leaf node forces the presence of the dependent nodes.

For this purpose, we first provide the definition of a feature model.

Definition 6.1 (Feature Model). A feature model FM = (F ,ϕ) consists of a set of features F =
{ f1, . . . , fn } and a propositional formula ϕ that defines relations between them.

Example. The upper part of Figure 21 shows an excerpt of the compatibility model for the run-
ning example using the classical feature diagram notation (Kang et al. 1990), and the bottom in-
cludes the propositional formula ϕ implied by the model. The compatibility model focuses on the
admissible types for attributes (i.e., data types) and references (i.e., target classes). Feature Class-
Declaration.methods can be either an attribute or a reference, as it is only used in line 12 of the
transformation in Figure 1 as part of a binding. If it is an attribute, then it can have any data type
(the figure only shows Integer and Real for simplicity). However, the particular selection restricts
the choices for feature Table.rows in the target DRM to keep the transformation syntactically cor-
rect. Similarly, if methods is a reference with type MethodDefinition, then the type of Table.rows
must be Row because, otherwise, the binding will assign an incorrect target value. Such dependen-
cies are visually depicted as compatibility rules in the feature diagram and formally expressed as
terms in the formula ϕ. As the compatibility rules illustrate, dependencies also work from target
to source.

A feature model permits selecting configurations of features. Each configuration is a subset of
features that makes the formula ϕ true . Moreover, configurations can be partial; that is, not all
independent features of the model may have been selected.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:32 J. de Lara et al.

Fig. 22. Compatibility meta-model.

Definition 6.2 (Feature Configuration). A valid feature configuration ρ of a feature model FM
is a subset of its features that satisfies ϕ, i.e., ϕ evaluates to true when each variable f ∈ ϕ is
substituted by true when f ∈ ρ, and by f alse otherwise. We use P = {ρi }i ∈I to denote the set of
all valid configurations. A feature configuration ρ is called a partial configuration if ρ � P ∧ ∃ ρi ∈
P • ρ ⊆ ρi .

Example. The excerpt of the feature model in Figure 21 admits the following five configurations
(we only show leaf features, i.e., with no children): P = {〈 Integer-1, Integer-2〉, 〈 Integer-1, Real-2〉,
〈 Real-1, Real-2〉, 〈MethodDefinition, Row〉, and 〈 ClassDeclaration, Table〉}. These configurations
represent the type choices for ClassDeclaration.methods and Table.rows that yield a well-typed
transformation.

We have defined the meta-model shown in Figure 22 by following the previous definitions of fea-
ture model and feature configuration. It allows expressing the kind of feature models our approach
needs, which produces compatibility rules of the form F 1 ⇒ F 2 ∨ · · · ∨ Fn (see Figure 21). Class
CompatibilityRule in the meta-model permits declaring this kind of dependency among source and
target features, like “MethodDefinition requires Row” (given by the formula MethodDefinition⇒
Row), which specifies that in case MethodDefinition is selected as target for feature ClassDeclara-
tion.methods in the source DRM, then Row must be selected as target for Table.rows in the target
DRM.

Each valid configuration identifies a consistent set of choices among the open options in the
source and target DRMs of a transformation. To ensure the transformation remains syntacti-
cally correct, each choice can be implemented as a refinement operation, like those proposed in
Section 5.2.1. This relation between choices and corresponding refinements is captured by the
notion of typing requirements model (TRM). This is made of a feature model, source and target
DRMs, and a specification of the refinement operation to be executed on the source or target DRM
when a certain feature is selected.

Definition 6.3 (Typing Requirements Model). A typing requirements model is a tuple TRM =
〈FM,RMs ,RMt , μs , μt 〉 made of:

—A feature model FM = (F ,ϕ),
—Two DRMs RMs and RMt called source and target,
—Two functions μs : F → OP and μt : F → OP from features of FM to strong refinement op-

erations over RMs and RMt , respectively. Each strong refinement operation in μs (resp. μt)
must be independent of each other.

A TRM assigns a refinement operation to each feature in the compatibility model. If selecting
a feature should not produce any effect on a DRM, the identity refinement operation (which does
nothing) can be assigned to that feature. This approach is conceptually similar to delta modelling
(Clarke et al. 2015), a transformative approach to product lines. In our setting, the transformations
that the product line applies to our products (the DRMs) are strong refinements.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:33

Our notion of TRM can be easily generalized to capture requirements of transformations with
multiple input and output models by enabling a set of DRMs (instead of two) and a set of functions
μ (instead of two).

Example. The TRM for the running example contains a feature model of which Figure 21 is an
excerpt, and functions μs and μt assign the following refinement operations to its features:

— Integer-1, Integer-2: “refining type of attribute to integer” ◦ “assigning attribute type to open
feature”;

— Real-1, Real-2: “refining type of attribute to real” ◦ “assigning attribute type to open feature”;
— MethodDefinition, ClassDeclaration, Table, Row: “assigning reference type to open feature”;
—rest of features: “identity refinement.”

For illustration, we have associated the composition of two refinement operations (numbers 5
and 6 in our catalogue; see Figure 18) to features Integer-1, Integer-2, Real-1, and Real-2. This is
allowed as, by Theorem 5.6, the composition of two strong refinements is a (strong) refinement.
Regarding non-leaf features, they typically (but not necessarily) imply the identity refinement, not
modifying the DRMs.

Given a TRM and a feature configuration, we apply the refinement operations associated with
the selected features to synchronously refine both DRMs in the TRM in a consistent way. This
is called a configuration-based TRM refinement. The selected feature configuration can be partial
(i.e., leaving open choices). The DRMs in a TRM can also be refined independently from each
other, but in that case, the performed refinements cannot interfere with the choices captured in
the compatibility model. This is called a free TRM refinement. In both cases, the resulting DRMs
have reduced open choices, hence contributing to the transformation querying scenario presented
in Section 3.2, which requires the ability to refine TRMs (see Figure 4).

Definition 6.4 (TRM Refinement). Given aTRM = 〈FM = (F ,ϕ),RMs ,RMt , μs , μt 〉, a TRM refine-

ment TRM ′ through a refinement step TRM
r ef
=⇒ TRM ′, where re f = 〈re fs : RMs → RM ′s , re ft :

RMt → RM ′t 〉 is a tuple of strong DRM refinements, is built in one of the following two ways:

(1) free TRM refinement:TRM ′ = 〈FM,RM ′s ,RM ′t , μs , μt 〉, where re fs : RMs → RM ′s and re ft :
RMt → RM ′t are two DRM refinements obtained by applying to RMs and RMt strong re-
finement operations that are not in conflict with those in μs and μt .

(2) configuration-based TRM refinement: given a (possibly partial) configuration ρ ∈ P , we
build TRM ′ = 〈FM ′ = (F ,ϕ ∧∧f ∈ρ f),RM ′s ,RM

′
t , μ
′
s , μ
′
t 〉, where RM ′s is obtained by ap-

plying the operations associated to each feature f0, . . . , fn ∈ ρ in sequence: RMs

μs (f0)
=⇒

· · ·
μs (fn)
=⇒ RM ′s , and re fs is built by concatenating the DRM strong refinements produced by

these operations. RM ′t and re ft are obtained analogously. μ ′s (f) is the identity refinement
for f ∈ ρ, and μs (f) otherwise. μ ′t (f) is defined analogously.

We write TRM
r ef ∗

=⇒ TRM ′ to denote zero or more refinement steps.

While configuration-based TRM refinements perform the coupled evolution of DRMs to deal
with dependent open choices, free TRM refinements permit refining each DRM independently
from the other. A configuration-based refinement not only modifies the DRMs, but in addition, it
modifies the formula of the feature model by conjoining the name of the features in the configu-
ration. This forces the selection of those features in any valid configuration of the refined TRM.
Moreover, those features get assigned the identity refinement in place of the originally associated
operations, as they have just been applied.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:34 J. de Lara et al.

Fig. 23. Examples of configuration-based and free TRM refinements.

Note that we model the selection of features by a (partial) configuration ρ as the conjunction of
each feature in the set with the formula (ϕ ∧∧f ∈ρ f). This is enough for the type of feature models
we produce (a tree of alternative choices, where exactly one choice is needed per open type). For
more general feature models, we should also conjoin the negation of the features not selected by
the configuration. For clarity of presentation, we have opted for the simpler formulation.

Example. Figure 23 shows two TRM refinements for excerpts of the source and target DRMs
of the running example (Figure 7 contains the complete DRMs). First, the user has selected the
configuration 〈 MethodDefinition, Row〉 in the feature model, and hence, its associated refine-
ment operations are triggered. These assign a reference type to features methods and rows in the
source and target DRMs, the former with MethodDefinition as target, and the latter targeting class
Row. Since this is a configuration-based refinement, the formula of the feature model is conjoined
MethodDe f inition ∧ Row , and its features MethodDefinition and Row get assigned the identity
refinement (represented as having no associated operation). The figure shows a second refine-
ment, which is free, where the user has refined the source DRM by making its classes concrete and
assigning a concrete type to attribute name.

We say that a TRM is ground if no configuration-based refinement step is possible, because all
features in its feature model have been selected. Since Definition 6.4 models feature selection by
conjoining the feature to the formula, a TRM is ground if �f ∈ F • SAT (ϕ ∧ f) ∧ SAT (ϕ ∧ ¬f),
with SAT a predicate that holds if the formula is satisfiable. This means that there is no feature left
for which we can either select it or not, and hence the selected configuration is total.

A TRM defines a language, which consists of all TRMs that can be obtained from it by zero or
more TRM refinement steps.

Definition 6.5 (TRM Language). Given a transformation requirements modelTRM , the language

generated by TRM is given by L(TRM) = {TRM ′ |TRM
r ef
=⇒

∗
TRM ′}.

The meta-model querying scenario presented in Section 3.1 and Figure 3 requires the ability to
determine whether two meta-models (or more generally two DRMs) conform to the TRM extracted
from a transformation. For this purpose, next, we define the notion of conformance between TRMs,
which states that a TRM conforms to another if the former TRM belongs to the language of the
latter.

Definition 6.6 (TRM Conformance). Given TRMs TRM1 and TRM2, we say that TRM1 conforms
to TRM2 iff TRM1 ∈ L(TRM2).

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:35

Assessing if an arbitrary DRM pair 〈DRMs ,DRMt 〉 conforms to a given TRM TRM (as the sce-
nario in Section 3.1 demands) amounts to checking whether there is a ground TRM ′ ∈ L(TRM)
and a strong refinement pair 〈re fs : RM ′s → DRMs , re ft : RM ′t → DRMt 〉. For technical reasons,
we cannot check conformity by building a TRMTRM ′′ = 〈FM = (∅, true),DRMs ,DRMt , {}, {}〉 out
of the DRM pair and then assessing TRM ′′ ∈ L(TRM), because in general the feature models of
TRM and TRM ′′ may not be related as required by Definition 6.4.

7 EXTRACTING TYPING REQUIREMENTS MODELS FROM ATL

TRANSFORMATIONS

So far, we have presented our method to define and use TRMs independently from any transforma-
tion language. This section explains the procedure for extracting TRMs out of existing ATL trans-
formations, hence demonstrating the applicability of the method in practice (Section 7.1). Then, in
Section 7.2, we discuss how to generalize the extraction to other transformation languages.

7.1 Extracting TRMs from ATL

To describe the extraction of TRMs from ATL transformations, we rely on the Attribute Grammar
formalism, which is an elegant and powerful mechanism to describe computations over syntax
trees (Slonneger and Kurtz 1995). Attribute grammars extend context-free grammars by associ-
ating attributes with the symbols of the underlying context-free grammar. The values of such
attributes are computed by rules, which are executed while traversing the syntax tree as needed.
More formally, letG = (N ,T , P , S) be a context-free grammar for a language LG , where N is the set
of non-terminals,T is the set of terminals, P is the set of productions, and S ∈ N is the start symbol.
An attribute grammar AG is a triple (G,A,AR), where G is a context-free grammar, A associates
each grammar symbolX ∈ N ∪T with a set of attributes, andAR associates each production R ∈ P
with a set of attribute computation rules. While traversing syntax trees, values can pass from a
node to its parent by means of synthesized attributes (SAs), or from a node to its children by means
of inherited attributes (IAs). Attribute values can also be assigned, modified, and checked at any
node in the syntax tree.

Viewing an ATL transformation as a parse tree, AG can pass values from a node to its parent
using an SA, or from the current node to a child using an IA. In addition to passing attribute values
up or down the parse tree, they can be assigned, updated, and checked at any node in the derivation
tree.

Table 1 shows a fragment of the ATL attribute grammar (AGAT L) we have developed to create
TRMs while traversing the syntax tree of an ATL transformation. It is important to remark that we
show a simplification of the real grammar to give a flavor of how the proposed extraction mecha-
nism works without compromising the readability of the explanation. Anyhow, the developed tool
available online6 considers all the productions defined for the actualAGAT L , which implements all
the concepts presented in Sections 4 and 6.

For each production rule in Table 1, we add attributes whose value is set using values of
the parent or children nodes. The table shows some productions and their associated attribute
computation rules. The computations infer the value of the attribute type for the parsed elements
and update the TRM (DRMs and compatibility model) accordingly. The attribute type behaves both
as inherited and synthesized, thus it is initialized during a top-down phase and updated during a
subsequent bottom-up phase. When the parsing is complete, a pair of source and target DRMs
together with a compatibility model linking them is produced.

6http://github.com/MDEGroup/totem.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://github.com/MDEGroup/totem

21:36 J. de Lara et al.

Table 1. Fragment of the Developed ATL Attribute Grammar (AGAT L)

Productions Computation Rules

p1 〈matchedRule〉::= rule ID
{ 〈inPattern〉 〈outPattern〉* }

p2 〈inPattern〉::= from
〈inPatternElement〉*

p3 〈InPatternElement〉::= ID:
〈oclModelElement〉

type(〈InPatternElement〉)←
addClassToSourceDRM(type(〈oclModelElement〉))

p4 〈outPattern〉::= to
〈outPatternElement〉

p5 〈OutPatternElement〉::= ID:
〈oclModelElement〉 (〈binding〉*)

type(〈OutPatternElement〉)←
addClassToTargetDRM(type(〈oclModelElement〉))

p6 〈binding〉::= ID ’<-’
〈oclExpression〉;

leftFeature←createFeature(name(ID), 〈binding〉.parent)
rightFeature←type(〈oclExpression〉)
type(〈binding〉)←addClassToTargetDRM(leftFeature.parent)
addCompatibilityAlternatives(leftFeature, rightFeature)

p7 〈oclModelElement〉::= ID1!ID2 type(〈oclModelElement〉)← createClass(name(ID2))

p8 〈oclExpression〉::=
〈navigationOrAttributeCallExp〉 |
〈oclModelElement〉 | ...

p9 〈navigationOrAttributeCallExp〉::=
〈oclExpression〉.ID;

type(〈oclExpression〉)←
if (isNavigationOrAttributeCallExp(〈oclExpression〉) then

createReference(type(〈oclExpression〉), “AnonymousClass”)
type(〈navigationOrAttributeCallExp〉)←

if (isOperation(name(ID))) then
createFeatureByOperation(name(ID),

getReferenceClass(〈oclExpression〉))
else

createFeature(name(ID), getReferenceClass(〈oclExpression〉))

For explanatory purposes, Figure 24 shows a sketch of a graph transformation specification
(Ehrig et al. 2006) describing the productions in Table 1. Rules show objects of the parse tree of the
ATL transformation with colored background and elements of the TRM in white. Elements created
by the rules are tagged as new, and modified attributes are tagged as modified. The type attribute
is represented as a link between the parse tree objects and the TRM elements. Overall, rule p7
creates classes, rules p3 and p5 insert such classes in either the source or the target DRM, p6 creates
features given a binding, and p9 creates features given a NavigationOrAttributeCallExpression.

Figure 25 shows a fragment of the AGAT L parse tree corresponding to the rule Table of the
transformation in Figure 1. Each node of the tree is decorated with the corresponding attribute
computation rules according to the grammar in Table 1. The figure also shows the effects of exe-
cution of the computations (createClass, addClassToSourceDRM, addClassToTargetDRM) on the
source (RMs) and target (RMt) DRMs being built.

The computation rules make use of the following auxiliary functions, which create and update
elements (conforming to the DRM and compatibility meta-models shown in Figures 6 and 22) in
the TRM while traversing the syntax tree:

� createClass(name: String): It creates and returns a new class named name. The func-
tion is used in the production p7 to manage the non-terminal 〈oclModelElement〉 like Java-
Source!ClassDeclaration and Table!Table of the sample ATL transformation. The DRM where the
created class should be included is decided later in the process while traversing the tree bottom-up.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:37

Fig. 24. Sketch of graph transformation rules representing the behavior of the attribute grammar in Table 1.

Fig. 25. A sample AGAT L parse tree.

� addClassToSourceDRM(c: Class) and addClassToTargetDRM(c: Class): They add a new class
of type c to the source and target DRM, respectively. The type of the class is inferred from
the non-terminal 〈oclModelElement〉 and is added to the source or target DRM, depending on
whether the non-terminal appears in an 〈inPattern〉 or an 〈outPattern〉. Accordingly, the produc-
tion p3 uses addClassToSourceDRM to manage the non-terminal 〈InPatternElement〉, like Java-
Source!ClassDeclaration, and p5 uses addClassToTargetDRM to manage 〈OutPatternElement〉,
like Table!Table. In both cases, the classes previously created by the function createClass (e.g.,

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:38 J. de Lara et al.

ClassDeclaration and Table) are added to the corresponding DRM. Attributes mandatoryAllowed
and subsAllowed are true for classes added to the source DRM and f alse for classes in the target
DRM. The attribute isAbstract is Any for classes in the source DRM and f alse otherwise. The an-
tiancs relation is set between any two named classes of the source DRM created by the production
p2 from input patterns with only one 〈InPatternElement〉.
� isNavigationOrAttributeCallExp(o: OclExpression): Since the non-terminal element
〈oclExpression〉 can be matched in several cases (see production p8), this function checks if
the input OCL expression is a 〈navigationOrAttributeCallExp〉. Examples of 〈navigationOr-
AttributeCallExp〉 are i.method.name and s.methods, which use the infix “.” operator to call
properties and to navigate across association ends.

� isOperation(c: String): It checks if the input string is the name of an OCL operation (e.g., size,
sum, and exists) defined over OCL data types. The function is used in the production p9 to check if
the last part of the matched 〈navigationOrAttributeCallExp〉 is an operation. If it is not (e.g., name
in the expression i.method.name), then a new feature is added in the class that is being created
because of the matched 〈oclExpression〉 element (e.g., i.method). If isOperation returns true , then
a new feature is created by means of the createFeatureByOperation function (see below).

� createFeature(name: String, c: Class): It creates a new feature in the input class c. It is used
in the productions p6 and p9. The former production manages the non-terminal 〈binding〉,
like rows ← s.methods at line 12 in Figure 1. The latter production handles the non-terminal
〈NavigationOrAttributeCallExp〉, like i.method.name at line 7. In the case at line 12, a new feature
named rows is added in the target DRM. Its possible types are inferred from the type of the OCL
expression s.methods, which is handled by operation addCompatibilityAlternatives. In the case at
line 7, p9 matches i.method with 〈oclExpression〉 and name with ID. Since name is not an operator,
a new feature named name is created in the class referred by i.method. Concerning the cardinality
of the created feature, when a Number element is created, its attribute allowMore is true if it is
a min cardinality of the source DRM or a max cardinality of the target DRM, while its attribute
allowLess is true if it is a max cardinality of the source DRM or a min cardinality of the target
DRM.

� createFeatureByOperation(opName: String, c: Class): It creates a new feature, and its cardinality is
specified according to the operation name given as input. For instance, if the operation is size, then
it means that the matched expression refers to a collection and, consequently, the max cardinality
of the created feature is Many.

� createReference(f: Feature, target: Class): Given a previously created feature as input, it special-
izes it as a Reference with target target. It is used in p9 in case the matched 〈oclExpression〉 is a
〈navigationOrAttributeCallExp〉. In such a case, the feature is specialized to a reference typed with
a new AnonymousClass.

� addCompatibilityAlternatives(left: Feature, right: Feature): It is used in the production p6 for build-
ing the compatibility model, assigning refinements to compatible types to left and right features
of a binding. It does a case analysis between the left and right features, checking compatibility is-
sues such as cardinality consistency or types of resolving rules. Then, it creates the corresponding
choices in the compatibility model. The compatibility model conforms to the meta-model shown
in Figure 22, which allows defining several alternative configurations for the source and target
DRMs. For instance, as the compatibility model in Figure 21 shows, the alternatives for feature
ClassDeclaration.methods in the source DRM are either being an attribute or being a reference
with MethodDefinition or ClassDeclaration as target.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:39

7.2 Extracting TRMs from Other Transformation Languages

The procedure just described targets ATL, one of the most used transformation languages nowa-
days. However, other transformation languages exist, such as the Epsilon Transformation Lan-
guage (ETL) (Kolovos et al. 2008) or languages of the QVT family (Object Management Group
2016).

ETL is a language similar to ATL. It is rule-based and supports imperative constructs. ETL rules
are similar to ATL rules, but their source pattern can only contain one element, and several rules
can be applied to the same object. There is no implicit binding resolution, but it must be explicitly
invoked using the equivalent() operation or the special assignment ::=. Any model involved in an
ETL transformation can be read or written. These features imply the following considerations in
the extraction of the TRM:

— Imperative creation of objects. ETL can include imperative constructs to create objects in the
source model. Hence, the corresponding class in the DRM need to set the flags mandato-
ryAllowed, subsAllowed, and isAbstract to f alse .

—Antiancs relation. ETL permits applying more than one rule on the same object. This means
that no antiancs relations have to be created.

—Reference compatibility. Bindings can make use of the operator ::= or the operation equiv-
alent() to compute the compatible target classes for the references involved in the binding.
This explicit binding resolution is essentially the same as for ATL, but taking into account
that source objects can be transformed by several rules.

—Read and written references. A reference can be both read and written by an ETL program.
While our DRMs support either open or closed references, we would need both at the same
time to consider this case. Our approach does not support this currently, but for refinement,
it would just imply preservation of the target classes (i.e., neither adding nor deleting target
classes would be refinements).

—Cardinality of read and written features. A feature can be both read and written by an ETL
program. If the feature has a Number cardinality, then neither allowMore nor allowLess can
be true.

Overall, on the one hand, the possibility of having both read and written features restricts the
possibilities to reuse (i.e., of finding refinements), because the cardinalities and the reference se-
mantics are more restricted. On the other hand, the fact that no antiancs relations are created
enhances the reuse possibilities using our approach.

Other languages, like QVT relational, can provide more detailed typing information. For exam-
ple, relations in QVT can declare typed variables, which then can be assigned to object features;
and there is no binding resolution neither implicit nor explicit, but explicit parameter passing be-
tween relations. Both characteristics facilitate type inference. We leave further investigation about
the generalization of our approach to other languages to future work.

8 TOOL SUPPORT

The presented approach is fully supported by an Eclipse-based tool called TOTEM. The tool is
freely available at http://github.com/MDEGroup/totem, including the source code, a screencast
showing the tool at work, and the results of the evaluation presented in the next section. In the
following, we provide details of the supported functionality in Section 8.1 and describe the tool
architecture in Section 8.2.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://github.com/MDEGroup/totem

21:40 J. de Lara et al.

Fig. 26. Extraction of a TRM from an input ATL transformation.

8.1 Tool Functionality

TOTEM offers support for the following functionalities:

—Extraction of TRMs from ATL transformations. Developers having an ATL transformation
can use TOTEM to automatically extract its TRM as explained in Section 7. For this pur-
pose, they have to select the ATL transformation of interest and trigger the action “TOTEM
→ Extract TRM.” In the example shown in Figure 26, the developer has selected the trans-
formation JavaSource2Table.atl (labels 1 and 2). Subsequently, the source and target DRMs
(panels with labels 3 and 4) and the compatibility model linking them (panel with label 5)
are generated. Technology-wise, DRMs are EMF models conformant to the meta-model in
Figure 6 and can be visualized either using a tree editor (upper-right in Figure 26) or a user-
friendly graphical concrete syntax similar to the one used throughout the article (Figure 27).

—Conformance checking of a meta-model to a DRM. TOTEM permits checking whether a given
meta-model refines a DRM. The DRM may have been extracted from a transformation as
explained above, or it may have been specified manually. Checking refinement entails in-
specting all conditions presented in Section 5, and the outcome of the analysis is reported
to the user.

—Graphical editing and free refinement of DRMs. TOTEM includes a graphical editor to vi-
sualize, specify, and modify DRMs (see Figure 27). The editor provides the catalogue of
refinement operations presented in Section 5.2.1 via contextual menus. This permits per-
forming free strong refinements either on the source or the target DRM of a TRM (cf. Defini-
tion 6.4). For this purpose, the developer must select the element to be refined, and the editor
filters the refinement operations by showing only those that can be applied to the selected
context. For instance, Figure 27 shows the graphical representation of the source DRM ex-
tracted from the JavaSource2Table.atl transformation, as well as a contextual menu with
the refinements that can be applied on the selected anonymous class u3.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:41

Fig. 27. Visualization and refinement of the input DRM using TOTEM.

Fig. 28. Layered architecture of TOTEM.

—Visualization of compatibility models as feature models, and configuration-based TRM refine-
ment. TOTEM supports the visualization of compatibility models in terms of feature models,
as panel 5 of Figure 26 illustrates. In addition, users can select feature configurations in the
compatibility model and, consequently, perform the associated configuration-based TRM
refinements as described in Definition 6.4. In this way, both the source and target DRMs of
a TRM can be synchronously refined in a consistent way.

8.2 Tool Architecture

TOTEM is an Eclipse plugin, and Figure 28 shows its component-based, layered architecture. The
existing components that TOTEM relies on are depicted in white, whereas those that we have
developed are depicted in grey. In particular, the graphical DRM editor enabling the visualization
and editing of DRMs is based on the Eclipse Sirius project (Sirius 2018). The editor permits inter-
acting with the TRM extractor and conformance checker components that have been implemented
atop the Eclipse Modeling Framework (EMF) (Steinberg et al. 2008). The conformance checker also
relies on some languages of the Epsilon family (in particular, on the Epsilon Transformation Lan-
guage (ETL) (Kolovos et al. 2008) and the Epsilon Object Language (EOL) (Kolovos et al. 2006)) to
generate auxiliary meta-model-specific functions for checking the conformance of meta-models
with respect to DRMs. The compatibility model editor makes use of model transformations written
in ATL to generate FeatureIDE (Meinicke et al. 2017) feature models out of TRMs.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:42 J. de Lara et al.

9 EVALUATION

In this section, we evaluate our approach with the aim of answering the research questions RQ1

(“Is the TRM extraction mechanism from ATL transformations correct and complete?”) and RQ2

(“To what extent does the variability encoded in the extracted TRMs enable transformation reuse?”)
introduced in Section 1.

To answer RQ1, a formal proof of correctness and completeness of the TRM extraction method
would be desirable; however, ATL is an unformalized language. Even though some efforts exist
to express the execution semantics of ATL by compilation into Maude (Troya and Vallecillo 2011),
formal typing rules for ATL, including OCL, are unavailable. Therefore, we opt for an empirical
evaluation based on seven transformations developed by third parties. This has the advantage of
validating the approach in practice, and testing the specificities of real transformations and the
particularities of the EMF framework (e.g., opposite references, compositions, etc.). Other aspects
of the proposal, such as the correctness of the refinement catalogue (Section 5.2.1), the composabil-
ity of strong refinements (Theorem 5.6), and the correctness of model retyping through refinement
relations (Theorem 5.12), are proved formally in the appendix.

In the following, we describe the common evaluation setup in Section 9.1, report on the evalua-
tion of the research questions in Sections 9.2 and 9.3, and discuss threats to validity in Section 9.4.
The materials used for the evaluation, including the used transformations, extracted TRMs, mu-
tants, and raw data, are available at http://miso.es/trms/eval.html.

9.1 Evaluation Setup

Our evaluations consider the following seven ATL transformations: JavaSource2Table (the origi-
nal version of the running example), PetriNet2PNML (a translation from Petri nets to the PNML
document format), KM32EMF (a conversion between OO formalisms), Ant2Maven (a mapping
between tasks of different build systems), Class2Relational (a simple object-relational mapping),
HSM2FSM (a flattening of hierarchical state machines), and UML2Intalio (a transformation from
UML Activity Diagrams to Intalio BPMN).

The selection criterion was to choose transformations written by a third-party (except
UML2Intalio), with no typing errors (or very easily fixable ones) to avoid introducing a bias. The
first five transformations are publicly available in the ATL Zoo, HSM2FSM is used as a case study
in Cheng et al. (2018) to validate a verification method for model transformations, and UML2Intalio
is used in Sánchez Cuadrado et al. (2018) to assess the validity and completeness of a catalogue of
quick fixes for ATL. These transformations cover 71% of the ATL constructs, measured by extract-
ing the footprint of the transformation definitions with respect to the underlying ATL meta-model.
The main missing features are action blocks (the imperative part of ATL), called rules, tuples, and
maps.

Table 2 summarizes the main features of the transformations used in the evaluation. We have
used the number of nodes in the abstract syntax tree as a measure of the complexity of bindings,
filters, and helpers. For example, an expression like self.classes→ isEmpty() counts as two nodes.

9.2 RQ1: Correctness and Completeness of the ATL Extraction Mechanism

To answer RQ1, we consider the seven transformations mentioned above, together with their
source and target meta-models. First, we use TOTEM to extract the TRM of each transformation
(i.e., source and target DRMs and compatibility model). Then, we generate first-order mutants of
the source and target meta-models by systematically applying the meta-model modifications iden-
tified in Cicchetti et al. (2008) (cf. Table 3). Our aim is to generate many slightly different variants
of the original meta-models so some break the transformation, while others do not. Finally, we

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://miso.es/trms/eval.html

Typing Requirements Models 21:43

Table 2. Testbed Transformations in the Evaluation and Their Characteristics

JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF Ant2Maven Class2Relational UML2Intalio

Classifiers (src/tar) 6/4 6/6 9/13 15/20 48/59 6/5 248/20

Attributes (src/tar) 1/1 3/3 3/4 10/33 93/98 3/1 106/14

References (src/tar) 7/3 6/8 12/14 17/48 28/35 6/5 481/31

ATL matched rules 3 7 10 10 30 7 9

ATL lazy rules 2 0 0 0 0 1 0

ATL rule filters 1 5 2 2 2 5 5

Bindings 8 18 29 40 98 20 14

ATL context helpers 1 0 0 1 0 2 6

ATL global helpers 1 0 0 0 0 1 0

Lines of code 68 81 96 128 269 101 98

Avg binding complexity 6.38 1.78 29 2.28 2.04 4.95 2.64

Avg filter complexity 4.00 11.20 0 9.50 9.50 6.60 11.20

Avg helper complexity 17.50 0 0 24.00 0.00 5.00 8.50

Table 3. Meta-model Modification Operators Used in the Evaluation

Kind Meta-model modification

Additive Add obligatory/non-obligatory metaclass
Add obligatory/non-obligatory metaproperty
Generalize metaproperty
Pull metaproperty
Extract abstract/non-abstract superclass

Subtractive Eliminate metaclass
Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Restrict metaproperty

Updative Rename metaelement
Move metaproperty
Extract/inline metaclass

assess whether a meta-model mutant is a refinement of the extracted TRM when the transforma-
tion can use it safely, and it is not a refinement otherwise. To determine if a meta-model mutant
can be safely used with a transformation, we use the anATLyzer (Sánchez Cuadrado et al. 2017)
ATL static type checker as an oracle of the typing relation between the mutated meta-model and
the transformation. If anATLyzer does not report any errors, then it means that the mutant does
not break the transformation, and it should be a refinement of the extracted TRM. Otherwise, the
mutant breaks the transformation, and it should not be a refinement of the TRM.

Altogether, for each meta-model mutant, we may obtain one of the following results: (i) the
mutant refines the TRM and does not break the transformation (true positive, TP); (ii) the mutant
refines the TRM but breaks the transformation (false positive, FP); (iii) the mutant does not refine
the TRM and breaks the transformation (true negative, TN); or (iv) the mutant does not refine the
TRM but does not break the transformation (false negative, FN). Then, we compute precision (an
indicator of correctness) as #T P

#T P+#F P
, and recall (an indicator of completeness) as #T P

#T P+#F N
.

Table 4 summarizes the obtained results. There are no false negatives, and thus recall is 100%,
signifying that the extracted TRMs correctly exclude the meta-models that cannot be used with
the transformations (i.e., such meta-models are not refinements of the TRM). There are some false

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:44 J. de Lara et al.

Table 4. Evaluation Results

JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF Ant2Maven Class2Relational UML2Intalio Total

Mutants 144 314 305 2,480 18,535 256 4,753 26,787

True positives 70 148 169 1,751 6,986 103 4,437 13,664

True negatives 66 154 131 690 11,254 139 270 12,704

False positives 8 12 5 39 295 14 46 419

False negatives 0 0 0 0 0 0 0 0

Precision 90% 93% 97% 98% 96% 88% 99% 97%

Recall 100% 100% 100% 100% 100% 100% 100% 100%

Reusable MMs 70 148 169 1,751 6,986 103 4,437 13,664

Non-reusable MMs 74 166 136 729 11,549 153 316 13,123

Incompatible 4 11 18 6 400 4 13 456

positives, though, meaning that some meta-models are refinements of the extracted TRM, but the
transformation may raise runtime errors if executed with them. Nevertheless, the overall precision
is still high (97%). An example of false positive occurs in the expression i.method.name of the
running example (line 7). In the original meta-model, the attribute name is compulsory, but one
meta-model mutant relaxes its cardinality to 0..1. The extracted TRM does not put any cardinality
restriction to this attribute, however anATLyzer signals this typing problem, and thus it is reported
as a false positive. We have observed that the reported false positives are due to limitations in
the TRM extraction process, though they are not a shortcoming of the general method itself. To
solve these cases, we plan to combine our TRM extraction mechanism with information from
anATLyzer’s static analysis. However, this is only possible if the source and target meta-models
are available. We will discuss in more detail some limitations of the TRM extraction method in
Section 9.2.1.

To analyze whether the evaluation thoroughly tested all aspects of our refinement relation,
we have manually revised the extracted TRMs and some mutants. We found several interesting
cases. For instance, PetriNet2PNML exercised the subsAllowed flag (illustrated in Figure 14 for the
running example), since some features of an abstract class Arc were located in all subclasses. Meta-
model modifications such as pull metaproperty, push metaproperty, inline metaclass, and flatten
hierarchy generate mutants that require structural typing in the refinement. All these cases were
correctly handled by our refinement checking mechanism.

To analyze the effect of the mutations, the second and third last rows of Table 4 show the num-
ber of meta-models for which the transformation is reusable, or it is not. In this way, the row
“reusable MMs” is calculated as TP+FN, while “non-reusable MMs” is TN+FP. Notably, there is a
high number of meta-models—different from the ones used to develop the transformations—for
which the transformations are reusable (13,664), and our method identifies all of them. The trans-
formations are not reusable with more than 13,000 meta-models, and our method identifies 97%
of these cases. Non-reusability can be discovered either because there is no DRM refinement or
because the conditions implied by the compatibility model fail. The last row of the table details
how many meta-models individually refine the DRMs but do not satisfy the compatibility model
(456 in total). This shows the usefulness of the compatibility model to increase the precision of the
refinement relation by ruling out configurations that would lead to ill-behaved transformations.

9.2.1 Limitations of the TRM Extraction Algorithm. The evaluation shows that the extraction
algorithm is complete (no false negatives), in the sense that the extracted TRMs gather all the in-
formation needed to guarantee that if a meta-model does not refine the TRM, then it will break the

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:45

Fig. 29. Excerpts of the Class2Relational transformation (left) and its source meta-model (right).

transformation. This is because the extraction algorithm over-approximates the actual meta-model
used by the transformation (i.e., the typing is as flexible as possible). However, this is at the cost of
some precision loss, as in a few cases there may be meta-models that break a transformation even
if they are valid refinements of its TRM. In the evaluation, this happened in 3% of cases. Most of
these false positives could be solved by using information of the meta-models (if available) during
the TRM extraction process. We leave this improvement for future work and, in the following,
discuss the most relevant limitations found in the Class2Relational case study. Figure 29 shows
excerpts of this transformation and its source meta-model.

A first limitation is due to the fact that ATL can emulate meta-model attributes by transforma-
tion helpers (e.g., nameOrEmpty in line 4, multiValuedOrFalse in line 8). Since ATL helpers are
not added to the DRMs, some problems may arise. As an example, Figure 30 shows an excerpt
of the source DRM of the transformation, and two meta-models MM1 and MM2 that refine the
DRM but cannot be used safely with the transformation. MM1 is similar to the source meta-model,
but changing the name of class NamedElt to BaseElt. MM1 refines the DRM, because NamedElt
in the DRM matches all subclasses of BaseElt in MM1; however, using the transformation with
MM1 yields an error, because line 4 declares a helper over class NamedElt, which does not exist
in MM1. Similarly, MM2, where the type of Class.atts is NamedElt, is a refinement of the DRM;
however, using the transformation with MM2 leads to an error in line 17, because the helper multi-
ValuedOrFalse is invoked on NamedElt objects, but the helper is defined over class Attribute. The
extraction algorithm could avoid these problems being more conservative. For example, it could
detect these scenarios to set the flag subsAllowed of NamedElt in the DRM to false. However, this
would lead to a false negative illustrated in MM3, where the attribute name has been moved from
NamedElt to its subclasses. If NamedElt had subsAllowed set to false, no class in MM3 would re-
fine it (i.e., structural typing would not apply), and MM3 would not be considered a refinement of
the DRM, which is incorrect. Hence, regarding helpers, our extraction algorithm favors recall over
precision.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:46 J. de Lara et al.

Fig. 30. Examples of false positives in the Class2Relational transformation.

As previously mentioned, a second limitation of the TRM extraction mechanism concerns the
precision of cardinalities. For example, the target DRM includes a class Table with a feature keys
of unknown cardinality. A meta-model containing Table.keys with cardinality 1..* would be a re-
finement of this DRM, but would make rule MultiValuedDataTypeAttribute2Column incorrect, as
it creates a Table with no key (mandatory in the meta-model).

In summary, the TRM extraction algorithm is complete according to our experiments (100%
recall) and has high precision (97% precision) up to some limitations regarding cardinalities and
ATL helpers. Improving precision, e.g., using meta-model information, is up to future work.

9.3 RQ2: Variability Support in TRMs

A TRM gathers requirements that meta-models need to fulfill to be able to use them safely with a
given transformation. To reuse a transformation with as many meta-models as possible, its TRM
needs to represent the allowed meta-model variability. In this experiment, we look at the power of
TRMs to encode this variability. For this purpose, we analyzed the TRMs of the seven transforma-
tions, measuring the elements helping in expressing variability. For the DRMs, we measured the
ratio of anonymous vs. named classes, and the ratio of untyped features (which can become either
attributes or references) vs. typed fields (actual attributes or references). In the compatibility mod-
els, we computed the size of the feature model (both total number of features and leaf features),
and the number of valid configurations. Table 5 summarizes the results.

First, we notice that anonymous classes only appear in source DRMs. This is expected, as the
target domain is write-only and ATL lacks navigation expressions for the target domain. Most
transformations (5 out of 7) have source DRMs with anonymous classes, and overall around 25%
of classes are anonymous. Anonymous classes are common in source DRMs, because most trans-
formations contain some navigation expression in the rule filters, helpers, or bindings. Anonymous
classes help in encoding variability, as they can be matched to classes with an arbitrary name. If
we compare with the original source meta-models (see Table 6), we can see that DRMs enhance
flexibility, because they reduce significantly the number of named classes. This reduction depends
on the meta-model percentage that a transformation uses. An extreme case is UML2Intalio, which
only requires a small fragment of UML (the part of activity diagrams) and so the resulting DRM
has 11 named classes, while the meta-model has 248 classes. Typically, source DRMs also achieve
a reduced number of named classes compared to meta-model footprint techniques, which derive

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:47

Table 5. Indicators of the Variability in the TRMs

Transformation Source DRM Target DRM Compatibility model

Anonymous/
Total classes

Untyped fields/
Total fields

Anonymous/
Total classes

Untyped fields/
Total fields

Total
Features

Leaf
Features Configs

JavaSource2Table 5/8 [62.5%] 5/10 [50%] 0/4 [0%] 2/4 [50%] 174 99 >1,402,192

HSM2FSM 0/6 [0%] 6/10 [60%] 0/4 [0%] 8/8 [100%] 307 192 >325,647

PetriNet2PNML 12/16 [75%] 12/12 [100%] 0/8 [0%] 21/22 [95%] 637 410 >953,959

KM32EMF 1/11 [9%] 31/32 [97%] 0/10 [0%] 32/34 [94%] 1,576 1,125 >666,127

Ant2Maven 1/32 [3%] 79/80 [99%] 0/32 [0%] 83/85 [98%] 7,447 6,304 >133,701

Class2Relational 0/5 [0%] 9/10 [90%] 0/4 [0%] 6/8 [75%] 266 157 >1,610,020

UML2Intalio 4/15 [27%] 10/13 [77%] 0/6 [0%] 5/8 [62.5%] 306 187 >1,086,476

Average 23/93 [24.7%] 152/167[91%] 0/68 [0%] 157/169 [93%] 1,530.4 1,210.6 >355,787

Table 6. Named Classes in DRMs, Meta-models, and Footprints for the Source Domain,
and Reduction Ratio of Named Classes When Using DRMs

Transformation
Named classes

in DRM
Classes

in Meta-model
Reduction

DRMs vs. MMs
Classes

in Footprint
Reduction

DRMs vs. Footprints

JavaSource2Table 3 6 50% 6 50%

HSM2FSM 6 6 0% 6 0%

PetriNet2PNML 4 9 55,5% 7 42,8%

KM32EMF 10 15 33,3% 14 28,6%

Ant2Maven 31 48 35,4% 45 31,1%

Class2Relational 5 6 16,7% 6 16,7%

UML2Intalio 11 248 95,6% 32 65,6%

a meta-model slice containing only those elements touched by the transformation (Sen et al. 2009;
Burgueño et al. 2015; Jeanneret et al. 2011). The reason is that DRMs do not enforce class hierar-
chies but just express structural requirements, sometimes using anonymous classes; while sliced
meta-models may contain intermediate classes in inheritance hierarchies. Still, meta-model foot-
prints are normally used in combination with other reuse techniques, e.g., based on concepts (de
Lara and Guerra 2011; Sánchez Cuadrado et al. 2014a) or model types (Steel and Jézéquel 2007;
Guy et al. 2012). Anyhow, as Table 6 shows, such footprints are typically less flexible than DRMs
regarding classes.

Table 5 also shows the ratio of fields that have a type vs. those that do not have it. Fields with
no type can be matched to both attributes and references in a meta-model, thus helping to express
variability. Most fields in the source and target DRMs are untyped, providing great reuse opportu-
nities. In contrast, the type of all fields in meta-models and footprints is fixed (i.e., it is a particular
reference type or data type). The compatibility model ensures that the variability in the types that
source and target features may take is coherent. Table 5 shows that the feature models generally
admit a large number of configurations (calculated using FeatureIDE’s best approximation with 1h
timeout). The number of features in the model is typically correlated with the number of untyped
fields. The substantial number of configurations shows that TRMs encode very high variability.

Overall, we can conclude that TRMs extracted from ATL transformations encode a large variabil-
ity, which ensures a flexible reuse. This can be stated of individual DRMs compared to meta-models
and footprints, and of TRMs including their compatibility model.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:48 J. de Lara et al.

9.4 Threats to Validity

In this section, potential threats to validity associated with the performed evaluation are discussed.
In particular, we distinguish threats among construct, internal, and external validity as follows:

Construct validity. It pertains to any factor that can compromise the validity of inferences that
observations or measurement tools actually represent or measure the construct being investigated.
One possible threat to construct validity is that the set of meta-model modification operators used
to generate the meta-model mutants might not be complete, potentially preventing exercising all
features of our refinement relation. To minimize the impact of this threat, we manually assessed
that our mutants exercise all features of our refinement checks, such as subsAllowed, mandato-
ryAllowed, and the different semantics of references. Another threat to construct validity can be
related to the adoption of anATLyzer for determining if a meta-model mutant can be safely used
with a transformation. Even though this might represent a bias, since anATLyzer was created by
three co-authors of this article, it is important to remark that anATLyzer has been used as was pre-
sented in the original paper (Sánchez Cuadrado et al. 2017) without operating any specific change
or adaptation that might have introduced inferences in the experiments presented in this article.

Internal validity. Threats to internal validity concern any confounding factor that could influ-
ence our results. We have used a relatively low number of transformations. The reason is that
our experiment requires the seed transformations to be free of typing errors. Unfortunately, as we
showed in our previous work (Sánchez Cuadrado et al. 2017), most freely available third-party ATL
transformations contain errors, which prevents their use in our evaluation. Hence, to ascertain to
what extent our evaluation is complete, we have measured the coverage of ATL constructs in our
setup with respect to the whole language, and we cover a good part of them (around 71% of the
constructs). As for the ATL constructs not covered in our experiment, according to Selim et al.
(2017), they are not among the most common in practice (called rules are found in around 19% of
transformations of the ATL zoo, and imperative blocks in around 23% of transformations). Besides,
the number of generated meta-model mutants is quite high (more than 26,000), which means that
our TRM extraction algorithm has been exhaustively tested. Another threat to internal validity
is that the evaluation has used anATLyzer as an oracle to well-typedness. Although anATLyzer
has been reported to have high precision and recall (Sánchez Cuadrado et al. 2017, 2018), it is not
infallible. To avoid distortions on the evaluation results due to possible errors in our oracle, we
have manually revised the dubious cases and have not found any incorrect result.

External validity. Threats to external validity refer to the extent to which the results of our study
can be generalized. The proposed TRM formalism and the refinement operators have been imple-
mented and exercised on ATL model transformations only. However, to ensure the applicability
of the approach also to other model transformation languages, we conceived the TRM formalism
and the corresponding refinement operators in a technology-agnostic manner. The conceived the-
orems and the proofs have been defined by discarding any technology-specific aspects, and the
theory implementation has been done a posteriori.

10 RELATED WORK

Over the past years, several techniques for model transformation reuse have been conceived (Kusel
et al. 2015). These are generally classified as intra-transformation or inter-transformation reuse ap-
proaches. The former techniques support reuse within a single transformation by means of rule
inheritance (Wimmer et al. 2012), rules with variability (Strüber et al. 2018), module superim-
position (Wagelaar et al. 2010), and internal composition mechanisms such as phases (Sánchez
Cuadrado and Molina 2009), hooks (Sánchez Cuadrado and Molina 2008), localized transforma-
tions (Etien et al. 2015), and unit combinators (Kleppe 2006).

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:49

In this article, we are more interested in inter-transformation reuse, which consists of reusing
transformations that were developed for a meta-model with a different one (i.e., reuse across
meta-models). Compared with intra-transformation reuse, inter-transformation techniques aim
at a more coarse-grained reuse—typically complete transformationsand require mechanisms to
check that the reused transformation can work properly with a different meta-model, and even
automatically adapt the transformation to the new context.

One of the distinctive aspects of inter-transformation reuse is the form of the interface for reuse,
as this is the artifact that developers need to deal with when confronted with a new reuse (Bruel
et al. 2018). This interface can follow a black-box or a white-box style. In white-box approaches, the
reuse interface is the transformation itself, sometimes expressed in a high-level format, e.g., design
patterns (Lano and Rahimi 2014; Lano et al. 2014). This is the case of DelTa (Ergin et al. 2016), a
high-level language to express and compose transformation design patterns. These patterns can
be adapted for particular meta-models by mapping the pattern elements to meta-model types, and
it is possible to generate transformation code from the patterns.

Black-box approaches are more common. In this case, the reuse interface describes the typ-
ing requirements that a transformation demands from its source/target meta-models. Then, the
reuser needs to specify how particular meta-models satisfy those requirements. In most cases,
the typing requirements are expressed in the form of a meta-model that is developed on purpose
for each reusable transformation, and that needs to be mapped to the concrete meta-model the
transformation is to be reused for (Steel and Jézéquel 2007; Guy et al. 2012; de Lara and Guerra
2011; Sánchez Cuadrado et al. 2014a; de Lara and Guerra 2017; de Lara et al. 2015). However, a
meta-model is a concrete realization of some design concern, and we have seen in this article that
different meta-models may realize a specific concern in different ways (e.g., as an attribute or as a
reference). Hence, some researchers have investigated more expressive means to describe typing
requirements for transformations, for example, based on logics (Zschaler 2014). Next, we analyze
existing black-box reuse approaches, indicating how our work improves the state-of-the-art.

Inter-transformation approaches that use meta-models as reuse interface include model types
(Steel and Jézéquel 2007; Guy et al. 2012), concepts (de Lara and Guerra 2011; Sánchez Cuadrado
et al. 2014a), a posteriorityping (de Lara and Guerra 2017), facet-oriented modelling (de Lara et al.
2018), and multi-level modelling (de Lara et al. 2015).

Inspired by generic programming (Gregor et al. 2006), concepts have been proposed as the reuse
interface of transformations (Sánchez Cuadrado et al. 2014a, 2014b). In this context, concepts are
meta-models whose elements (classes, attributes, references) are interpreted as variables that need
to be bound to the elements of concrete meta-models. This binding produces an adapted transfor-
mation that is directly applicable to the specific meta-models.

Instead of genericity, some approaches profit from polymorphism for transformation reuse. As
an example, model types (Steel and Jézéquel 2007; Guy et al. 2012) are based on establishing a
subtyping relationship or binding between the transformation meta-model and the meta-model
where the transformation is to be reused. By means of this subtyping relation, the transforma-
tion becomes applicable to the specific meta-model. In the same vein, Boronat (2017) proposes
a method to discover subtyping (subsumption) relations between two meta-models, considering
OCL constraints and supporting structural subtyping.

Multi-level modelling (Atkinson and Kühne 2002; de Lara et al. 2014; de Lara and Guerra 2018)
permits modelling using an arbitrary number of meta-levels. This enables the definition of families
of meta-modelling languages (e.g., for domain-specific process modelling) that can be successively
refined by instantiation. This way, transformations defined for the meta-meta-model of a language
family can be reused for any of the languages of the family (de Lara et al. 2015). Hence, multi-level
modelling enables transformation reuse by exploiting the instantiation relation.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:50 J. de Lara et al.

Another way to reuse a transformation is by retyping arbitrary models with respect to the trans-
formation meta-models (de Lara and Guerra 2017; de Lara et al. 2018). Model retyping enables
transformation reuse, because it permits seeing models as instances of the meta-models a trans-
formation is defined on.

Overall, the common theme of these approaches is the use of a meta-model as reuse interface.
Instead, we propose TRMs as reuse interface, as they are more expressive than plain meta-models
to convey transformation requirements, for two reasons. First, DRMs can express variability. For
example, it is possible to indicate that a class needs a certain feature without prematurely stating
that it should be an attribute or a reference; leave the cardinality bounds open; specify several
possible target types for a reference; or omit the name of classes. Moreover, DRMs make explicit
further expectations required for a correct typing, like the possibility for classes to have or not
have extra mandatory features or the identification of classes that cannot inherit from each other.
This expressivity is not possible with a plain meta-model. Second, TRMs include a compatibility
model expressing dependencies between open options of source and target meta-models. These
dependencies cannot be captured with just two meta-models, and therefore we use a feature model
for this purpose.

Different from meta-model based approaches, ours does not require binding the specific meta-
models to the transformation reuse interface; instead, a transformation can be reused with any
meta-model pair that satisfies the TRM. This brings increased usability to the approach (reuse is
automatic) and enables automatic discovery of reusable transformations for given meta-models
or TRMs. However, an explicit binding language (e.g., Sánchez Cuadrado et al. (2014a)) is useful
to bridge heterogeneities between the reuse interface and the meta-models. Therefore, we plan to
investigate how to combine our approach with binding languages in future work.

Another issue is the provision of techniques to extract the reuse interface of a transforma-
tion. Meta-model-based approaches can profit from techniques to obtain the meta-model footprint
(Burgueño et al. 2015; Jeanneret et al. 2011). This is the part of the input and output meta-models ac-
cessed by the transformation, which is itself a meta-model. Specific methods have been developed
to co-evolve the extracted footprint and the transformation to obtain a simpler, more understand-
able interface (Sánchez Cuadrado et al. 2015). While these works rely on the actual transformation
meta-models, our technique to extract the TRM does not need the meta-models. This is useful when
the meta-models are not available. Moreover, the end result is a TRM, which is more expressive
than a meta-model to specify variability and typing requirements.

Instead of using meta-models to express the reuse interface, Zschaler uses logic to express meta-
model requirements extracted from in-place transformations (Zschaler 2014). Similar to our ap-
proach, the goal is having more expressive means to capture typing requirements and being able
to check if particular meta-models satisfy those requirements. However, while this can be consid-
ered the seminal work in this area, it was not fully elaborated. For example, there are no means
to specify that features can be attributes or references, or to require anonymous classes. Instead
of logics, we opted for creating a meta-model able to express model-to-model requirements for
a given transformation and included a compatibility model because we target model-to-model
transformations. Moreover, extracting the requirements from ATL transformations is more chal-
lenging, as we need to deal with OCL expressions, automated binding resolution, and meta-model
dependencies.

Other approaches focus on checking the correctness of transformation reuse. In this regard,
transformation intents (Lúcio et al. 2016; Salay et al. 2016) describe semantical properties that
ensure a correct reuse according to the designer expectations. In our case, we aim at ensuring
syntactical correctness, but it would be interesting to incorporate intents into our framework in
the future.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:51

Typing model transformations is important to ensure their correct chaining. In Vignaga et al.
(2013), a type system for mega-models assigns to transformations the types of their source and
target meta-models. Our TRMs could be integrated into this type system with the benefit of
achieving more abstract types for transformations (the TRMs), facilitating a more flexible trans-
formation chaining. In Vallecillo and Gogolla (2012), the authors argue on the need for adding
behavioral types to transformations (abstract descriptions of their behavior), in addition to struc-
tural types. For this purpose, they propose a contract-based approach called Tracts. Our TRMs
focus purely on the structural part. It is up to future work to combine TRMs with behavioral
types.

Regarding our techniques, we have created our own meta-model to express transformation
requirements. Instead, we could have used uncertainty annotations (Famelis and Chechik 2019)
over standard meta-models. However, expressing concerns specific to typing requirements—like
antiancestor relations between classes, or the fact that a class cannot have further mandatory
features—may be difficult to express using generic annotations.

Concerning refinement relations between models, several works define well-formedness rules
that can be used to check whether a UML diagram is a valid refinement of another. Their goal is
either being able to transition from more abstract views of a system to detailed representations that
preserve the semantics, or abstracting concrete models. For instance, Faitelson and Tyszberowicz
(2017) define a set of refinement rules for class diagrams and use-case diagrams. They have a
relational semantics and interpret the subtype relation (in class diagrams) and the includes/extends
relations (in use-case diagrams) as subsetting relations. This branch of works assumes a diagram
and its refinement are complete in the sense that there is no uncertainty or variability on their
elements (e.g., a feature must be either an attribute or a reference; this cannot be underspecified).
More importantly, their goal is different from ours, as they do not focus on (and their refinement
rules do not ensure) safe model transformation reuse.

Overall, our work advances the state-of-the-art by proposing a more expressive means to capture
the typing requirements of model-to-model transformations. This is a novel reuse interface for
model transformations that enables automated reuse (i.e., does not require a binding) and ensures
syntactic reuse correctness.

11 CONCLUSIONS AND FUTURE WORK

In this article, we have presented a new approach for model transformation reuse based on TRMs.
TRMs are automatically extracted from model transformations and contain a compatibility model
constraining the possible open options in the source and target meta-models. As meta-models can
be encoded as DRMs, we have provided a theory of TRM refinements, distinguished between differ-
ent types of refinement, and proposed a catalogue of refinement operators. We have implemented
prototype tool support for ATL, presented an evaluation showing good precision and recall of the
ATL TRM extraction procedure, and confirmed that the extracted TRMs encode high variability
that enables flexible reuse.

In the future, we would like to incorporate the notion of binding into our refinement relation-
ship to improve reusability. Such bindings may resolve heterogeneities (e.g., class renaming) be-
tween the TRMs and the meta-models and would induce a transformation adaptation in the style
of Sánchez Cuadrado et al. (2014a). We also plan to explore heuristics for automatic meta-model
generation from TRMs. For this purpose, we may exploit techniques for optimal product selec-
tion (Hierons et al. 2016) from the feature model of dependencies specified in the TRM. As our
checks are syntactical, we aim at incorporating a notion of transformation intent and behavioral
type into our approach. Another research line is the creation of extraction procedures for other
transformation languages, such as ETL or QVT. At the technical level, we plan to integrate TOTEM

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:52 J. de Lara et al.

with model transformation repositories (Di Rocco et al. 2016) or general-purpose repositories like
GitHub, to allow powerful means to query, discover, and chain reusable transformations. Finally,
we plan to exploit the notion of DRM as a device to capture meta-model requirements in other
applications, like bottom-up and example-based modelling (Kästner et al. 2018; López-Fernández
et al. 2015).

A APPENDIX

This appendix contains the proofs of the main results in the article. The Alloy specifications used
to support these proofs are available at http://miso.es/trms/.

A.1 Lemma 5.5: Composition of DRM Mappings Is Well-formed (Section 5.2)

Proof. Given two composable mappings m1 : RM → RM ′ and m2 : RM ′ → RM ′′, we need to
prove that their composition m =m2 ◦m1 : RM → RM ′′ (as in Definition 5.4) is well-formed. Ac-
cording to Definition 5.1,m is well-formed if it fulfills the following conditions:

—mCS should be a total function. We have that mCS =mC ∪mS =m
2
C ◦m

1
C ∪ (m2

S ◦m
1
S ∪

m2
S ◦m

1
C ∪m

2
C ◦m

1
S) =m2

C ◦ (m1
C ∪m

1
S) ∪m2

S ◦ (m1
S ∪m

1
C) = (m2

C ∪m
2
S) ◦ (m1

C ∪m
1
S).

Sincem2
C ∪m

2
S andm1

C ∪m
1
S are total functions, so ismCS .

—∀C ∈ RMC • mS (C) is de f ined ⇒ C .subsAllowed = true . As we have mS =m
2
S ◦m

1
S ∪

m2
S ◦m

1
C ∪m

2
C ◦m

1
S , we proceed by cases:

—For thoseC ∈ RMC s.t.m2
S ◦m

1
S (C) orm2

C ◦m
1
S (C) is defined, this condition holds because

it holds form1
S .

—For those C ∈ RMC s.t. m2
S ◦m

1
C (C) is defined, it holds because the composability condi-

tion states: ∀C ∈ RMC • m2
S (m1

C (C)) is de f ined ⇒ C .subsAllowed = true .
—∀C ∈ RMC • mS (C) is de f ined ⇒ ∀Cs ∈ C .subs •mS (Cs) is de f ined . Again, we proceed by

cases onmS :
—For thoseC ∈ RMC s.t.m2

S ◦m
1
S (C) orm2

C ◦m
1
S (C) is defined, this condition holds because

it holds form2
S andm1

S .

—For those C ∈ RMC s.t. m2
S ◦m

1
C (C) is defined, it holds because the composability condi-

tion states: ∀C ∈ RMC • m2
S (m1

C (C)) is de f ined ⇒ ∀Cs ∈ C .subs •m1
S (Cs) is de f ined ∨

m2
S (m1

C (Cs)) is de f ined . This means that, given a Cs ∈ C .subs , if m1
S (Cs) is de f ined , then

mS (Cs) is defined; while ifm2
S (m1

C (Cs)) is defined, thenmS (Cs) is defined.
—∀C ∈ RMC • mC (C) is de f ined ⇒ ∀f ∈ C . f eats •mF (f) is de f ined . This holds because
mC =m

2
C ◦m

1
C , and bothm2

C andm1
C satisfy this condition. �

A.2 Theorem 5.6: Composition of Strong

Refinements Is Strong Refinement (Section 5.2)

Proof. Given two composable strong refinements m1 : RM → RM ′ and m2 : RM ′ → RM ′′, we
need to prove that m =m2 ◦m1 is a strong refinement. We proceed by cases, checking that every
predicate in sre f inement holds form:

(1) name_re f inement demands ∀C ∈ RMN C •mC (C).name = C .name . According to the
definition of DRM mapping composition (Definition 5.4), we have that mC =m

2
C ◦m

1
C .

As both m1 and m2 are strong refinements, we have that ∀C ∈ RMN C •C .name =
m1

C (C).name , and ∀C ∈ RM ′N C •C .name =m2
C (C).name . Hence, we have ∀C ∈ RMN C •

C .name = (m2
C ◦m

1
C) (C).name =mC (C).name as required.

(2) abstract_re f inement demands ∀C ∈ RMC •C .isAbstract = any ∨mCS (C).isAbstract =
C .isAbstract . According to Definition 5.4, mCS = (m2

C ∪m
2
S) ◦ (m1

S ∪m
1
C). For those

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://miso.es/trms/

Typing Requirements Models 21:53

classes C with isAbstract � any, isAbstract is preserved through all m1
S ,m

1
C ,m

2
S ,m

2
C .

Hence, for each classC , eitherC .isAbstract = any, ormCS (C).isAbstract = C .isAbstract .
(3) ancs_preservation demands∀C,Ca ∈ RMC •Ca ∈ C .ancs+ ⇒mCS (Ca) ∈mCS (C).ancs∗.

As ancs∗ is preserved by bothm1
CS andm2

CS , it is preserved bymCS .
(4) antiancs_preservation demands ∀C,Ca ∈ RMC • Ca ∈ C .antiancs+ ⇒mCS (Ca) ∈

mCS (C).antiancs+. As antiancs+ is preserved by both m1
CS and m2

CS , it is preserved by
mCS .

(5) mand_allowed_re f inement demands:

∀C ∈ RMC •mC (C) is de f ined ∧C .mandatoryAllowed = f alse ⇒
|{ f | f ∈ C . f eats∗ ∧ isMand (f)}| = |{ f | f ∈mC (C). f eats∗ ∧ isMand (f)}|

Predicate mand_allowed_re f inement holds for m1 and m2 as both are refinements.
As they also are strong refinements, predicates mand_allowed_preservation(m1) and
mand_allowed_preservation(m2), which demand preserving the flag subsAllowed ,
hold as well. Therefore, given a class C ∈ RMC with C .mandatoryAllowed = f alse ,
then m1

C (C).mandatoryAllowed = f alse =m2
C (m1

C (C)).mandatoryAllowed . This means

that |{ f | f ∈ C . f eats∗ ∧ isMand (f)}| = |{ f | f ∈m1
C (C). f eats∗ ∧ isMand (f)}| = |{ f |

f ∈m2
C (m1

C (C)). f eats∗ ∧ isMand (f)}|, and so mand_allowed_re f inement (m2 ◦m1)
holds.

(6) f eature_re f inement demands:

∀C ∈ RMC • mC (C) is de f ined ⇒
∀f ∈ C . f eats • mF (f) ∈ mC (C). f eats∗∧
f .name =mF (f).name ∧ re f inescard (f ,mF (f))

Assuming that f eature_re f inement holds form1 andm2, it is easy to see that the previ-
ous predicate, up to f .name =m2

F (m1
F (f)).name , holds form2 ◦m1. In addition, predicate

re f inescard (f ,m2
F (m1

F (f))) holds, because re f inesnum and re f inesmany are transitive.

This is so predicates card_preservation(m1) and card_preservation(m2) hold, because
m1 andm2 are strong refinements. This ensures equality of the allowLess and allowMore
flags.

(7) f eature_type_commut demands:

∀f ∈ RMF ,∀f t ∈ f .types • mA (f t) is de f ined ⇒mA (f t) ∈ mF (f).types ∧
mR (f t) is de f ined ⇒mR (f t) ∈mF (f).types,

which holds by transitivity, becausemA =m
2
A ◦m

1
A,mR =m

2
R ◦m

1
R , andmF =m

2
F ◦m

1
F .

(8) f eature_type_re f inement demands:

∀f ∈ RMF • mF (f) is de f ined ⇒ ((f .types = ∅) ∨
(mF (f).types � ∅ ∧ ∀f t ′ ∈mF (f).types ∃f t ∈ f .types •

(mA (f t) = f t ′ ∧ re f inesAttr (f t , f t ′)) ∨
(mR (f t) = f t ′ ∧ re f inesRef (f t , f t ′)))).

The predicate holds because, given f ∈ RMF , if f .types = ∅, then f eature_
type_re f inement (m2) holds. Otherwise, if f .types � ∅, we need to show that
re f inesAttr (_, _) and re f inesRef (_, _) are transitive. Predicate re f inesAttr (_, _) is
transitive due to the transitivity of equality. Predicate re f inesRef (_, _) is transitive as
well, because predicate re f _sem_preservation (which holds because both mappings are
strong refinements) forces references to be mapped with same open value. For the case
of open references, mappings can monotonically increase the allowed targets. For closed

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:54 J. de Lara et al.

references, mappings can monotonically decrease the allowed targets. Both cases lead
to a correct composition.

(9) subs_re f inement demands:

∀C ∈ RMC • mS (C) is de f ined ⇒ | conc_subs (mS (C)) | > 0∧
∀C ′ ∈ conc_subs (mS (C)) •
mand_allowed_re f inement (C, C ′) ∧
∀f ∈ C . f eats ∃f ′ ∈ C ′. f eats∗ • f eats_re f inement (f , f ′).

Mapping mS can be obtained by composing m2
S ◦m

1
C (m2

C ◦m
1
S and m2

S ◦m
1
S are empty

according to the condition for composition). Hence, the predicate holds, because it holds
form2

S .
(10) mand_allowed_preservation and card_preservation hold in m due to the transitivity of

element inclusion and equality.
(11) The first part of predicate re f _sem_preservation (wheremR is defined) holds due to the

transitivity of equality. For the second part, if m2
S of the owner classes are defined, the

predicate holds, as it holds form2
S . �

Note that the predicates for strong refinement are required for proving compositional-
ity of the refinement predicates. Hence, mand_allowed_preservation is required for mand_
allowed_re f inement , card_preservation for f eature_re f inement , and re f _sem_
preservation for f eature_type_re f inement . Other properties of DRMs, like subsAllowed ,
are not required to be preserved.

A.3 Identity Refinement

Given a DRM RM , we introduce an identity refinement idRM : RM → RM , which is a strong refine-
ment. This identity refinement will be used to prove in Appendices A.4 to A.14 that each refinement
in the catalogue presented in Section 5.2.1 are strong refinements.

Lemma A.1 (Identity Refinement). Given a DRM RM, the identity refinement idRM : RM →
RM defined as idRM = 〈idC : RMC → RMC , idS = ∅, idF : RMF → RMF , idR : RMR → RMR , idA :
RMA → RMA〉 is a valid DRM mapping that satisfies sre f inement (idRM).

Remark. For simplicity, we refrain from introducing other possible identity refinements, e.g.,
mapping through idS the subset of classes C such that C .subsAllowed = true , and satisfying
mand_allowed_re f inement (C,Csub) for each concrete subclass Csub of C .

Proof. We need to prove that the identity mapping idRM : RM → RM is a valid DRM mapping
and is a strong refinement. According to Definition 5.1, idRM is a valid DRM mapping if:

—idCS = idC ∪ idS is a total function (holds as idC is defined on the whole RMC , and idS

empty).
—∀C ∈ RMC • idS (C) is de f ined ⇒ · · · (holds, because idS is empty).
—∀C ∈ RMC • idC (C) is de f ined ⇒ ∀f ∈ C . f eats • idF (f) is de f ined (holds, because idF is

defined on the whole RMF).

To prove strong refinement, we proceed by cases, checking that idRM satisfies every predicate
in sre f inement (cf. Definition 5.2):

(1) name_re f inement and abstract_re f inement hold, because classes are mapped using the
identity mapping (idC ∪ idS).

(2) ancs_preservation and antiancs_preservation hold, because of the identity mapping of
classes, and because relations ancs and antiancs do not change.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:55

(3) mand_allowed_re f inement holds, because the number of features in every class does not
change, and each feature is mapped to itself via the identity mapping idF .

(4) f eature_re f inement holds, because of the identity mapping idF , and noting that the aux-
iliary predicates re f inesnum and re f inesmany hold if both Card arguments are equal.

(5) f eature_type_commut holds, because of the identity mappings idR and idA.
(6) f eature_type_re f inement holds, because of the identity mappings idR and idA, and noting

that the auxiliary predicates re f inesAttr and re f inesRef hold for two equal arguments of
type A or R.

(7) subs_re f inement holds, because idS is empty.
(8) mand_allowed_preservation holds, because of the identity mapping of classes.
(9) card_preservation and re f erence_sem_preservation hold, because of the identity map-

ping of features and reference types.

Cases (1–7) are for refinement, and cases (8–9) are for strong refinement. �

A.4 Refinement Operation: Adding New Class (Section 5.2.1)

Proof. Given a DRM RM , the identity mapping idRM : RM → RM is a strong refinement (cf.
Appendix A.3). We construct a new DRM RM ′ by adding a named class with a fresh name to
RMN C , so RM ′ = 〈RMN C ∪ {C ′}, _〉.7 The mapping idRM also applies if RM ′ is in the codomain
and is still a strong refinement as �C ∈ RMC s.t. idCS (C) = C ′. Therefore, the evaluation of each
predicate used by sre f inement does not change. The same reasoning follows when adding a new
anonymous class to RMAC . �

A.5 Refinement Operation: Assigning Fresh Name to Anonymous Class (Section 5.2.1)

Proof. Given a DRMRM , we construct a new DRM by giving a fresh name “X” to an anonymous
class: RM ′ = 〈RMN C ∪ {C},RMAC \ {C},name ∪ {(C, “X”)}, _〉. The identity mapping idRM applies
when RM ′ is in the codomain, and it satisfies sre f inement , because predicate name_re f inement
only applies to named classes in RM but not in RM ′. �

A.6 Refinement Operation: Setting Class to Abstract or Concrete (Section 5.2.1)

Proof. Given a DRM RM and a class C ∈ RMC with C .isAbstract = any, we create a new DRM
RM ′ = 〈_, isAbstract + +{(C, true)}, _〉 where C is abstract (we use “++” to denote function over-
riding). The identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong
refinement. This is so predicate abstract_re f inement holds, because C .isAbstract = any in RM .
The same reasoning applies if we set C to concrete in RM ′. �

A.7 Refinement Operation: Adding Feature to Class (Section 5.2.1)

Proof. Given a DRM RM and a classC s.t.C .mandatoryAllowed = f alse , we create a new DRM
RM ′ by adding a new optional feature f to C: RM ′ = 〈RMF ∪ { f }, f eats ∪ {(C, f)},Number ∪
{n},value ∪ {(n, 0)},allowLess ∪ {(n, f alse)},allowMore ∪ {(n, f alse)},min ∪ {(f ,n)}, _〉 (where
f can have any max cardinality). The identity mapping idRM is applicable when RM ′ is in the
codomain, and it is still a strong refinement. This is so predicatemand_allowed_re f inement holds,
because isMand (f) is false and the set of mandatory features ofC in RM and RM ′ stays the same.

If the feature f is added to a class C s.t. C .mandatoryAllowed = true , then predicate
mand_allowed_re f inement holds regardless of whether f is mandatory or not. �

7For simplicity, this and the following proofs only show the parts of the DRM tuple that change, representing the unchanged

parts as _.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:56 J. de Lara et al.

A.8 Refinement Operation: Refining the Possible Types of a Feature (Section 5.2.1)

Proof. Given a DRM RM and a feature f s.t. | f .types | = 0, we create a new DRM RM ′ by adding
an attribute type a to f : RM ′ = 〈A ∪ a, types ∪ {(f ,a)}, _〉 (where a.dtype is unimportant). The
identity mapping idRM also applies when RM ′ is in the codomain, and it is still a strong refine-
ment. This is so predicate f eature_type_re f inement holds, because | f .types | = 0 inRM . The same
reasoning holds if we add a reference type to f , or a set of attribute and reference types.

Given a DRM RM , a feature f s.t. | f .types | > 1, and a feature type t ∈ f .types , we create a new
DRM RM ′ by deleting t from f .types:RM ′ = 〈types \ {(f , t)}, _〉. The identity mapping idRM needs
to be modified by removing the mappings from idR or idA to f , and it is still a strong refinement.
This is so predicate f eature_type_re f inement holds, because f .types is not empty in RM ′, and
for every remaining feature type f t ∈ f .types , re f inesAttr (f t , f t) or re f inesRef (f t , f t), while
the other predicates hold, as they hold for idRM . �

A.9 Refinement Operation: Refining Type of Attribute (Section 5.2.1)

Proof. Given a DRM RM and a feature f with an attribute type a s.t. a.dtype = AnyDT ,
we create a new DRM RM ′ by changing the type of a to any element t ∈ DataType: RM ′ =
〈dtype + +{(a, t)}, _〉. The identity mapping idRM applies when RM ′ is in the codomain, and
it is still a strong refinement. This is so predicate f eature_type_re f inement holds, because
re f inesAttr (RM .a,RM ′.a) holds (with RM ′.a the attribute type a in RM ′) since a.dtype = AnyDT
in RM . The proof when changing Numeric by Real or Inteдer is analogous. �

A.10 Refinement Operation: Splitting Class in Hierarchy (Section 5.2.1)

Proof. Given a DRM RM and a class C ∈ RMC s.t. F1 ⊆ C . f eats , we create a new DRM RM ′

by adding a superclass Csup with fresh name to C and moving the features in F1 to Csup :
RM ′ = 〈RMC ∪ {Csup },ancs ∪ {(C,Csup)}, f eats ∪ {(Csup , fi)}fi ∈F1

\ {(C, fi)}fi ∈F1
, _〉. The identity

mapping idRM applies when RM ′ is in the codomain, and it is still a strong refinement. This is so
predicate ancs_preservation holds, because the ancs relation is extended but existing values are
not modified. Predicate f eature_re f inement also holds, because the features of C in RM can be
mapped to features owned or inherited by idRM (C). �

A.11 Refinement Operation: Adding/Deleting Target of Reference (Section 5.2.1)

Proof. Given a DRM RM and a reference r s.t. r .open = true , we create a new DRM RM ′ by
adding a new target classC ∈ RMC s.t.C � r .tarдets to r .tarдets:RM ′ = 〈tarдets ∪ {(r ,C)}, _〉. The
identity mapping idRM applies whenRM ′ is in the codomain, and it is still a strong refinement. This
is so predicate f eature_type_re f inement holds, because re f inesRef (RM .r ,RM ′.r) (withRM ′.r the
reference type r in RM ′) holds, since each target of r in RM is a target of r in RM ′.

Given a DRM RM with a reference r s.t. r .open = f alse and |r .types | > 1, we create a new DRM
RM ′ by deleting a target classC ∈ r .tarдets from r .tarдets: RM ′ = 〈tarдets \ {(r ,C)}, _〉. The iden-
tity mapping idRM applies when RM ′ is in the codomain, and is still a strong refinement. This is
so f eature_type_re f inement holds, because re f inesRef (RM .r ,RM ′.r) holds, since each target of
r in RM ′ is a target of r in RM (as they are mapped via an identity mapping). �

A.12 Refinement Operation: Adding Subclass Consistent with Antiancs (Section 5.2.1)

Proof. Given a DRM RM with two classes {C,RC} ⊆ RMC s.t.

∀Ca ∈ C .ancs∗•(�Cs ∈ Ca .antiancs
∗ •Cs ∈ RC .ancs∗∧

�Cs ∈ RC .ancs∗ •Ca ∈ Cs .antiancs
∗),

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:57

we create a new DRM RM ′ by adding C as a subclass of RC: RM ′ = 〈ancs ∪ {(C,RC)}, _〉. The
identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong refinement.
This is so predicate ancs_preservation holds, because the ancs relation is extended but existing
values are not modified; and antiancs_preservation holds, because antiancs is not modified. If C
is a new class added to RM ′, we do not need to make any assumption on the relation between C
and RC , but ancs_preservation holds, because ancs is only extended.

Please note that RM ′ is a valid DRM, since condition (1) of Definition 4.1 holds: given any C1 ∈
RC .ancs∗ and anyC2 ∈ C .ancs∗, the refinement condition ensuresC1 � C2.antiancs

∗ and vice versa,
as required by condition (1). �

A.13 Refinement Operation: Refining Minimum Cardinality (Section 5.2.1)

Proof. Given a DRM RM with a feature f s.t.min(f) = AnyCardinality, we create a new DRM
RM ′ by assigning to f any n ∈ Number as cardinality: RM ′ = 〈min + +{(f ,n)},Number ∪ {n}, _〉
(where the value of n is unimportant). The identity mapping idRM applies when RM ′ is in the
codomain, and it is still a strong refinement. This is so predicate f eature_re f inement holds,
because re f inesmin (RM . f .min,RM ′. f .min) holds. Generally, the predicate holds when f .min is
AnyCardinality, and it also supports the following refinements when f .min is a Number : a smaller
numeric value when allowLess = true , and a bigger numeric value when allowMore = true . �

A.14 Refinement Operation: Refining Maximum Cardinality (Section 5.2.1)

Proof. Given a DRM RM with a feature f s.t.max (f) = AnyCardinality, we create a new DRM
RM ′ by assigning to f any n ∈ Number as cardinality: RM ′ = 〈max + +{(f ,n)},Number ∪ {n}, _〉
(where the value of n is unimportant). The identity mapping idRM applies when RM ′ is in the
codomain, and it is still a strong refinement. This is so predicate f eature_re f inement holds,
because re f inesmax (RM . f .max ,RM ′. f .max) holds. Generally, the predicate holds when f .max
is AnyCardinality, and it also supports the following refinements when f .max is a Number :
a smaller numeric value when allowLess = true , and a bigger numeric value or Many when
allowMore = true . �

A.15 Theorem 5.12: Retyping is Well-formed (Section 5.4)

Proof. Given a refinement m : RM → RM ′ and a write well-formed typing type : M → RM ′,
we need to show that back (type) : M → RM (in Definition 5.11) is well-formed if RM ′ is a meta-
model or sre f inement (m) holds. We proceed by cases, showing that each condition for typing
well-formedness holds:

(1) Objects are not typed by two classes such that one class is antiancestor of any ancestor of the
other. Asm is a refinement, antiancs_preservation(m) holds, and somCS cannot map two
antiancestor classes to classes that are not antiancestors. Assume an object typed by two
classesC1,C2 ∈ RM ′C in the codomain ofmC . Then, function objBck calculates the typing

type ′ using m−1
C . The only way for an object to obtain a typing from RM made of two

antiancestor classes is that C1 and C2 are neither ancestors nor antiancestors. However,
antiancs_preservation forbids this.

Now assume that C1,C2 are not in the codomain of mC , but their ancestors receive
a mapping via mCS . Because type is well-formed, any ancestor of C1,C2 cannot be an-
tiancestor of each other. As antiancs_preservation holds, the resulting typing classes in
RMC cannot be antiancestors of each other.

(2) Slots are typed by features owned or inherited by some of the object types. The typing
type∗

slots
assigns a typing in two ways: First, using mF backwards on objects typed by

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:58 J. de Lara et al.

classes that receive a mapping withmC . In this case, function back ensures that a feature
f is selected as the type for slot s s.t. ∃d ∈ type∗

objs
(s .owner) ∧ f .owner ∈ d .ancs∗, hence

satisfying the property. Similarly, for those features for whichmF is not defined, back se-
lects a feature f as the type for s s.t. ∃da ∈ type∗

objs
(s .owner) • f .owner ∈ da.ancs∗, hence

satisfying the property.
(3) The type of every slot is not contradictory with that of the feature. Given a field s typed

by a feature f ′, then either f ′.types is empty, or it contains an attribute a′. Now,
if f ′ =mF (f), back assigns f as the new type. However, as m is a refinement, then
f eature_type_re f inement holds, and so either f .types is empty, or it contains some at-
tribute a s.t. re f inesAttr holds. Similarly, if �f • mF (f) = f ′, then back selects a feature
f s.t. f eature_type_re f inement (f , f ′) holds. An analogous reasoning can be done if s is
a link.

(4) Slots obey the minimum cardinality of their types. This property demands the number of
slots s owned by an object o and typed by a feature f s.t. f .min.allowLess = f alse , to be
greater or equal than f .min.value . If RM ′ is a meta-model, all features have allowLess =
f alse , which means this property is checked for every f ′ ∈ RM ′F . Now, assume we have
some f ∈ RMF s.t. mF (f) = f ′. Then, f .min.allowLess can be true or false. If it is true,
then the minimum cardinality is not checked on the feature. If it is false, according to
f eature_re f inement , we have f .min.value = f ′.min.value , and so the property holds for
f , because it holds for f ′. If f .min.allowMore is true, according to f eature_re f inement ,
we may have f .min.value ≤ f ′.min.value , in which case the property holds, as the min-
imum value for f ′ is lower.

If instead of RM ′ being a meta-model, we have sre f inement (m), then card_
preservation(m) holds. This means that for any f ∈ RMF • f .min.allowLess =
mF (f).min.allowLess (and similar for allowMore). Hence, if the minimum cardinal-
ity of any f ′ ∈ RM ′F with f ′.min.allowLess = f alse is satisfied in every object, it is
satisfied for f (with mF (f) = f), because by predicate f eature_re f inement , we have
f .min.value = f ′.min.value . If f ′ is not in the codomain ofmF , the condition still holds,
because card_preservation ensures preservation of allowLess on any feature f that can
be mapped to f ′ s.t. f eatures_re f inement (f , f ′). As function back only selects as type
features f ′ with f eatures_re f inement (f , f ′), then the condition holds.

(5) Slots obey the maximum cardinality of their types. This property demands the num-
ber of slots s owned by an object o and typed by a feature f s.t. f .max .allowMore =
f alse , to be less or equal than f .max .value . If RM ′ is a meta-model, all features have
allowMore = f alse , which means this property is checked for every f ′ ∈ RM ′F . Now, as-
sume we have some f ∈ RMF s.t. mF (f) = f ′. Then, f .max .allowMore can be true or
false. If it is true, then the maximum cardinality is not checked on the feature. If it is
false, according to f eature_re f inement , we have f .max .value = f ′.max .value , and so
the property holds for f , because it holds for f ′. If f .max .allowLess is true, according
to f eature_re f inement , we may have f .max .value ≥ f ′.max .value , in which case the
property holds, as the maximum value for f is higher.

For the case of sre f inement (m), we have card_preservation(m). This means that for
any f ∈ RMF • f .max .allowMore =mF (f).max .allowMore (and similar for allowLess).
Hence, if the maximum cardinality of any f ′ ∈ RM ′F with f ′.max .allowMore = f alse is
satisfied in every object, so it is satisfied for f (with mF (f) = f), because by predicate
f eature_re f inement , we have f .max .value = f ′.max .value . However, a class in RM may
have several features compatible with f ′, and back would try to type the slot by all of

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

Typing Requirements Models 21:59

them, with the risk of violating the maximum cardinality. To avoid overstepping this,
back adds the condition |{s ∈ o.slots | type∗

slots
(s) = f }| < f .max .value , hence ensuring

that the maximum cardinality holds. This fact effectively allows several valid retypings.
(6) Every link target is coherent with its type. This property demands that the objects pointed

by links typed by closed references conform to some of the reference targets. If RM ′ is a
meta-model, all its references are closed and, therefore, this property holds for every typed
link. Then, we may have r ∈ RMR mapped to r ′ in RM ′R . As m is a refinement, we have
re f inesRef (r , r ′). If r is open, the property does not need to be checked for r . If r is closed,
then r ′ may have less targets than r , so any link end compatible with targets in r ′ will be
compatible with targets in r . If sre f inement (m), then we need to have r .open = r ′.open
due to predicate re f _sem_preservation. Therefore, if r ′ is closed, r is also closed and the
same reasoning applies.

Note that we require type to be write well-formed to avoid typing any object o by an ab-
stract classC ′. AssumemS (C) = C ′. The mappingmS only requires conformance for non-abstract
subclasses of C ′ (or by C ′ if it is non-abstract). This means that C may have features that are
not matched in C ′ (as C ′ is abstract), hence producing incorrect retypings due to the violation
of minimum cardinalities. However, starting with a typing that is write well-formed avoids this
problem. �

ACKNOWLEDGMENTS

Work partially funded by the R&D programme of the Madrid Region (project FORTE, S2018/TCS-
4314), the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00), the Spanish
MINECO (project RECOM, TIN2015-73968-JIN, AEI/FEDER/UE), a Ramón y Cajal 2017 grant, and
the European Union Horizon 2020 research and innovation programme through the Polyglot and
Hybrid Persistence Architectures for Big Data Analytics (TYPHON) project (#780251). We thank
the anonymous referees for their useful comments that helped us improve this article.

REFERENCES

Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML infrastructure. ACM Trans. Model. Comput. Simul. 12, 4

(2002), 290–321.

Francesco Basciani, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2014. Automated chaining of model

transformations with incompatible metamodels. In Proceedings of the MoDELS (LNCS), Vol. 8767. Springer International

Publishing, 602–618.

Artur Boronat. 2017. Structural model subtyping with OCL constraints. In Proceedings of the SLE. ACM, 194–205.

Jean-Michel Bruel, Benoit Combemale, Esther Guerra, Jean-Marc Jezequel, Joerg Kienzle, Juan de Lara, Gunter Mussbacher,

Eugene Syriani, and Hans Vangheluwe. 2018. Model transformation reuse across metamodels: A classification and com-

parison of approaches. In Proceedings of the ICMT (LNCS), Vol. 10888. Springer, 92–109.

Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. 2015. Static fault localization in model transforma-

tions. IEEE Trans. Softw. Eng. 41, 5 (2015), 490–506.

Marsha Chechik, Michalis Famelis, Rick Salay, and Daniel Strüber. 2016. Perspectives of model transformation reuse. In

Proceedings of the IFM (LNCS), Vol. 9681. Springer, 28–44.

Zheng Cheng, Rosemary Monahan, and James F. Power. 2018. Formalised EMFTVM bytecode language for sound verifica-

tion of model transformations. Softw. Syst. Model. 17, 4 (2018), 1197–1225.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. 2008. Automating co-evolution in model-

driven engineering. In Proceedings of the EDOC. IEEE Computer Society, 222–231.

Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2015. Abstract delta modelling. Math. Struct. Comput. Sci. 25, 3 (2015),

482–527.

Juan de Lara and Esther Guerra. 2011. From types to type requirements: Genericity for model-driven engineering. Softw.

Syst. Model. 12, 3 (2011), 453–474.

Juan de Lara and Esther Guerra. 2017. A posteriori typing for model-driven engineering: Concepts, analysis, and applica-

tions. ACM Trans. Softw. Eng. Methodol. 25, 4 (2017), 31:1–31:60.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

21:60 J. de Lara et al.

Juan de Lara and Esther Guerra. 2018. Refactoring multi-level models. ACM Trans. Softw. Eng. Methodol. 27, 4 (2018), 17:1–

17:56.

Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and how to use multilevel modelling. ACM Trans.

Softw. Eng. Methodol. 24, 2 (2014), 12:1–12:46.

Juan de Lara, Esther Guerra, Joerg Kienzle, and Yanis Hattab. 2018. Facet-oriented modelling: Open objects for model-driven

engineering. In Proceedings of the SLE. ACM, 147–159.

Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2015. Model-driven engineering with domain-specific meta-

modelling languages. Softw. Syst. Model. 14, 1 (2015), 429–459.

Juan de Lara, Juri Di Rocco, Davide Di Ruscio, Esther Guerra, Ludovico Iovino, Alfonso Pierantonio, and Jesús Sánchez

Cuadrado. 2017. Reusing model transformations through typing requirements models. In Proceedings of the FASE (LNCS),

Vol. 10202. Springer, 264–282.

Juri Di Rocco, Davide Di Ruscio, Alfonso Pierantonio, Jesús Sánchez Cuadrado, Juan de Lara, and Esther Guerra. 2016. Using

ATL transformation services in the MDEForge collaborative modeling platform. In Proceedings of the ICMT (LNCS),

Vol. 9765. Springer, 70–78.

Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2012. Evolutionary togetherness: How to manage coupled

evolution in metamodeling ecosystems. In Proceedings of the ICGT (LNCS), Vol. 7562. Springer, 20–37.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2006. Fundamentals of Algebraic Graph Transformation.

Springer.

Huseyin Ergin, Eugene Syriani, and Jeff Gray. 2016. Design pattern oriented development of model transformations. Com-

put. Lang. Syst. Struct. 46, C (2016), 106–139.

Anne Etien, Alexis Muller, Thomas Legrand, and Richard F. Paige. 2015. Localized model transformations for building

large-scale transformations. Softw. Syst. Model. 14, 3 (2015), 1189–1213.

David Faitelson and Shmuel S. Tyszberowicz. 2017. UML diagram refinement (focusing on class- and use case diagrams).

In Proceedings of the ICSE. IEEE/ACM, 735–745.

Michalis Famelis and Marsha Chechik. 2019. Managing design-time uncertainty. Softw. Syst. Model. 18, 2 (2019), 1249–1284.

Douglas P. Gregor, Jaakko Järvi, Jeremy G. Siek, Bjarne Stroustrup, Gabriel Dos Reis, and Andrew Lumsdaine. 2006. Con-

cepts: Linguistic support for generic programming in C++. In Proceedings of the OOPSLA. ACM, 291–310.

Clement Guy, Benoît Combemale, Steven Derrien, Jim Steel, and Jean-Marc Jézéquel. 2012. On model subtyping. In Pro-

ceedings of the ECMFA (LNCS), Vol. 7349. Springer, 400–415.

Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. 2016. SIP: Optimal product selection from feature

models using many-objective evolutionary optimization. ACM Trans. Softw. Eng. Methodol. 25, 2 (2016), 17:1–17:39.

Daniel Jackson. 2006. Software Abstractions—Logic, Language, and Analysis. The MIT Press. Retrieved from: http://alloytools.

org/.

Cédric Jeanneret, Martin Glinz, and Benoit Baudry. 2011. Estimating footprints of model operations. In Proceedings of the

ICSE. ACM, 601–610.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A model transformation tool. Sci. Comput. Prog.

72, 1–2 (2008), 31–39.

Frédéric Jouault and Jean Bézivin. 2006. KM3: A DSL for metamodel specification. In Proceedings of the 8th IFIP WG 6.1

International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’06). Springer-Verlag,

171–185.

Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990. Feature-oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA.

Andreas Kästner, Martin Gogolla, and Bran Selic. 2018. From (imperfect) object diagrams to (imperfect) class diagrams:

New ideas and vision paper. In Proceedings of the 21st ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems (MoDELS’18). ACM, 13–22.

Anneke Kleppe. 2006. MCC: A model transformation environment. In Proceedings of the ECMDA-FA (LNCS), Vol. 4066.

173–187.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon Object Language (EOL). In ECMDA-FA (LNCS),

Vol. 4066. Springer, 128–142. Retrieved from: https://www.eclipse.org/epsilon/doc/eol/.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2008. The epsilon transformation language. In Proceedings of the

ICMT (LNCS), Vol. 5063. Springer, 46–60. Retrieved from: https://www.eclipse.org/epsilon/doc/etl/.

Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger.

2015. Reuse in model-to-model transformation languages: Are we there yet? Softw. Syst. Model. 14, 2 (2015), 537–572.

Kevin Lano and Shekoufeh Kolahdouz Rahimi. 2014. Model-transformation design patterns. IEEE Trans. Softw. Eng. 40, 12

(2014), 1224–1259.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

http://alloytools.org/
http://alloytools.org/
PLX-HTTPS://www.eclipse.org/epsilon/doc/eol/
PLX-HTTPS://www.eclipse.org/epsilon/doc/etl/

Typing Requirements Models 21:61

Kevin Lano, Shekoufeh Kolahdouz Rahimi, Iman Poernomo, Jeffrey Terrell, and Steffen Zschaler. 2014. Correct-by-

construction synthesis of model transformations using transformation patterns. Softw. Syst. Model. 13, 2 (2014), 873–907.

Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2015. Example-driven meta-model

development. Softw. Syst. Model. 14, 4 (2015), 1323–1347.

Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan M. K. Selim, Eugene Syriani, and Manuel

Wimmer. 2016. Model transformation intents and their properties. Softw. Syst. Model. 15, 3 (2016), 647–684.

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and Gunter Saake. 2017. Mastering Soft-

ware Variability with FeatureIDE. Springer. Retrieved from: https://featureide.github.io/.

Object Management Group. 2005. UML 2.0 OCL Specification. Retrieved from: https://www.omg.org/spec/UML/2.0/.

Object Management Group. 2016. MOF Query/View/Transformation (QVT). Retrieved from: https://www.omg.org/spec/

QVT/.

Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús Sánchez Cuadrado, and Juan de Lara. 2015. Pattern-based devel-

opment of domain-specific modelling languages. In Proceedings of the MoDELS. IEEE, 166–175.

Rick Salay, Steffen Zschaler, and Marsha Chechik. 2016. Correct reuse of transformations is hard to guarantee. In Proceed-

ings of the ICMT (LNCS), Vol. 9765. Springer, 107–122.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2014a. A component model for model transformations. IEEE

Trans. Softw. Eng. 40, 11 (2014), 1042–1060.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2014b. Reverse engineering of model transformations for

reusability. In Proceedings of the ICMT (LNCS), Vol. 8568. Springer, 186–201.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2015. Reusable model transformation components with bentō.

In Proceedings of the ICMT (LNCS), Vol. 9152. Springer, 59–65.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2017. Static analysis of model transformations. IEEE Trans. Softw.

Eng. 43, 9 (2017), 868–897.

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2018. Quick fixing ATL transformations with speculative analysis.

Softw. Syst. Model. 17, 3 (2018), 779–813.

Jesús Sánchez Cuadrado and Jesús García Molina. 2008. Approaches for model transformation reuse: Factorization and

composition. In Proceedings of the ICMT (LNCS), Vol. 5063. Springer, 168–182.

Jesús Sánchez Cuadrado and Jesús García Molina. 2009. Modularization of model transformations through a phasing mech-

anism. Softw. Syst. Model. 8, 3 (2009), 325–345.

Douglas C. Schmidt. 2006. Guest editor’s introduction: Model-driven engineering. Computer 39, 2 (2006), 25–31.

Gehan M. K. Selim, James R. Cordy, and Juergen Dingel. 2017. How is ATL really used? Language feature use in the ATL

zoo. In Proceedings of the MoDELS. IEEE Computer Society, 34–44.

Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. 2009. Meta-model pruning. In Proceedings of the MoDELS

(LNCS), Vol. 5795. Springer, 32–46.

Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation: The heart and soul of model-driven software devel-

opment. IEEE Software 20, 5 (2003), 42–45.

Sirius. last accessed in 2018. Retrieved from: https://eclipse.org/sirius/.

Kenneth Slonneger and Barry L. Kurtz. 1995. Formal Syntax and Semantics of Programming Languages. Vol. 340. Addison-

Wesley Reading.

Jim Steel and Jean-Marc Jézéquel. 2007. On model typing. Softw. Syst. Model. 6, 4 (2007), 401–413.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF: Eclipse Modeling Framework, 2nd Edition.

Addison-Wesley Professional. Retrieved from: http://www.eclipse.org/modeling/emf/.

Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer, and Jennifer Plöger. 2018. Variability-

based model transformation: Formal foundation and application. Formal Asp. Comput. 30, 1 (2018), 133–162.

Javier Troya, Sergio Segura, José Antonio Parejo, and Antonio Ruiz Cortés. 2018. Spectrum-based fault localization in model

transformations. ACM Trans. Softw. Eng. Methodol. 27, 3 (2018), 13:1–13:50.

Javier Troya and Antonio Vallecillo. 2011. A rewriting logic semantics for ATL. J. Obj. Technol. 10 (2011), 5: 1–29.

Antonio Vallecillo and Martin Gogolla. 2012. Typing model transformations using tracts. In Proceedings of the ICMT (Lecture

Notes in Computer Science), Vol. 7307. Springer, 56–71.

Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages: An annotated bibliography. SIGPLAN

Notices 35, 6 (2000), 26–36.

Andrés Vignaga, Frédéric Jouault, María Cecilia Bastarrica, and Hugo Brunelière. 2013. Typing artifacts in megamodeling.

Softw. Syst. Model. 12, 1 (2013), 105–119.

Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder. 2010. Module superimposition: A composition technique

for rule-based model transformation languages. Softw. Syst. Model. 9, 3 (2010), 285–309.

Jon Whittle, John Edward Hutchinson, and Mark Rouncefield. 2014. The state of practice in model-driven engineering. IEEE

Software 31, 3 (2014), 79–85.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

https://featureide.github.io/
https://www.omg.org/spec/UML/2.0/
https://www.omg.org/spec/QVT/
https://www.omg.org/spec/QVT/
https://eclipse.org/sirius/
http://www.eclipse.org/modeling/emf/

21:62 J. de Lara et al.

Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schönböck, Wieland Schwinger, Dimitris

S. Kolovos, Richard F. Paige, Marius Lauder, Andy Schürr, and Dennis Wagelaar. 2012. Surveying rule inheritance in

model-to-model transformation languages. J. Obj. Technol. 11, 2 (2012), 3: 1–46.

Steffen Zschaler. 2014. Towards constraint-based model types: A generalised formal foundation for model genericity. In

Proceedings of the VAO. ACM, New York, NY, Article 11, 8 pages.

Received December 2018; revised April 2019; accepted June 2019

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 4, Article 21. Pub. date: September 2019.

