
Pre
lim

ina
ry

Ve
rs

ion

Pre
lim

ina
ry

Ve
rs

ion

1

A model-based approach to families of embedded
domain specific languages

Jeśus Śanchez Cuadrado and Jesús Garćıa Molina

Abstract— With the emergence of model driven engineering
(MDE), the creation of domain specific languages (DSL) is becom-
ing a fundamental part of language engineering. The development
cost of a DSL should be modest, compared to the cost of
developing a general-purpose programming language. Reducing
the implementation effort and providing reuse techniques are key
aspects for DSL approaches to be really effective.

In this paper we present an approach to build embedded
domain specific languages applying the principles of model driven
engineering. On the basis of this approach we will tackle reuse of
DSLs by defining families of DSLs, addressing reuse both from
the DSL developer and user point of views. A family of DSLs
will be built up by composing several DSLs, so we will propose
composition mechanisms for the abstract syntax, concrete syntax
and model transformation levels of a DSL’s definition. Finally,
we contribute a software framework to support our approach,
and we illustrate the paper with a case study to demonstrate its
practical applicability.

Index Terms— domain specific languages, model driven devel-
opment, families of DSLs, DSL composition

I. I NTRODUCTION

DOMAIN specific languages (DSL) are becoming more and
more important with the emergence of the model driven

software engineering (MDE) paradigms, such as Model Driven
Architecture (MDA), generative programming or software facto-
ries. DSLs allow programs to be written at an abstraction level
closer to the problem domain than general-purpose programming
languages. MDE technology includes model transformation lan-
guages intended to the generation of software artifacts (e.g. source
code or configuration files) from specifications expressed bya
DSL program.

The development of DSLs shares some similarities to the
development of general-purpose programming languages. But,
on the contrary to them, the cost of building a DSL should
be modest. Several approaches have been proposed to define
DSLs [1] [2] [3], and a number of studies report successful cases
of DSL usage [4] [5] [6]. A well-known technique to create a
DSL is embedding the DSL’s constructs into an existing general
purpose language, which acts as the host language. Such a DSLis
therefore called anembedded DSL, and it inherits all features of
the host language. This form of developing DSLs is widespread
in the Haskell and Lisp functional language communities [7][8],
as well as in dynamic object oriented language communities,such
as the Smalltalk and Ruby ones [9] [10].

An important advantage of the embedded approach is that it
allows domain specific languages to be easily and rapidly devel-
oped [7] [11]. The implementation is usually straightforward since
the language syntax, the type system, and the run-time system
are only variations of the ones provided by the host language.

This is a preliminary version. See the IEEE TSE site for the final version.
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However, the development of an embedded DSL tends to be an
ad-hocprocess, where developers just use host language idioms,
neglecting the separation between concrete syntax, abstract syntax
and semantics. On the other hand, MDE principles do promote
this separation, and provide a conceptual framework to build
DSLs in a systematic way [2] [3].

Defining a family of languages has been proposed as an
approach to promote systematic reuse in the development of
several DSLs for a given domain [12] [13]. A basic mechanism
to achieve such reuse is the composition of DSLs. However,
little attention has been paid to this topic, and DSLs are usually
developed as standalone entities.

In the last three years we have developed a tool for model
driven engineering, named AGE, which is based on DSLs em-
bedded into the Ruby language [11]. The developer is provided
with embedded DSLs for the different aspects in MDE, such as
model transformation, code generation or validation and with a
metamodeling facility compatible with Ecore [14].

This paper aims to present an approach to build embedded
DSLs applying the principles of model driven engineering, that
is, metamodeling and model transformations. On the basis ofthis
approach, we will tackle the development of families of DSLs
as a way of promoting reuse, both from the DSL developer and
user point of views. Composition of DSLs will be a key point
of our proposal. We will argue that supporting DSL composition
implies providing composition mechanisms at all the levelsof
the definition of a DSL. We contribute a software framework that
supports our approach.

This paper is organized as follows. The next section introduces
the main concepts and motivates our proposal. Section III explains
techniques to create embedded DSLs, while Section IV presents
our framework integrating embedded DSLs with MDE, along with
the composition mechanisms it provides. Section V addresses the
problem of creating families of DSLs. In Section VI a discus-
sion about the advantages and disadvantages of the embedded
approach is presented. Some guidelines to decide when to use
embedded DSLs are also given. Finally, Section VII presentsthe
related work, and Section VIII gives the conclusions.

II. OVERVIEW

Domain specific languages are software languages tailored to
address problems in some application domain. DSLs have a
higher abstraction level than general-purpose languages since they
provide constructs representing concepts of the domain. A DSL
is esentially composed of three components [3] [6] [13], namely:

• Abstract syntax. The set of language concepts and their
relationships, along with the rules to combine them.

• Concrete syntax. Defines the notation the end user will use to
specify programs conforming to the abstract syntax. Textual
and graphical notations are the most usual ones, but other
representations such as tables can be defined as well.
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• Semantics. Describes the meaning of the language’s con-
structs. There are several approaches to semantics [3] [13],
but their discussion is out of the scope of this paper. We will
use translational semantics.

Model driven engineering provides a foundation to build DSLs
by applying metamodeling. Metamodels provide a unified and
expresive way to define the concepts of the domain. Object
oriented metamodeling languages such as MOF [15] or Ecore [14]
are typically used to define a language’s abstract syntax. Inthe
case of textual DSLs, formalisms such as grammars or XML
schemas can be used to the define the concrete syntax. Then,
a bridge between MDE and the chosen technical space (e.g.
grammarware or XML) must be established. Finally, translational
semantics fits well in an MDE approach, since the mapping
between concepts of the source and the target language can be
established using model transformations.

A DSL definitioncomprises the three components mentioned
above. ADSL programis a piece of software, expressed using
some concrete syntax, conforming to the DSL definition. In
an MDE setting, programs are equivalent to models, so they
can be manipulated using regular model operations (e.g. model
transformations).

A family of DSLsis a set of related DSLs for a given domain.
Each DSL is called a family member. A member may be linked to
other members to address reuse either at the language definition
level or at the user level. Developing a family of DSLs poses a
challenge on how to compose its members.

An embedded domain specific languageis a DSL which has
been implemented on top of some general purpose language
which serves as the host language. It reuses the infrastructure
of the host language (e.g. concrete syntax, type system and run-
time system) extending it with domain specific constructs. Thus, a
DSL program expressed by an embedded DSL is a legal program
of the host language.

The concrete techniques used to implement an embedded DSL
depend on the paradigm the host language belongs to, because
the abstractions provided by the host language are used to create
domain specific constructs on top of them. Although embedded
DSLs can be defined within any language, those languages pro-
viding a non-intrusive syntax are more suitable. Thus, functional
and dynamic object oriented languages have been mainly used.

Several embedded DSLs have been defined for statically typed
functional languages such as Haskell [7] [16], where lambda
abstractions and monads are used to embed the DSL. In the case
of Lisp-like dynamic functional languages the macro systemis
used [8]. In dynamic object oriented languages, such as Rubyor
Smalltalk, the basic computation mechanism is message passing
(i.e. method calls), while code blocks are first-class citizens. These
two features have been used, for example in Ruby on Rails or
Seaside [9], to define web frameworks based on embedded DSLs.

The embedded approach is a powerful way to build DSLs,
however there is little or no separation between the language
components, and its development tends to be rather ad-hoc.
On the other hand, several approaches and tools intended to
create DSLs relying on MDE techniques [2] [3] [17] has been
proposed, however more research is necessary to address key
issues such as the reuse of DSLs, where defining families of
DSLs plays an important role. Our experience applying MDE
techniques to embedded DSLs has shown that benefits on both
sides can be achieved. On the embedded side the development

follows a more systematic process where the different language
components are clearly separated. The use of metamodels to
define the abstract syntax helps reasoning about the domain and
makes it possible interoperability with MDE tools. On the MDE
side, taking advantage of the flexibility of embedded DSLs allows
powerful tools to be created [11], which may help us to address
research challenges, for instance reuse of DSLs.

We have combined MDE and embedded DSLs to tackle the
development of families of DSLs. Each family member may
be created with reuse or for reuse. We argue that composition
mechanisms are needed at abstract syntax, concrete syntax and
tranformation levels to achieve such reuse.

This paper reports our results using MDE and embedded DSLs
in order to deal with families of DSLs. We have developed
an MDE framework based on embedded DSLs to support our
approach. It automatizes the development of DSLs and provides a
number of composition mechanisms. The development of families
of DSLs will be tackled relying on such composition mechanisms.

III. E MBEDDED DOMAIN SPECIFICLANGUAGES

In this section we explain techniques to embed DSLs into
dynamic object oriented languages, which are the technicalbasis
for our proposal. We begin by introducing the example that
will be used to illustrate the concepts and techniques discussed
throughout this paper. We will use Ruby as the host language for
embedding the DSLs.

A. Running example

This example tackles a problem related to task automation
in the development of Eclipse contributions [18]. Developing a
contribution to the Eclipse platform involves filling configuration
files and writing repetitive code, which refers to elements defined
by the configuration files in no obvious ways. In the end, the
knowledge about how to develop a contribution (e.g. adding a
button with a shortcut, or defining a new wizard) is scattered
through several classes and configuration files, yielding toa copy-
paste reuse process from existing implementations.

The Eclipse platform is very large, so we will explain only a
few concepts needed to understand the example. Eclipse provides
the developer with extension points to specify contributions and to
extend the platform. Different types of projects can be defined, for
instance to support several programming languages. Resources,
such as files, can be classified in resource types to associate
specific actions, source editors, etc. to them. Finally, to allow
users to invoke actions, elements such as buttons, pop-up menus,
or key shortcuts are added to the user interface1.

In order to automatize the development of Eclipse contribu-
tions, a family of DSLs can be defined, where each member in
the family allows related Eclipse contributions to be specified.
Also, this family provides a higher level of abstraction than the
traditional way of developing for the Eclipse platform.

Given a set of DSL programs belonging to the family, a process
consisting of a chain of model-to-model and model-to-code
transformations automatically generates most of the contribution
code. This paper will be illustrated with three DSLs of this family,
calledResources, ActionsandModeling Actions.

1For the sake of simplicity, in this explanation we do not introduce core
Eclipse concepts such as plugin, perspective or view.
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Fig. 1. Metamodel capturing concepts related to resources, projects and
actions, and their relationships.

• The ResourcesDSL allows us to describe “physical” re-
sources such as types of projects, the kinds of resources
(e.g. a kind of file) a project may hold, etc.

• The Actions DSL allows us to define actions a user can
perform, as well as specifying the widget used to activate
the action (e.g. a button, a key shortcut, etc.). As we will
see, it “references” the Resources DSL to associate actions
with resource types.

• The Modeling ActionsDSL is an extension of the Actions
DSL, which provide actions specific to an MDE environ-
ment, such as launching a transformation or validating a
model.

The following piece of code shows the concrete syntax of the
Resources DSL. In particular, it shows an excerpt of a program
to define a resource type for transformation files, and a project
type for our MDE tool, AGE. This DSL has been defined on the
basis of the metamodel shown in Figure 1.

resource_type ’rubytl-transf’ do
extension ’.rtl’
icon ’rubytl.gif’

end

project ’age’ do
folder ’models’
folder ’metamodels’
folder ’transformations’ do
contains_res ’rubytl-transf’

end
end

First, a resource type is defined for RubyTL transformation
files (i.e. we have created a model transformation language named
RubyTL). It has an extension and an icon associated. Then, a new
type of project is defined, which is composed by several folders
to store artifacts such as models, metamodels or transformation
definitions. Also, it specifies that thetransformations folder
containsrubytl-transf resources.

As is shown by the metamodel of Figure 1, an action group
contains one or more action definitions. An action can be related
to a certain resource type to make this action applicable only
to this kind of resources, while an action group is related toa
certain kind of project. The example below corresponds to the
Actions DSL. An action group for theage project type is defined,
which contains only one action, related to RubyTL transformation
resources. The action will be shown in a pop-up menu.

action_group ’age-group’ do
project ’age’

action ’export transformation’ do
resource ’rubytl-transf’
show_in_popup

end
end

It is important to notice that the two code excerpts shown
above correspond to two different DSL programs. However,
action groups and actions defined in the second program need to
reference resource types defined in the first one. This topic will
be addressed in Section V. Also, in such a section, the Modeling
Actions DSL will be defined as an extension of Actions.

B. Basic implementation technique

The basic strategy is to create an embedded DSL on the basis of
the keywords it offers, and on how they can be composed. Usually,
a keyword will represent a domain concept, and keyword compo-
sition will determine the relationships between the concepts. As
we have pointed out, depending on the paradigm the host language
belongs to, and the abstractions it provides, the constructs used
to embed the DSL are different. Since we are dealing with
dynamic object oriented languages, each DSL keyword will be
defined as a method, with zero or more parameters, while nested
structures will be mapped to a code block. In the simplest
approach such methods are defined in some class where the whole
DSL functionality is implemented.

As an example, the implementation of theproject andfolder
keywords could be as follows. A method is defined for each
keyword, and the method’s implementation creates a data struc-
ture to be processed subsequently. Implementation-wise a new
ProjectType object is added to a list of project types when the
project method is executed, then the passed block is evaluated
using yield. The folder method adds aFolder object to the
list of folders maintained by its enclosing project type.

def project(name, &block)
@projects << ProjectType.new(name)
yield # synonym for "block.call"

end

def folder(name, &block)
folder = Folder.new(name)
current_project = @projects.last
current_project.folders << folder
yield if block_given? # the block is optional

end

We propose to use metamodels to define the abstract syntax
of the embedded DSL, so that keyword implementation is in
charge of creating an instance of the abstract syntax, instead of
creating an arbitrary data structure. Thus, when the DSL program
is evaluated the result is a model conforming to the abstract
syntax, which can be manipulated in a number of ways: serialized
to some interchange format (e.g. XMI), transformed using model
transformation languages or just interpreted. Embedded DSL
techniques are thus used to give concrete syntax to the abstract
syntax metamodel of a DSL.

We provide the following guidelines to establish the mapping
between an abstract syntax metamodel and those constructs of
DSLs embedded into dynamic object oriented languages.

Eachmetaclassis mapped to a DSL keyword, implemented by
a method. Some attributes of the metaclass can be specified as
parameters of the keyword, typically compulsory attributes such
as a name for the concept. In the example, theProjectType

metaclass is mapped to theproject method.
A containment relationshipis mapped to a code block, where

keywords representing the referenced metaclass are written inside
the block. The container is specified as the outermost DSL
construct, while the contained elements are specified inside the
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block. An element is owned only by one container, so the
relationship is univocal, and there is no need to reference the
container explicitly. In the example it is enough to enclosefolders
betweendo - end within the project they are related to, because
a folder is contained in only one project type

A non-containment relationshipimplies that the element to
be referenced is defined in some place in the DSL program.
Some kind of identifier has to be used to reference such an
element. A non-containment relationship can therefore be mapped
to a keyword enclosed within a code block, as in containment
relationships, but the keyword receives an identifier representing
the referenced concept as a parameter. In the example, afolder

references the resource it contains by means of thecontains res

keyword. The DSL implementation must look up the resource
definitions and connect the corresponding one to the folder.

Optional attributes, attributes with default values, and in gen-
eral attributes not specified as parameters, can be specifiedin the
enclosing code block using a keyword. For instance, theiconPath

attribute is specified by theicon keyword.
These are basic guidelines, but variations may be considered.

For example, a containment relationship can be representedin the
concrete syntax as a non-containment relationship, but it is more
clear to use the strategy explained above, since it avoids the need
of using identifiers to reference elements.

It is also possible to take advantage of features of the host
language to make the syntax more compact or readable. For
instance, declaring a folder can be shortened if Ruby hashes(i.e.
name-value pairs specified by=>) are considered.

folder ’transformation’,
:contains_res => ’rubytl-transf’

To sum up, we propose to use those constructs and techniques
of embedded DSLs to give concrete syntax to an abstract syntax
metamodel. The rest of the section is devoted to describe tech-
niques intended to improve quality attributes of embedded DSLs
such as expresivity, reusability and usability.

C. Leveraging expressiveness

The implementation technique explained until now only allows
us to define block-structured DSLs. Nevertheless, several tech-
niques can be used to leverage the expressiveness.

The operators provided by the host language can be used to
define small expression languages on the DSL concepts. The host
language must allow operator overloading, so that it is possible
to use DSL constructs as if they were primitive constructs. For
instance, one can create a facility to define a new type of project
on the basis of an existing one, overloading the addition and
substraction operators to add or remove project folders.

project_variant ’simple_variant’ do
project(’rubytl’) - folder(’transformation’)

+ folder(’code-generator’)
end

In addition, some pure object oriented languages allow primi-
tive types to be extended, so that new methods and operators can
be added, or even existing operators can be overridden. Thus,
domain specific operations can be added to primitive types. For
instance, a new method can be added to theString class to
implicitly perform operations on images. Below, an icon in gif
format is transformed to a png image.

icon ’rubytl.gif’.as_png

A general approach to write rich expressions in an object
oriented language is to chain expressions in cascade using the
dot notation [19]. Each method call will return an object that
allows other method calls to be chained. This approach is theonly
one available in object oriented languages such as Java, because
they have an intrusive syntax and do not support closures or code
blocks. For instance, a project variant could be defined froma
base project by including and excluding folders.

project_variant(’my_variant).from_base(’rubytl’).
excluding(’transformations).
including(’code-generation’)

D. Restricting the host language

In the embedded approach, any syntactically correct program of
the host language may be a legal DSL program. As far as possible,
the capabilities of the host language should be restricted to ensure
certain syntactic correctness from the DSL point of view.

Thus, one important concern is whether it is possible to restrict
the availability of a given keyword to a certain scope. Usually,
DSL keywords are defined as global methods or functions which
can be used in any part of the DSL, and it is up to the DSL user
not to write a keyword in a wrong place. For instance, if such a
constraint cannot be enforced, thefolder keyword can be written
outside aproject construct.

Dynamic languages supporting code blocks usually allow a
code block to be evaluated in an execution environment different
from the default one. We take advantage of this feature to create a
“sandbox” (or namespace) for each set of DSL keywords that can
be enclosed within another DSL keyword. The code block passed
to such a keyword will be evaluated in its sandbox to ensure that
only keywords defined in it can be used.

A sandboxis simply defined as a class with methods repre-
senting keywords. The following excerpt represents the sandbox
for the project keyword.

class ProjectTypeSandbox
def folder( name )

...
end

end

In this way, when a code block is passed to theproject

keyword to specify elements related to a project (i.e. folder
definitions), it is evaluated in the context of the project type
sandbox. This means that a new instance of the sandbox is created,
and the execution environment of the code block will be such
an instance, so ensuring that only those methods defined in the
sandbox are available.

The following excerpt shows the definition of theproject
keyword following this strategy. It expects the project type name,
and a code block. The passed block is evaluated in the context
of a new instance of the sandbox, using the Ruby built-in
instance eval method. It is worth noting the difference between
the implementation shown in Section III-B and this one. In the
former, we usedyield which evaluates the passed block in its
default environment, while now the block is evaluated in a more
restricted environment.

def project(name, &block)
@projects << ProjectType.new(name)
sandbox = ProjectTypeSandbox.new
sandbox.instance_eval(&block)

end
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With this approach aroot sandbox must be created to define
the DSL’s root keywords, that is, those keywords that are not
enclosed within any other keywords (e.g.project is an example
of root keyword). The main advantage of this technique is that
several DSL programs can be evaluated, even in parallel, without
conflicts between each other, because each one is evaluated within
its own root sandbox instance.

However, another form of sandboxing is needed when primitive
types are extended. Since each DSL may extend primitive types
in its own way, when two or more embedded DSLs are executed
in the context of the same virtual machine, name clashes can
arise. To solve this problem, a form of sandboxing at virtual
machine level must be provided by the host language, so that
the modifications to primitive types made by one DSL do not
have visibility outside their sandbox.

E. Keyword extension

The usage of sandboxes has an additional advantage related
to the reuse of the concrete syntax of a DSL. Any sandbox can
be independently extended using class inheritance, so thata new
keyword can be defined from an existing one. This feature also
means that a new DSL can be created from an existing one, just
extending several keywords, and probably the root sandbox.

When a keywordKbase, with sandboxSbase, is extended to
define a new keywordKext, the strategy is as follows.

• Creating a new sandboxSext as a subclass ofSbase, defining
within it keywords for new attributes and relationships.

• Identifying the keywordKparent whereKbase is contained.
• Creating a subclass of the corresponding sandbox for

Kparent, either to create a new keyword or just overriding
the keyword method forKparent in order to instantiate the
Sext sandbox instead ofSbase.

For example, in the Modeling Actions DSL atransformation
action is a specialized kind of action, so it can be based on
the existing action keyword defined in the Actions DSL. As
shown below, creating thetransform action keyword on the
basis on anaction keyword, implies inheriting from theaction
keyword’s sandbox to include new keyword methods, such as
transformation. Also, thetransform action method is created
in a class inheriting from the action group sandbox, becausean
action is contained into an action group.

class TransformActionSandbox < ActionSandbox
def transformation(name)
...

end
end

class ModelingGroupSandbox < ActionGroupSandbox
def transform_action(name, &block)
sandbox = TransformActionSandbox.new
sandbox.instance_eval(&block)

end
...

end

To complete the extension, the definition of theaction group

keyword method must be overridden (i.e. inheriting from thecor-
responding sandbox, in this case the root sandbox) to instantiate
the ModelingGroupSandbox instead ofActionGroupSandbox.

Fig. 2. Steps and artifacts involved in the definition of a DSLusing our
framework for embedded DSLs.

IV. A F RAMEWORK FOREMBEDDED DSLS AND MODEL

DRIVEN ENGINEERING

In this section we present our approach for developing DSLs,
which integrates embedded DSLs with model driven engineering.
Our proposal establishes a systematic process to clearly separate
the three components of a DSL’s definition.

Figure 2 illustrates the steps and artifacts involved in the
definition of a DSL. The DSL’s concrete syntax is defined relying
on some formalism or technique, in our case the embedded
approach. The DSL’s abstract syntax is defined by a metamodel.
. The concrete syntax to abstract syntax mapping establishes the
correspondences between concrete syntax elements and meta-
model elements. When a DSL program is evaluated, a model
conforming to the abstract syntax metamodel is created2 accord-
ing to the mapping. Finally, we consider translational semantics
to some target language or platform, which is achieved by a
translation process involving model-to-model and model-to-code
transformations, which eventually generates executable code.

We have developed a software framework to support this
process. It is composed of several embedded DSLs and a meta-
modeling kernel compatible with Ecore (via XMI files following
the EMF format to interoperate with Eclipse-based tools). ADSL
which automatizes and simplifies the techniques explained in
Section III to create concrete syntaxes embedded into Ruby has
been created. It is complemented by another DSL to establish
the mapping between a concrete syntax and an abstract syntax
metamodel. Finally, we have developed a model-to-model trans-
formation language called RubyTL [20].

With this framework, a DSL can be given a concrete syntax
very easily taking advantage of the flexibility of the embedded
approach. At the same time the use of metamodels to describe
the DSL’s abstract syntax helps reasoning about the domain,
and promotes model transformations. These features allow rapid
prototyping of DSLs, and we have in turn relied on them to create
the embedded DSLs provided by the framework.

A distinctive feature of our framework is that each component
provides composition mechanisms to achieve reuse at the cor-
responding level of the definition of a DSL. We will use these
mechanisms in Section V to address the creation of families of
DSLs. In the rest of the section we present each component of
the framework, focusing on the composition primitives it offers.

A. Abstract syntax

The set of language concepts and their relationships, alongwith
the rules to combine them, form the DSL’s abstract syntax. The

2Notice that theconformsrelationship between the DSL program and the
concrete syntax definition has been quoted in Figure 2 to reflect the fact that,
at the text level, the only conformance relationship that canbe enforced is
between the DSL program and the host language’s syntax.
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definition of abstract syntaxes using object oriented metamodeling
is a well-known topic [3], and we will not focus on it, but on
how to modularize a metamodel. We implement two mechanisms
based on the notions of package import and package merge
proposed by the UML/MOF specification [21]. The former allows
us to establish dependencies between independent metamodels,
whereas the later provides us with a means to create composite
metamodels from existing ones.

When a metamodel imports another metamodel, the meta-
classes of the imported metamodel are visible within it. This
allows dependencies to be represented while still keeping the
metamodels independent. In our tooling the dependencies are
implemented as cross-references between metamodels.

Package merge is defined as a directed relationship between two
packages, where the contents of a source package (receivingpack-
age) are extended with the contents of a target package (merged
package). Matching elements are merged (e.g. two metaclasses
with the same name), while non-matching elements are just deep-
copied. A typical approach to metamodel modularization is to
define a base metamodel which is later augmented by merging
extensions defined in other metamodels.

Although the basic definition of package merge is concep-
tually simple, there are some concerns which make it difficult
to understand and increases the complexity of the implemen-
tation [22]. For instance, the same metaclass may be partially
defined in several metamodels, and conflicts may appear when
merging attributes. In [13] a merge approach is used to handle
metamodel variability. It allows us to leave the connections or
joint points between metamodels open by defining “labels”. When
metamodels are merged the labels are substituted by the actual
names of the metaclasses to be merged. The main problem of
this approach is that the notion of label has to be propagatedto
any tool or formalism dealing with concrete syntax and semantics
(model transformations in our case).

In this way, our strategy to merge metamodels is a simpli-
fied version of the two former approaches. It removes part of
the package merge complexity by avoiding partial definitionof
elements (e.g. metaclasses), and there is no need to adapt the
rest of the framework, because instead of using “labels” we
just define a joint point as an empty metaclass with a name.
The merging process can be briefly summarized as follows. Two
metaclasses are merged when both names are identical. An error
is raised if none of the matched metaclasses are empty (i.e. at
least one of them must be a joint point). Subpackages are merged
when their names match, merging their metaclasses as explained.
The rest of the metamodel elements are just copied, arranging
the relationships to the merged elements appropriately. This has
been implemented as a model-to-model transformation usingthe
RubyTL transformation language,

It is worth noting the difference between import and merge
with regard to how they affect to the conformance relationship
between a DSL program (i.e. a model) and its abstract syntax
metamodel. With a merging strategy the actual metamodel to
which a DSL program conforms to is the composite metamodel
resulting from the merge. On the contrary, when a metamodel
imports a metaclass from another metamodel, cross-references
between models conforming to these metamodels will appear.We
will use these mechanisms in Section V to address two different
kinds of reuse.

B. Concrete syntax

As aforementioned, to define the concrete syntax of a meta-
model we rely on the technique of embedding the DSL’s syntax
into the Ruby language. Usually, the definition of an embedded
DSL repeats the same idioms explained in Section III, such as
defining a method for each keyword, sandboxing, etc. Thus, we
have developed a DSL intended to automatize this task.

Our DSL relies on the idea of keyword and keyword composi-
tion as the main abstractions to define the structure of an embed-
ded DSL. The generation of the actual implementation is done
dynamically, and transparently to the user. This generatedimple-
mentation also takes into account error reporting, manipulating
the exception trace to translate error messages automatically (e.g.
to identify the error line). Three basic constructs are available:

• Keyword. This is the basic construct to create the DSL. The
number and the type of the parameters are specified.

• Keyword extension. A keyword can be defined as an exten-
sion of another keyword.

• Keyword composition. This construct specifies which key-
words can be nested within another keyword, including
restrictions about the cardinality of the nested keywords.

The notions of keyword, keyword extension, and keyword
composition hide the complexity of creating a sandbox for
each context where a keyword can appear, as well as creating
subclasses to define extended sandboxes. When defining the
concrete syntax, the developer only needs to focus on the language
keywords and their composition. Also, this DSL provides other
features such as abstract keywords, or a means to define rich
expression languages based on the techniques explained in III-C,
but they are out of the scope of this paper.

For instance, an excerpt of the definition of the Resources
DSL is shown below. Theproject keyword expects the project
name of string type, as well as an optional parameter to
allow a description to be specified Theresource type, folder
and contain res keywords are defined in the same way. The
composition for construct is used to specify which keywords
must be enclosed within another one. In this case,folder and
contain res keywords are allowed only within aproject and
a folder keyword respectively.

keyword ’project’ do
params ’name’, :string
params ’description’, :string, :optional

end
keyword ’folder’ do
params ’name’, :string

end
keyword ’contain_res’ do
params ’resource_type’, :string

end
keyword ’resource_type’ do
param :name, :string

end

composition_for ’project’ do
nested ’folder’, :one_or_many

end
composition_for ’folder’ do
nested ’contain_res’, :one

end

Once defined the concrete syntax of a DSL, the next step is to
establish the mapping to the underlying abstract syntax.
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C. Concrete syntax to abstract syntax mapping

A bridge from embedded DSL constructs to the MDE technical
space (e.g. metamodeling concepts such as metaclasses, relation-
ships, etc.) must be created, so that the evaluation of a DSL
program yields to the creation of a model. The mapping from the
concrete syntax to the abstract syntax establishes such a bridge.
In our experience, the nature of this mapping usually implies four
kinds of operations:

• Straightforward mappings, where a keyword is directly
mapped to a metaclass, and each keyword parameter cor-
responds to an attribute of the metaclass.

• Establishing relationshipsbetween metamodel elements al-
ready created by straightforward mappings. They can be
either containment or non-containment relationships.

• Global-to-local transformations[23], where information to
create a single target element is spread through several places
of the source model (in this case, the concrete syntax model).
Complex queries may be needed to retrieve the required
information.

• Initialization sentences. Depending on the structure of the
target abstract syntax metamodel, the creation of a given
element may imply creating some others target elements
imperatively to complete the mapped one.

An important part of the mapping is related to resolve identifier-
based references at the concrete syntax level to explicit model
references (i.e. a concrete syntax tree is converted to an abstract
syntax graph). When an identifier is used to allow a concept to
be referenced, it can take two forms: global or local.

• Global identifiers. A global identifier is unique between
all the instances of a given metaclass. Therefore, once an
instance has been given an identifier, no other instance of
the same metaclass can have the same identifier.

• Local identifiers. A local identifier is unique only within
a given scope. Therefore, it must be qualified with the
identifier of its scope.

This issue has an impact in the way a metaclass is referenced.
Global identifiers can be referenced without being qualifiedwith
the path to reach the identifier scope. On the contrary, to refer to
a local identifier the complete path to reach the identifier scope
must be given.

It is worth noting that, in an embedded DSL, identifiers need to
be quoted (i.e. quotes are the way to specify a string). Otherwise
the compiler would consider the identifier as an undefined variable
or method, so provoking an error. In dynamic languages it is
possible to use some metaprogramming strategies to avoid quoting
identifiers, but they are out of the scope of this paper.

To automatize the task of defining the mapping between
the concrete and the abstract syntax we have also created an
embedded DSL which provides declarative constructs for this
purpose. Also, to give more flexibility, a visitor [24] is in charge
of traversing the syntax tree, allowing methods to be written in
order to complete the mappings with queries and initialization
sentences.

Mappings are established by three constructs: (1) themap
construct establishes the correspondence between keywords and
metaclasses (it is also in charge of mapping parameters to
attributes), (2) theconconstruct is in charge of mapping keyword
composition to containment relationships, while (3) theref con-
struct maps identifier-based relationships to explicit references.

The following piece of code establishes the mapping between
the concrete syntax of the Resources DSL and its abstract syntax.
Each keyword is mapped to the corresponding metaclass using
the map construct (e.g. each ocurrence ofproject will lead
to the creation of aProjectType element). It is also used to
map keyword parameters to attributes, and to establish whether
an attribute acts as an identifier, being global or local. The
containment relationship between a project and its foldersis
mapped usingcon. Regarding non-containment relationships, the
ref construct uses the information about global or local identifiers
declared withmap to resolve the references.

mappings do
map ’resource_type’ => ResDSL::ResourceType
map ’resource_type.name’ => ’name’, :id => :global
map ’project’ => ResDSL::ProjectType
...
map ’folder’ => ResDSL::Folder
map ’folder.name’ => ’name’, :id => :local

con ’project.folder’ => ’folders’
ref ’folder.contain_res’ => ’resource_type’
end

When the concrete syntax to abstract syntax mapping is per-
formed on a given source DSL program, the result is a model
conforming to the abstract syntax metamodel. This model canbe
now manipulated using, for instance, model transformations.

D. Translational semantics

Model-to-model transformations play a key role to establish
mappings between metamodels, and to convert high-level, ab-
stract models to low-level, concrete programming languages and
platforms. In the DSL setting, model-to-model transformations
can be used to establish the translational semantics of a DSLby
describing a mapping to another language. This is the approach
taken in this paper. As part of our research in model transforma-
tions we have developed a model transformation language, named
RubyTL [20], which has been implemented using the techniques
explained in this paper.

RubyTL is a hybrid rule-based model transformation language,
intended to specify mappings between metamodels. It has a
declarative part based on rules and bindings. Bindings are a
special kind of assignment which allow us to describewhat is
transformed into what, while rules are in charge of resolving
them (i.e. a rule is implicitly called to resolve a binding).The
imperative part of the language is given by the fact that RubyTL
is embedded within Ruby. In this way, it is possible to write
arbitrary Ruby code in the mapping part of a rule.

The following piece of transformation definition establishes the
mapping between the Resources DSL metamodel and the Eclipse
architecture metamodel shown in Figure 3. The first rule of the
transformation definition creates a newFileTypeEP extension
point from eachResourceType element. Equally, the second rule
creates aFileResource element from eachResourceType. The
only binding in the first rule establishes that theresource source
element must be transformed to aFileResource and assigned
to the fileResource property. This binding is resolved by the
second rule.

transformation ’res2ecl’

rule ’resource2ep’ do
from ResDSL::ResourceType
to Arch::FileTypeEP
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Fig. 3. Excerpt of a metamodel to describe an architectural solution to de-
velop contributions for the Eclipse platform. Extension points are represented
as metaclasses inheriting from theExtensionPoint abstract metaclass,
while already existing implementation classes are represented by metaclasses
inheriting fromImplementationClass.

mapping do |resource, filetype_ep|
filetype_ep.fileResource = resource

end
end

rule ’resource2file_resource’ do
from ResDSL::ResourceType
to Arch::FileResource
mapping do |resource, file_resource|
file_resource.extension = resource.extension
file_resource.type = Arch::FileModes::Text

end
end

An important feature of RubyTL is that it provides a modularity
mechanism, called phasing [25]. Unlike rule-level modularity
mechanisms, such as the ones discussed in [26], phasing is
coarser-grained, and it is intended to reuse and compose complete
transformation definitions, not only individual rules.

At this point, we briefly explain our phasing mechanism,
although a more complete description can be found in [25]. With
a phasing mechanism, a transformation definition is organized as
a set of phases, which are composed of rules. Executing a trans-
formation definition consists of executing its phases in a certain
order. The execution of a phase means executing its rules as if they
belonged to an isolated transformation definition, withoutconflicts
with rules defined in other phases. A transformation definition
is therefore seen as a phase, so allowing the same composition
operators as for phases.

We have defined two operators for composing phases. These
operators are based on the trace information recorded during
the execution of rules. A trace establishes that a certain source
element has been transformed to a target element. We explainboth
operators assuming that the piece of trace model shown in Figure
4 has been recorded during the execution of the transformation
shown above.

• trace query. It is a function which takes a source element
as input and returns one or more target elements that are
related by the trace to the source element (i.e. those target
elements that have been created from the source element).
The returned elements can be constrained to be instances of
some metaclass. For instance,trace query(e1, FileResource)
returns{ f1 } becausee1 is related to only one element of
type FileResource by the trace.

• refinement rule. It is a special kind of rule which matches
against the trace information, instead of the source model.
There is a match if a source instance of the metaclass
specified in the rule’s source pattern (i.e. rule’sfrom part),
has a trace relationship with one target instance of the
metaclass specified in the rule’s target pattern (i.e. rule’s to

Fig. 4. Piece of a trace model recorded during a transformationexecution.
r1 andr2 are source elements, whilee1, e2, f1 andf2 are target elements
created by transformation rules. Arrows represent trace relationships.

part). For each match the refinement rule is executed, but
instead of creating a new target element as usual, the element
matched by the target pattern is used. This means that no new
target elements are created, but the rule works on existing
elements, refining them. For example, the following rule
would match anyFileResource andFileTypeEP instances
which are both related to the same source instance of type
ResourceType. According to the trace model, the rule appli-
cation will result in two matches:{r1, e1, f1} and {r2,

e2, f2}. Some code could be written in the mapping part
of the rule to refine these already existing target elements,
{e1, f1} and{e2, f2} in this case.

refinement_rule ’resource_type’ do
from ResDSL::ResourceType
to Arch::FileTypeEP, Arch::FileResource
mapping ...

end

Thus, our proposal for transformation composition relies on
querying the piece of target model created by a previous transfor-
mation (or phase), using the trace information, either by applying
the trace queryor refinement rulemechanisms.

Finally, a transformation definition can be imported within
another transformation definition, and it is treated as a regular
phase. A construct calledscheduling allows us to set the
execution order of phases and imported transformation definitions.
A practical application of these features is given in the next
section.

V. FAMILIES OF DSLS

Defining families of languages has been proposed as an ap-
proach to promote systematic reuse in the development of DSLs
for a given context [12] [13]. A family of DSLs is defined as a
set of related DSLs intended to address some task or problem in
a given domain.

Practical development and usage of a family of DSLs requires
reuse both from the DSL developer and user points of view.
Some DSLs in a family may have commonalities, which can
be used to factorize common DSL implementation code that
is later composed with the corresponding variants. In the run-
ning example, the Modeling Actions DSL reuses most of the
infrastructure of the Actions DSL. On the other hand, the user
must be provided with modularization mechanisms to organize
and reuse DSL programs. For example, the Actions DSL (or the
Modeling Actions alternatively) and the Resources DSL provides
the user with a means to reuse the corresponding DSL programs
in different contexts (e.g. the same Resources program can be
used for several projects).

To tackle these two forms of reuse, mechanisms for DSL
composition are needed. DSL composition can be defined as the
ability to relate two or more DSLs in order to achieve a certain
functionality which is the result of combining the functionality of
the composed DSLs. Thus, a single DSL can be decomposed into
several, smaller DSLs than can be reused in different contexts,
either by the developer or the user. In this way, we distinguish
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between two forms of DSL composition: language composition
and program composition.

• Language compositionis the ability to compose two or more
DSLs transparently to the user. This means that, from the
user point of view, there is only one DSL with a certain
functionality. This form of reuse allows the developer to take
advantage of existing DSL implementations to create a new
specialized DSL.

• Program composition, on the other hand, refers to the
possibility of the user applying mechanisms to modularize
the DSL programs he or she writes. This form of composition
allows DSL programs to be reused.

Language composition requires the existence of modulariza-
tion mechanisms at the tooling level, that is, mechanisms to
modularize the definition of the concrete syntax, abstract syntax,
and semantics are needed. On the contrary, program composition
implies that the DSL developer provides the DSL user with
modularization mechanisms intended to organize DSL programs.

There are several concrete forms of composition that can be
classified into one of these two categories. In this paper we will
illustrate language composition withextensionand program com-
position withimportation. Other forms of composition that are out
of the scope of this paper aremerging[13] andsuperimposition
[27]. Merging consists of combining pieces of DSLs, establishing
connection points, to form a composite DSL. Superimposition
allows the user to superimpose additional functionality toan
existing DSL program.

A. Approach overview

Each member of a DSL family must be developed as a
reusable unit, which must be composed with other members
of the family to provide a common functionality. Typically,a
member corresponds to some aspect or concern of the domain
of interest. A member has a corresponding DSL definition (i.e.
abstract syntax, concrete syntax and semantics), and a set of
dependencies with other DSLs of the family, which are described
at the abstract syntax level, either using import or merge. An
important advantage of using MDE techniques is that regular
operations on models can be used to manipulate a member. It can
be stored in a model repository or serialized, it can be validated
using any compatible tool, it can be transformed, and so on.

We argue that to tackle the creation of a family of DSLs, com-
position mechanisms are needed at the concrete syntax, abstract
syntax and semantics levels. Figure 5 shows the relationships
between the artifacts involved in the definition of our family
of DSLs. When language composition is considered (i.e. reuse
at the DSL developer level) the composition is needed for the
components of two or more DSL’s definitions. It is performed by
composing metamodels, concrete syntax definitions and model
transformation definitions, in order to get a single, resulting DSL
definition. When program composition is considered (i.e. reuse
at the DSL user level) an independent DSL definition is attached
to each member, but the dependencies between them must be
represented. They are established between the abstract syntax
metamodels, and must be propagated to the models. The concrete
syntax of each member must provide the user with a means to
connect the DSL programs. The composition is therefore needed
at the DSL program level, that is, the actual composition is
performed on models. The concrete syntax to abstract syntax

Fig. 5. Composition relationships between the members of the DSL family
used as running example, and their implementation artifacts. Dashed arrows
means dependency, while empty arrows means extension.“c.syntax” means
concrete syntax,“a.syntax” means abstract syntax, while“m2m” means
model-to-model transformation.

mapping will be in charge of actually connecting the models.The
model transformation definition attached to each member must
have the dependencies into account.

In the example, the abstract syntax of the Modeling Actions
DSL is created as an extension of the abstract syntax of the
Actions DSL. The same applies for the concrete syntax. Re-
garding model transformations,mod2eclis based onact2ecl(see
Figure 5). The result of composing all the components is the
actual Modeling Actions DSL definition. At the same time, the
Resources and Actions DSLs are two different DSLs from the
user point of view, but they have dependencies. A dependency
is first described in the abstract syntax metamodel, and mustbe
propagated to the rest of the components. For instance, theact2ecl
transformation definition must be able to get elements created by
the res2ecltransformation definition.

In the next two subsections we explain how to address impor-
tation and extension in a family of DSLs using the composition
mechanisms introduced in the previous section.

B. Importation

As with general purpose languages, decomposition of DSL
programs into reusable parts, that can be later composed, isa
way of improving reuse and avoiding code duplication. Also,
separating a DSL program into several files is a way of dealing
with the complexity of large specifications. A DSL program is
then seen as a reusable module, and mechanisms to compose a
module into other modules must exist.

One way to achieve such goals, is to allow a DSL program
to import another DSL program, making the elements it defines
available. In a family of DSLs this means that dependencies
between family members has to be resolved.

At the abstract syntax levelwe represent dependencies as cross-
references between metamodels using the package import rela-
tionship presented in Section IV-A. When a metaclass of a family
member depends on a metaclass “belonging“ to another family
member, a cross-reference between metamodels is established.
In this way, each DSL program (i.e. a model) conforms to the
corresponding family member metamodel, and the dependencies
at the abstract syntax level will be propagated as cross-references
to other models. Figure 6 shows that in the running example the
ActionGroup metaclass is related toProjectType, andAction
is related toResourceType. Any program defining actions has to
reference resources defined in another program.

At the concrete syntax levelthere are two problems involved.
First, an “import” statement is needed to allow the user to load
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Fig. 6. Excerpt of the metamodels involved in the example family of
DSLs, and their relationships. Dashed arrows means a reference to another
metamodel, and thus a metamodel importation relationship is established. The
merge relationship is indicated with the<<merge>> stereotype.

a certain DSL program. This raises the following issue, given a
certain DSL program which is going to be imported, how to know
which is its definition. We rely on Uniform Resource Identifiers
(URI) to uniquely identify DSLs within a family. The name of the
DSL program to be imported is prefixed with a logical scheme
which identifies its definition (i.e. the member of the family).

In Section IV-C we explained that identifiers are used to refer-
ence elements in a non-containment relationship. The importation
mechanism makes elements directly available, so that they can
be referenced by its identifier as if they had been defined in the
same DSL program. However, to avoid name clashes the import
statement requires a qualifier to reference the elements defined
by the imported program. This means that the imported program
becomes the scope of the elements it defines.

The example below shows the DSL program to define actions
presented at the beginning of Section III rewritten to consider the
importation mechanism. It imports the DSL program to describe
resources (let’s call itage-resources). The age-resources

program is imported asres, so that its elements must be ref-
erenced with theres prefix. In this way, theproject keyword
references theage project type, andresource keyword references
the resource type identified byrubytl-transf, which belong to
the DSL program identified asres.

import ’resources://age-resources’, :as => ’res’

action_group ’age-group’ do
project ’res.age’
action ’export transformation’ do
resource ’res.rubytl-transf’
show_in_popup

end
end

This is supported by our DSL for mapping concrete to abstract
syntax, which resolves qualified cross-references to elements
defined in imported DSL programs. To do so, a construct called
import for is added, so that it is possible to specify that one
DSL can import other DSL, and the URI that will be used to
identify the imported DSL programs. In this way, one only needs
to declare which DSLs can be imported, and to establish the
relationships between DSL elements using theref construct.

The following excerpt corresponds to the definition of the
Actions DSL. It uses theimport for statement to establish an
import relationship to the Resources DSL. References to key-
words defined in the Resources DSL must also be prefixed with
res, to avoid name clashes (e.g. aproject keyword is defined

in both Resources and Actions DSLs with different purposes:
to define a project, and to reference a project respectively). The
implementation resolves the cross-references transparently.

import_for ’dsl://resources’, :as => ’res’ do
uri ’resources’

end

mappings do
...
ref ’action_group.project’ => ’res.project’

end

At the model transformation level, the challenge is how to as-
sociate an indepedendent transformation definition to eachfamily
member, but still allowing dependencies to be resolved. Given a
family with DSL1 and DSL2 their associated transformations,
T1 and T2, have to be related when some piece of target model
created byT1 is needed to completeT2. Our solution relies on
using the trace query function presented in Section IV-D. In
this way, T2 usestrace queryto reference elements created by
T1. The abstract syntax model ofDSL1 has elements that are
referenced byDSL2, andtrace queryprovides a means to get the
corresponding target element, created byT1, for a given source
element “shared” byDSL1 andDSL2.

In the running example, theres2ecl transformation definition
is in charge of dealing with resources. In particular it establishes
the mapping betweenResourceType and FileResource (see
example of Section IV-D). Theact2ecl is in charge of dealing
with actions (e.g. it may map anAction to a PopupMenuEP).
However, as can be seen in Figure 3, aPopupMenuEP is related
to aFileResource, but to respect the separation of concerns, the
act2ecl transformation cannot create resource-related elements,
but only reference them. In this way, the reference is established
in two steps: (1)res2eclis first executed to create resource-related
elements, and (2) inact2ecla trace querycall is performed for
each cross-reference between abstract syntax models that must be
resolved (i.e. to obtain the corresponding target element).

An excerpt of theact2ecl transformation definition is shown
below. The only rule shown creates an extension point to define
a pop-up menu from each action. Thetrace querycall takes the
value of theaction.resource source element, and returns one
element of typeFileResource (i.e. notice the use ofone of to
ensure that only one element is returned), which was previously
created from the source element by theres2ecltransformation.

transformation ’act2ecl’

rule ’action2popup’ do
from ResDSL::Action
to Arch::PopupMenuEP
filter { |action| action.is_popup? }
mapping do |action, ep|

ep.resource = trace_query(action.resource).
one_of(Arch::FileResource)

end
end

As part of its phasing mechanism, RubyTL provides a way
to define a new transformation definition which is actually the
result of composing two or more transformations, which are seen
as phases. As explained, existing transformation definitions can
be imported within a new one, establishing then the execution
order using thescheduling construct. In our example,act2eclis
executed afterres2eclbecause the former depends on the piece
of target model generated by the latter (i.e. the trace querycall
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establishes the dependency).

import ’m2m://res2ecl’, :as => ’resources’
import ’m2m://act2ecl’, :as => ’actions’

scheduling do
execute ’resources’
execute ’actions’

end

C. Extension

Extending a DSL consists of creating a new DSL that contains
the same constructs as the extended DSL, but also some new
constructs and new functionality. This allows common partsto
be reused in a family of languages: the commonalities of several
DSLs can be factorized into a base DSL, that will be later
extended with variants.

In the running example, the Actions base language is defined to
represent generic actions in the Eclipse platform. It can bereused
to describe actions typical of specialized environments built on top
of Eclipse. For instance, launching a transformation or validating
a model are actions commonly found in a modeling environment.
Thus, the Modeling Actions DSL extends Actions to provide such
specialized actions.

The following piece of code shows an excerpt of a Mod-
eling Actions DSL program, which defines actions that can
be applied to a UML class model in order to transform it
to Java code. They are enclosed into a group of related ac-
tions. Both transform action and validate action are spe-
cialized keywords not available in the Actions DSL. Moreover,
transformation and metamodels are keywords only available
for transformation actions.

action_group ’uml-transformations’ do
project ’uml-modeling’

transform_action ’uml-accessors’ do
resource ’uml-files’
show_in_popup

transformation ’uml2accessors.rtl’
metamodels ’UML’, ’Java.ecore’

end

validate_action ’uml-class’ ...
end

At the abstract syntax levelextension is implemented as a
merge relationship between the base metamodel and the corre-
sponding extension metamodel, which adds new concepts and
extends some of the existing ones. Creating a generalization
relationship from an existing metaclass belonging to the extended
metamodel is the way to connect the two DSLs. Additionally, we
provide a merge transformation that will create a new composite
metamodel resulting from merging both metamodels, as explained
in Section IV-A. Figure 6 shows how the Actions DSL abstract
syntax is reused by Modeling Actions DSL abstract syntax. In
particular, the join point is theAction metaclass.

At the concrete syntax levelour framework supports extension
by means of the concept of keyword extension. In this way,
extending a DSL simply consists of importing it into the new
DSL, so that its keyword definitions are part of the new DSL, and
extending the desired keywords according to the abstract syntax.
A generalization relationship is therefore mapped to a keyword
extension relationship. The implementation internally merges both

concrete syntax definitions, automating the process of creating
subclasses of sandboxes explained in Section III-E.

In the code excerpt below, the Actions DSL is extended to
create the Modeling Actions DSL. The Actions DSL definition
is first imported, and thentransform action is defined as an
extension of theaction keyword defined in Actions.

extension_for ’dsl://actions’, :as => ’act’

keyword ’transform_action’, :extends => ’act.action’
keyword ’transformation’ do
param ’filename’, :string

end
composition_for ’transform_action’ do
nested ’transformation’

end

At the model transformation levelthe problem involved is how
to extend an existing transformation definition, that dealswith
one family member, in order to add those rules and bindings that
are needed to implement the translational semantics of another
member, which is an extension of the former.

In the running example, the Modeling Actions DSL is an
extension of the Actions DSL, so themod2ecl transformation
definition is written as an extension ofact2ecl. This means that
new rules may be added, while others may need to be refined. In
particular, theaction2popup rule shown above must be refined
in order to deal with specialized kind of actions, for instance a
TransformationAction that has a particular Eclipse implemen-
tation represented with theTransfActionImpl metaclass.

A refinement rule provides us with a means to refine a mapping
established by a rule in a previous transformation. Thus, we
propose importing the extended transformation into the extending
transformation, and using refinement rules to extend the mappings
it establishes.

In the transformation excerpt below, themod2ecl trans-
formation definition imports theact2ecl transformation defi-
nition. Then, a refinement rule “captures” all mappings be-
tween TransformationAction elements andPopupMenuEP el-
ements, allowing them to be refined, in this case to create a
new TransfActionImpl element and connect it to an existing
PopupMenuEP element. Implementation-wise the transformation
code is enclosed within aphasedeclaration to allow it to be
scheduled along withact2ecl.

transformation ’mod2ecl’
import ’m2m://act2ecl’, :as => ’actions’

phase ’modeling-actions’ do
refinement_rule ’action2popup’ do

from ResDSL::TransformationAction
to Arch::PopupMenuEP
mapping do |action, ep|

ep.impl_class = Arch::TransfActionImpl.new
...

end
end

end

scheduling do
execute ’actions’
execute ’modeling-actions’

end

Figure 7 summarizes the techniques we propose to create a
family of DSLs. We useextensionto address language compo-
sition. Abstract syntax metamodels are composed using a merge
transformation, and the notion of keyword extension is usedto
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Extension Importation

Abstract syntax Merge Import

Concrete syntax Keyword extension Qualified identifiers

Trans. semantics Refinement rule Trace query

Fig. 7. Summary of techniques to address modularity for the development
of a family of DSLs.

represent the generalization relationships at the concrete syntax
level. The refinement rule mechanism allows us to extend existing
mappings. We tackle program composition withimportation. The
dependencies between family members are represented at the
abstract syntax level using an import mechanism to establish
cross-references. Qualified identifiers are used to reference ele-
ments defined in imported DSL programs. Finally, the trace query
operator resolves dependencies by allowing a transformation to
get elements created by another transformation.

VI. D ISCUSSION

From our experience with embedded DSLs during the devel-
opment of the AGE tool3, we present a discussion about the
advantages and disadvantages of the embedded approach for DSL
development. We conclude with some guidelines to decide when
this approach could be a good choice to implement a DSL.

A. Advantages and disadvantages

The main advantage of embedded DSLs is rapid develop-
ment [11]. A particular strength is that they reuse the infrastruc-
ture of the host language, which allows us to have all features of
a general purpose language for free. We have taken advantageof
this in RubyTL to provide the imperative nature of the language.

The flexibility of the embedded approach (in particular when
combined with dynamic languages) allows novel features to be
incorporated to a DSL without much implementation effort. This
has allowed us to experiment with model transformation language
features [28] and DSL composition.

Regarding usability, IDE support is an important issue to make
the adoption of a DSL by a community easier. Nowadays, IDEs
providing features such as syntax highlighting, code folding, au-
tocompletion, cheat sheets, etc. are common for general purpose
programming languages. An embedded DSL not only inherits the
host language’s features, but one can also take advantage ofsome
features available in existing IDEs for the host language. For
instance, features such as syntax highlighting, code folding or
even some form of autocompletion are straightforward to reuse.

However, there are some disadvantages in embedded DSLs.
The more obvious is that the syntax of the DSL is determined by
the syntax of the host language. Since the syntax could not be
the optimal one, a domain expert may be unable to use it.

The fact that all features of the host language are availablecan
be a drawback instead of an advantage. In our experience, users
are reluctant to use embedded DSLs because they tend to think
that it implies learning a new general purpose language. Also, it
is not always possible to keep developers working on the wanted
abstraction because they may rely on host language’s features.

Finally, concerning IDE support, providing autocompletion
based on the domain constructs is complicated to implement

3The AGE tool has been released as free software. It can be downloaded
from http://gts.inf.um.es.

because it would imply dealing with the whole grammar of the
host language.

B. Guidelines

Based on the discussion above we identify several situations
where creating an embedded DSL is a suitable option. When
the host language is known by the user community, there is
no problem to adopt this approach since users are comfortable
with the syntax and constructs of the DSL. On the other hand,
managing a global community non-knowledgeable in the host
language to accept and embrace an embedded DSL is difficult,
and a good adoption is improbable. Users tend to think that all
features of the host language must be learned, and feel themselves
overwhelmed by the “fictitious” need of learning a new language.
Moreover, languages well-suited to create embedded DSLs, such
as Haskell or Ruby, usually belongs to paradigms the average
developer is not used to. Finally, in the case of local user
communities a knowledgeable person may train a small team.
If the DSL is simple enough, only a minimum initial effort is
needed to overcome the initial reluctance.

We have identified four usage scenarios for embedded DSLs.
The first, and more obvious, scenario is to develop an embedded
DSL intented to be widely used by a certain host language
community (e.g. Parsec in Haskell, Rake in Ruby, etc.)

Another scenario is to develop an embedded DSL to automate
repetitive tasks usually carried out by a developing team. The
running example used in this paper corresponds to such an
scenario. Defining a generative family of DSLs, as explainedin
this paper, is particularly important to improve reuse. If some
people of the team do not know the host language, they can be
trained by the people in charge of the implementation.

The third scenario we consider is experimentation. The flexi-
bility provided by embedded DSLs is very suitable to experiment
with novel features of DSLs. In addition, it allows us to havea
working DSL faster than creating the DSL from the scratch using
other techniques. In our case, we have experimented with model
transformations using this approach. As a result, we have created
the RubyTL transformation language, which includes phasing,
which is an innovative composition mechanism. In this case,all
people involved must know the host language.

Prototyping is an scenario where the embedded DSL approach
can be particularly useful. Even when the DSL will be used
by a global community, it is still possible to take advantageof
embedded DSLs. They can be used to build a prototype of the
whole DSL, so that the designer can test those language features
which may not be clear. Once the DSL design is complete, the
development can switch to a more traditional approach. Another
approach is to concentrate in the abstract syntax and semantics
of the language, relying in the embedded approach to give the
concrete syntax so that the language can be tested in their first
stages. In a last stage, an stable concrete syntax can be given
using any other approach.

Finally, we remark on the two main reasons difficulting the
adoption of an embedded DSL by a user community: tool usability
and the lack of experience in the host language. To widen
the spectrum of possible users of an embedded DSL, IDE’s
should provide more usable editors taking into account the use
of domain specific constructs, and proper training in the selected
host language must be provided, so that developers are able both
to use and create embedded DSLs
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VII. R ELATED WORK

Techniques to embed a DSL into some host language have been
discussed in several works. In [7], Hudak coined the term domain-
specificembeddedlanguage to describe such DSLs implemented
on top of a host language. This approach has been widely used in
Haskell [29] [30] [16]. In Lisp, as argued in [8], defining layers of
languages using the macro system is the standard way of dealing
with complexity. Building embedded DSLs is also common in
dynamic object oriented language communities, such as Rubyand
Smalltalk [11] [9] [24]. Embedded DSLs has also been developed
in other languages, such as ML [31], Java [19] or C++ [32]. The
profiles mechanism of UML can even be considered a means to
define an embedded domain modeling language [21] into UML.

With regard to combining the embedded approach with the
MDE paradigm, as far as we know, this is the first work address-
ing this issue. Anyway, in [16] an approach to compile embedded
domain specific languages within Haskell is presented. Functional
combinators are defined, which create an abstract syntax tree,
which is then used to generated code. This is, in some aspects,
similar to our proposal, but we rely in a metamodel to define the
DSL’s abstract syntax, and in a model transformation language
for the translational semantics.

In the case of model-based approaches to create textual DSLs,
two main categories can be distinguished, grammar-based and
metamodel-based. Grammar-based approaches [33] are oriented
to generate metamodels from grammars, whereas metamodel-
based approaches [2] [17] work on the opposite direction. De-
veloping simple DSLs with these approaches is relatively easy,
but the former has the disadvantage of the poor quality of the
generated metamodels, while with the latter it can be difficult to
fully customize the concrete syntax. In our case we establish a
explicit bridge between concrete syntax constructs (i.e. keywords,
keyword composition, etc.) and abstract syntax metamodel ele-
ments by means of a mapping DSL. This gives freedom in both
the concrete syntax and the metamodel structure. In the previous
section we have highlighted several advantages of embedded
DSLs, but in comparison with other approaches, certainly the
most important advantage is flexibility. We have been able to
develop a practical approach to create families of DSLs using DSL
composition, relying on embedded DSL techniques. Comparing to
[17] and [2] this is a distintive aspect. In fact, to our knowledge,
our framework is the only one, within those supporting MOF
or Ecore metamodels, providing composition mechanisms at the
concrete syntax and translational semantics level. On the other
hand, as we have pointed out, the embedded approach is not
suitable for all scenarios, and then we must rely on some of the
former approaches.

The topic of DSL composition has not been widely addressed
in the literature. In [13] the problem of building families of
DSLs, and how to reuse DSL assets is addressed. It discusses an
approach to composing DSLs which is based on abstract syntax
templates. However, concrete syntax and transformation compo-
sition are not treated. GME is a generic modeling environment
which supports composition of metamodels [5] [34]. GME is not
based in MOF, but it extends UML with composition operators.
The concrete syntax of DSLs defined with GME is graphical, and
it is highly coupled to the underlying metamodel definition.In
this way, composition at concrete syntax level is based on this
extended metamodel composition operators. Metamodel-based
assembly techniques has been applied to the field of Situational

Method Engineering to create project specific methods from
method fragments [35].

Creating a pipeline of DSL translators, each one in charge of
translating the corresponding piece of DSL program, is mentioned
in [36] as an approach to deal with DSL composition in a
family of DSLs. The example given is thetroff system for text
processing. However, this approach works at “the text level”,
and translators communicate just by manipulating the inputtext
and passing down the result to the following in the chain. Our
approach establishes relationships at the abstract syntaxlevel,
and it additionally allows reuse to be achieved at the program
level (i.e. DSL programs can be composed using importation
to related them). In [13] [37], a product line approach is used
to create individual languages from language variants. A family
of languages is therefore seen as a set of individual languages
with some common parts, which are reused. The techniques
we propose can be used to create individual languages, but our
definition of family of DSLs also covers the creation of related
DSLs intended to allow the user to reuse DSL programs (in [12]
both approaches are discussed).

Regarding model transformation composition, several ap-
proaches at rule-level has been proposed [26] [38]. However,
defining families of DSLs requires transformation composition
to be addressed with coarser-grained mechanisms, that allow
complete transformation definitions to be reused. In this way, we
have proposed a phasing mechanism which allows composition
of model transformation definitions.

VIII. C ONCLUSIONS

With the emergence of model driven development, the creation
of domain specific languages is becoming a fundamental part of
language engineering. The development cost of a DSL should be
modest, compared to the cost of developing a general-purpose
programming language. Techniques to allow DSLs to be defined
without much implementation effort, but focusing on domain
aspects are needed. Reuse techniques in the context of DSLs are
also a key aspect for DSL approaches to be really effective.

In this paper, we have presented an approach to integrate em-
bedded domain specific languages in a model driven development
environment. On the basis of this approach we have tackled the
development of families of DSL, as form of reuse, by defining
mechanisms for DSL composition. We have shown that creatinga
family of DSLs requires composition mechanisms at all the levels
of a DSL’s definition.

Our main contribution is two-fold. On the one hand, we have
explained how embedded DSLs can be developed in a systematic
way, separating abstract syntax, concrete syntax and semantics
using the MDE principles. We have shown that combining em-
bedded DSLs and MDE leverages both of them. On the other
hand, we have tackled the development of families of DSLs to
deal with DSL reuse. To our knowledge this is the first proposal
addressing reuse both from the DSL developer and user point of
views, providing a full stack of composition mechanisms.

Regarding the future work, we are investigating other mecha-
nisms for DSL composition, as well as studying how to apply
product-line techniques to further improve reuse. We are also
researching into evolution of DSLs, by automatically generating
transformations intended to adapt both DSL definition artifacts
and programs.
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is a PhD candidate at the University of Murcia.
His research interests are model-driven development,
model transformation languages, and dynamic lan-
guages. He received his masters in computer science
from the University of Murcia. Contact him at the
Dept. of Computers and Systems, Facultad de In-
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