A model-based approach to families of embedded
domain specific languages

Jesis Sanchez Cuadrado and JissGarta Molina

Abstract— With the emergence of model driven engineering However, the development of an embedded DSL tends to be an
(MDE), the creation of domain specific languages (DSL) is becom- ad-hocprocess, where developers just use host language idioms,
ing a fundamental part of language engineering. The development neglecting the separation between concrete syntax, abstriatax
cost of a DSL should be modest, compared to the cost of 5,y semantics. On the other hand, MDE principles do promote

developing a general-purpose programming language. Reducing . . . -
the implementation effort and providing reuse techniques are key tHiS Separation, and provide a conceptual framework todbuil

aspects for DSL approaches to be really effective. DSLs in a systematic way [2] [3].

In this paper we present an approach to build embedded Defining a family of languages has been proposed as an
domain specific languages applying the principles of model driven approach to promote systematic reuse in the development of
engineering. On the basis of this approach we will tackle reuse of several DSLS for a given domain [12] [13]. A basic mechanism
DSLs by defining families of DSLs, addressing reuse both from i, schieve such reuse is the composition of DSLs. However,

the DSL developer and user point of views. A family of DSLs . ; .) ;
will be built up by composing several DSLs, so we will propose little attention has been paid _tg this topic, and DSLs arealisu
developed as standalone entities.

composition mechanisms for the abstract syntax, concrete syant
and model transformation levels of a DSL's definition. Finally, In the last three years we have developed a tool for model
we contribute a software framework to support our approach, driven engineering, named AGE, which is based on DSLs em-
and we illustrate the paper with a case study to demonstrate its bedded into the Ruby language [11]. The developer is pravide

practical applicability. with embedded DSLs for the different aspects in MDE, such as
Index Terms—domain specific languages, model driven devel- model transformation, code generation or validation anth \&i
opment, families of DSLs, DSL composition metamodeling facility compatible with Ecore [14].

This paper aims to present an approach to build embedded
DSLs applying the principles of model driven engineerirttt
N) is, metamodeling and model transformations. On the badisi®f
OMAIN specific languages (DSL) are becoming more angy,ach, we will tackle the development of families of DSLs
more important with the emergence of the model drivegs 5 \yay of promoting reuse, both from the DSL developer and

software engineering (MDE) paradigms, such as Model Drivefyer point of views. Composition of DSLs will be a key point
Architecture (MDA), generative programming or softwaret@® ¢ o proposal. We will argue that supporting DSL compaositi

ries. DSLs allow programs to be written at an abstractiomllevimp”es providing composition mechanisms at all the levefls

closer to the problem domain than general-purpose progi@Myy,e definition of a DSL. We contribute a software framewortth
languages. MDE technology includes model transformatiom | supports our approach.

guages intended to the generation of software artifaggs¢eurce This paper is organized as follows. The next section intcesu

code or configuration files) from specifications expressebyihea main concepts and motivates our proposal. Section plains

DSL program. o techniques to create embedded DSLs, while Section IV ptesen
The development of DSLs shares some similarities t0 g, framework integrating embedded DSLs with MDE, alondwit

development of general-purpose programming languages. Bye composition mechanisms it provides. Section V addsetbee

on the contrary to them, the cost of building a DSL shouldopiem of creating families of DSLs. In Section VI a discus-

be modest. Several approaches have been proposed to defigf apout the advantages and disadvantages of the embedded

DSLs [1] [2] [3], and a number of studies report successfsesa gnnr0ach is presented. Some guidelines to decide when to use

of DSL usage [4] [5] [6]- A well-known technique to create gmpedded DSLs are also given. Finally, Section VII prestes
DSL is embedding the DSL's constructs into an existing g&iner.q|ated work, and Section VIII gives the conclusions.
purpose language, which acts as the host language. Such &DSL

therefore called aembedded DSland it inherits all features of Il. OVERVIEW

the host language. This form of developing DSLs is widesprea pomain specific languages are software languages tailared t

in the Haskell and Lisp functional language communities[8l] 5qdress problems in some application domain. DSLs have a

as well as in dynamic object oriented language COmMMUNBIES) pigher apstraction level than general-purpose langudges they

as the Smalitalk and Ruby ones [9] [10]. _ provide constructs representing concepts of the domain.SA D
An important advantage of the embedded approach is thaidtesentially composed of three components [3] [6] [13], alm

allows domain spgmﬂc Iangua_ges. to be easily gnd rapldllﬁldev . Abstract syntax The set of language concepts and their

oped [7] [11]. The implementation is usually strwghtforWamce relationships, along with the rules to combine them.

the language syntax, the type system, and the run-timersyste o, rete syntaxDefines the notation the end user will use to

are only variations of the ones provided by the host language specify programs conforming to the abstract syntax. Téxtua

This is a preliminary version. See the IEEE TSE site for thel fileasion. and graphi(?al notations are the most USU?I ones, but other
J. Sanchez and J. Molina are with the University of Murcia. representations such as tables can be defined as well.

I. INTRODUCTION

o Semantics Describes the meaning of the language’s corellows a more systematic process where the different laggu
structs. There are several approaches to semantics [3] [1&)mponents are clearly separated. The use of metamodels to
but their discussion is out of the scope of this paper. We willefine the abstract syntax helps reasoning about the domdin a
use translational semantics. makes it possible interoperability with MDE tools. On the EID
Model driven engineering provides a foundation to build BSLSide, taking advantage of the flexibility of embedded DSllsved
by applying metamodeling. Metamodels provide a unified arRPwerful tools to be created [11], which may help us to adsires
expresive way to define the concepts of the domain. Objd@search challenges, for instance reuse of DSLs.
oriented metamode"ng |anguages such as MOF [15] or Ecdl]e [1 We have combined MDE and embedded DSLs to tackle the
are typically used to define a language’s abstract syntathen development of families of DSLs. Each family member may
case of textual DSLs, formalisms such as grammars or xMpe created with reuse or for reuse. We argue that composition
schemas can be used to the define the concrete syntax. THe@chanisms are needed at abstract syntax, concrete symax a
a bridge between MDE and the chosen technical space (dfghformation levels to achieve such reuse.
grammarware or XML) must be established. Finally, transtel ~ This paper reports our results using MDE and embedded DSLs
semantics fits well in an MDE approach, since the mappm@ order to deal with families of DSLs. We have developed
between concepts of the source and the target language car®beVIDE framework based on embedded DSLs to support our
established using model transformations. approach. It automatizes the development of DSLs and pes\ad
A DSL definitioncomprises the three components mentionddmber of composition mechanisms. The development of fesnil
above. ADSL programis a piece of software, expressed usin§f DSLs will be tackled relying on such composition mechards
some concrete syntax, conforming to the DSL definition. In

an MDE setting, programs are equivalent to models, so they |||. EMBEDDED DOMAIN SPECIFICLANGUAGES
can be manipulated using regular model operations (e.gemod
transformations). In this section we explain techniques to embed DSLs into

A family of DSLsis a set of related DSLs for a given domaindynamlc object oriented Iar?guage.s, Wh'Ch. are the techbisis
for our proposal. We begin by introducing the example that

Each DSL is called a family membef- A member may be I|_nke_d .tOiII be used to illustrate the concepts and techniques disali
other members to address reuse either at the language idefini . :
- . hroughout this paper. We will use Ruby as the host language f
level or at the user level. Developing a family of DSLs poses a -
. embedding the DSLs.
challenge on how to compose its members.
An embedded domain specific languagea DSL which has
been implemented on top of some general purpose langua@geRunning example
which serves as the host language. It reuses the infrasteuct g oyample tackles a problem related to task automation
of the host language (e.g. concrete syntax, type systemuand r.

. A { R in the development of Eclipse contributions [18]. Devetapia
time system) extending it withydomain'specific constructid a contribution to the Eclipse platform involves filling condigtion

DSL program expressed by an embedded DSL is a legal Progrgflls and writing repetitive code, which refers to elemergfrebd
of the host language. by the configuration files in no obvious ways. In the end, the

. . , or defining a new wizard) is scattered
the abstractions provided by the host language are usecéehd)ecrthrough several classes and configuration files, yieldiregdopy-

domain specific gonstruptg on top of them. Although embeddsgste reuse process from existing implementations.
DSLs can be defined within any language, those languages Prothe Eclipse platform is very large, so we will explain only a

wd:jng a nop-mtt:_uswe ;yntag i’:\re more Sﬁ'tabli' Thus, lﬁolnal few concepts needed to understand the example. Eclipselpsov

and dynamic object oriented languages ave been mainly Useg o developer with extension points to specify contritngiand to
Seyeral embedded DSLs have been defined for statically tyngd.q the platform. Different types of projects can be defirior

functlongl languages such as Haskell [7] [16], where lambgagiance to support several programming languages. Resgur

abstractions and monads are used to embed the DSL. In the 438, 55 files, can be classified in resource types to associate

of Lisp-like dynaml.c fupctlonql languages the macro sysism specific actions, source editors, etc. to them. Finally, ltona

used [8]. In dynamic object oriented languages, such as Ruby, e 16 invoke actions, elements such as buttons, pop-npsne

Smalltalk, the basic computation mechanism is messageizngas%r key shortcuts are added to the user interface

(i.e. method calls), while code blocks are first-class eitz These In order to automatize the development of Eclipse contribu-

two features have been used, for example in Ruby on Rails g6, 5 family of DSLs can be defined, where each member in
Seaside [9), to define web frar_neworks based on embeo_lded DShy family allows related Eclipse contributions to be spedi

The embedded approach is a powerful way to build DSLgj5q this family provides a higher level of abstraction rifthe
however there is little or no separation between the languag, jitional way of developing for the Eclipse platform.

components, and its development tends to be rather ad'hOCGiven a set of DSL programs belonging to the family, a process

On the other hand, several approaches and tools imendedcéﬂsisting of a chain of model-to-model and model-to-code

create DSLs relying on MDE techniques [2] [3] [17] has loee{?ansformations automatically generates most of the itmriiton
proposed, however more research is necessary to address e. This paper will be illustrated with three DSLs of ttasnily,

issues such as the reuse of DSLs, where defining families c%{IIed ResourcesActionsand Modeling Actions
DSLs plays an important role. Our experience applying MDE

t?Chniques to eml_)edded DSLs has shown that benefits on bottyor the sake of simplicity, in this explanation we do not idtioe core
sides can be achieved. On the embedded side the developnietiise concepts such as plugin, perspective or view.

ProjectType 0.1 ActionGroup

name - String) It is important to notice that the two code excerpts shown
above correspond to two different DSL programs. However,
action groups and actions defined in the second program oeed t
reference resource types defined in the first one. This topic w
be addressed in Section V. Also, in such a section, the Muogleli
Actions DSL will be defined as an extension of Actions.

1%

Action
ResourceType "
" name: String
name: String

B
tension : Stri
F["dE’_ extension : String 0-1 ;ac;s;::ﬁr? S[Sri:;g
0.1" | jconPath : String -

‘ TransformAction‘ ‘ ValidateAction }

Invokator

[shortcut |
[key : String]

Fig. 1. Metamodel capturing concepts related to resourceseqis and B. Basic implementation technique

actions, and their relationships. The basic strategy is to create an embedded DSL on the basis of
the keywords it offers, and on how they can be composed. WYsual
_a keyword will represent a domain concept, and keyword cempo
Cségon will determine the relationships between the cotsefs
we have pointed out, depending on the paradigm the hostaaegu
rkpelongs to, and the abstractions it provides, the constused
embed the DSL are different. Since we are dealing with
ynamic object oriented languages, each DSL keyword will be
ined as a method, with zero or more parameters, whiledeste
structures will be mapped to a code block. In the simplest
approach such methods are defined in some class where the whol

o The ResourcesDSL allows us to describe “physical” re
sources such as types of projects, the kinds of resour
(e.g. a kind of file) a project may hold, etc.

o The Actions DSL allows us to define actions a user ca
perform, as well as specifying the widget used to actival
the action (e.g. a button, a key shortcut, etc.). As we wi
see, it “references” the Resources DSL to associate acti
with resource types.

o The Modeling ActionsDSL is an extension of the Actions

DSL, which provide actions specific to an MDE environ-DSL functlonahlty |sh|rr_1ple|mented._ ¢)
ment, such as launching a transformation or validating a’*S @" €xample, the implementation of theoj ect andf ol der
model. keywords could be as follows. A method is defined for each

keyword, and the method’s implementation creates a dat&-str

to define a resource type for transformation files, and a proje . .
)) t method is executed, then the passed block is evaluated
type for our MDE tool, AGE. This DSL has been defined on the) &¢ P

basis of th t del sh in Fi 1 Ssing yi el d. Thefol der method adds #&ol der object to the
asis of the metamodel shown In Figure L. list of folders maintained by its enclosing project type.
resource_type 'rubytl-transf’ do
extension '.rtl’
icon 'rubytl.gif’
end

def project(nane, &bl ock)
@roj ects << Project Type. new hane)
yield # synonym for "block.call"
end
proj ect 'age' do
fol der 'nodel s’
fol der ' et anodel s’
folder ’transfornations’ do
contains_res 'rubytl-transf’
end
end

First, a resource type is defined for RubyTL transformation Y& Propose to use metamodels to define the abstract syntax
files (i.e. we have created a model transformation languageed ©f the embedded DSL, so that keyword implementation is in
RubyTL). It has an extension and an icon associated. Theewa rfharge of creating an instance of the abstract syntax,adsbé
type of project is defined, which is composed by several fglgecreating an arbitrary data structure. Thus, when the DSgnaro

to store artifacts such as models. metamodels or transfimma IS €valuated the result is a model conforming to the abstract
definitions. Also, it specifies that ther ansf or nati ons folder Syntax, which can be manipulated in a number of ways: seedli

containsr ubyt | -t ransf resources. to some interchange format (e.g. XMl), transformed usingleho

As is shown by the metamodel of Figure 1, an action grOL}bs\nsf_ormation languages or J:US'[interpreted. Embedded. DS
contains one or more action definitions. An action can beedla techniques are thus used to give concrete syntax to theaabstr
to a certain resource type to make this action applicablg orfiyntax metamodel of a DSL.
to this kind of resources, while an action group is relatecato We provide the following guidelines to establish the magpin
certain kind of project. The example below corresponds ® tlpetween an abstract syntax metamodel and those constriucts o
Actions DSL. An action group for thege project type is defined, DSLs embedded into dynamic object oriented languages.

which contains only one action, related to RubyTL transfation ~ Eachmetaclasss mapped to a DSL keyword, implemented by
resources. The action will be shown in a pop-up menu. a method. Some attributes of the metaclass can be specified as

parameters of the keyword, typically compulsory attrilsuseich
as a name for the concept. In the example, #hej ect Type
metaclass is mapped to tpeoj ect method.

def fol der(nane, &bl ock)
fol der = Fol der. new(nane)
current_project = @rojects. | ast
current_project.folders << fol der
yield if block_given? # the block is optional
end

action_group 'age-group’ do
proj ect ’age’

action 'export transformation’ do A containment relationshifs mapped to a code block, where
resource ’rubytl-transt keywords representing the referenced metaclass are mintséle
show_i n_popup . . -

end the block. The container is specified as the outermost DSL

end construct, while the contained elements are specified engid

block. An element is owned only by one container, so the A general approach to write rich expressions in an object
relationship is univocal, and there is no need to referehee toriented language is to chain expressions in cascade ulseng t
container explicitly. In the example it is enough to enclfidders dot notation[19]. Each method call will return an object that
betweerndo - end within the project they are related to, becausallows other method calls to be chained. This approach isthe
a folder is contained in only one project type one available in object oriented languages such as Javausec
A non-containment relationshipmplies that the element to they have an intrusive syntax and do not support closuresae c
be referenced is defined in some place in the DSL prograblocks. For instance, a project variant could be defined feom
Some kind of identifier has to be used to reference such hase project by including and excluding folders.
element. A non-containmept .relationship can thergfore bpppd roj ect_variant (" my_variant).from base(’ rubytl’).
to a keyword enclosed within a code block, as in containment excl udi ng(’ t r ansf or mati ons).
relationships, but the keyword receives an identifier regméng i ncl udi ng(’ code-generation’)
the referenced concept as a parameter. In the examplg,dar
references the resource it contalr_ls by means of ¢theai ns_res D. Restricting the host language
keyword. The DSL implementation must look up the resource
definitions and connect the corresponding one to the folder. ~ In the embedded approach, any syntactically correct progrfa
Optional attributes attributes with default values, and in genihe host language may be a legal DSL program. As far as pessibl
eral attributes not specified as parameters, can be speicifted the capabilities of the host language should be restricteshsure
enclosing code block using a keyword. For instancej toapat h ~ certain syntactic correctness from the DSL point of view.
attribute is specified by thiecon keyword. Thus, one important concern is whether it is possible taicst
These are basic guidelines, but variations may be considerthe availability of a given keyword to a certain scope. Usyal
For example, a containment relationship can be represamteé DSL keywords are defined as global methods or functions which
concrete syntax as a non-containment relationship, betritére can be used in any part of the DSL, and it is up to the DSL user
clear to use the strategy explained above, since it avoelsgled not to write a keyword in a wrong place. For instance, if such a
of using identifiers to reference elements. constraint cannot be enforced, the der keyword can be written
It is also possible to take advantage of features of the hdttside aproj ect construct.
language to make the syntax more compact or readable. FoPynamic languages supporting code blocks usually allow a
instance, declaring a folder can be shortened if Ruby ha@lees code block to be evaluated in an execution environmentrdiffe
name-value pairs specified by) are considered. from the default one. We take advantage of this feature tatera
fol der 'transformation' “sandbox” (or namespace) for each set of DSL keywords that ca
:contains_res => 'rubytl-transf’ be enclosed within another DSL keyword. The code block mhsse

. to such a keyword will be evaluated in its sandbox to ensuae th
To sum up, we propose to use those constructs and technquﬁE, keywords defined in it can be used.

of embedded DSLs to give concrete syntax to an abstractxsyntaA sandboxis simply defined as a class with methods repre-

metamodel. The rest of the section is devoted to descride tegenting keywords. The following excerpt represents thelisan
nigues intended to improve quality attributes of embedd&d for the pr o] ect kéyword.

such as expresivity, reusability and usability.
cl ass Proj ect TypeSandbox
.) def folder(name)
C. Leveraging expressiveness
The implementation technique explained until now onlyaio
us to define block-structured DSLs. Nevertheless, severd-t
niques can be used to leverage the expressiveness. In this way, when a code block is passed to fhej ect
The operators provided by the host language can be usedk@yword to specify elements related to a project (i.e. folde
define small expression languages on the DSL concepts. Tte Higfinitions), it is evaluated in the context of the projecpey
language must allow operator overloading, so that it is iptess sandbox. This means that a new instance of the sandbox iedrea
to use DSL constructs as if they were primitive constructs. Fand the execution environment of the code block will be such
instance, one can create a facility to define a new type oeptoj an instance, so ensuring that only those methods definecein th
on the basis of an existing one, overloading the addition aséndbox are available.

end' '
end

substraction operators to add or remove project folders. The following excerpt shows the definition of the oj ect
project_variant 'sinple variant’ do keyword following this strategy. It expegts the prolec_teypnme,
project(’rubytl’) - folder(’transformation’) and a code block. The passed block is evaluated in the context
+ folder(’ code-generator’) of a new instance of the sandbox, using the Ruby built-in
end i nstance_eval method. It is worth noting the difference between

In addition, some pure object oriented languages allow iprinfn€ implementation shown in Section Ill-B and this one. Ie th
tive types to be extended, so that new methods and operators rmer, we usedyield which evaluates the passed block in its
be added, or even existing operators can be overridden., Thé@fault environment, while now the block is evaluated in aeno
domain specific operations can be added to primitive types. Frestricted environment.
instance, a new method can be added to #teng class t0 def project (nanme, &bl ock)
implicitly perform operations on images. Below, an icon ifi g @rojects << Proj ect Type. new(nane)

format is transformed t na im) sandbox = Proj ect TypeSandbox. new
ormat is transformed to a png image sandbox. i nst ance_eval (&bl ock)

icon 'rubytl.gif’.as_png end

«conforms»

With this approach aoot sandbox must be created to define T N
the DSL's root keywords, that is, those keywords that are not 1
enclosed within any other keywords (epg.oj ect is an example Metamodel DSt mode'}%(Translational]
of root keyword). The main advantage of this technique ig¢ tha
several DSL programs can be evaluated, even in paralldipwit
conflicts between each other, because each one is evaludténl w =~ U «conforms™ _ _ |
its own root sandbox instance.
However, another form of sandboxing is needed when primitiFig. 2. Steps and artifacts involved in the definition of a D&ging our
types are extended. Since each DSL may extend primitivestyggmework for embedded DSLs.
in its own way, when two or more embedded DSLs are executed
in_the context of 'Fhe same virtual machine, name clashgs Cany, A FRAMEWORK FOREMBEDDED DSLS AND MODEL
arise. To solve this problem, a form of sandboxing at virtual

DRIVEN ENGINEERING
machine level must be provided by the host language, so that . .)
the modifications to primitive types made by one DSL do not In this section we present our approach for developing DSLs,
have visibility outside their sandbox. which integrates embedded DSLs with model driven engingeri

Our proposal establishes a systematic process to clegréyrate
the three components of a DSL’s definition.
Figure 2 illustrates the steps and artifacts involved in the
E. Keyword extension definition of a DSL. The DSL'’s concrete syntax is defined ralyi
on some formalism or technique, in our case the embedded
The usage of sandboxes has an additional advantage relaigfroach. The DSL's abstract syntax is defined by a metamodel
to the reuse of the concrete syntax of a DSL. Any sandbox caffhe concrete syntax to abstract syntax mapping establistee
be independently extended using class inheritance, s@thatv correspondences between concrete syntax elements and meta
keyword can be defined from an existing one. This feature algghdel elements. When a DSL program is evaluated, a model
means that a new DSL can be created from an existing one, jéghforming to the abstract syntax metamodel is créasedord-
extending several keywords, and probably the root sandbox. ing to the mapping. Finally, we consider translational setica
When a keywordKy, .., with sandboxSy,s., is extended to to some target language or platform, which is achieved by a
define a new keyword{,,, the strategy is as follows. translation process involving model-to-model and modetdde
transformations, which eventually generates executaidie.c
within it keywords for new attributes and relationships. we have_ developed a software framework to support this
process. It is composed of several embedded DSLs and a meta-

o ldentifying the keywordi,q,ent Where Ky, . is contained. . . ; .) .
. Creating a subclass of the corresponding sandbox 1;(ﬂodehng kernel compatible with Ecore (via XMl files follomg

Kparent, €ither to create a new keyword or just overridin e EMF format to interoperate with Eclipse-based toolsp3L

e Kot method ok, n order 0 nstaniate the (11" *HCNAUZeS 200 stplfes e (eeiaes o,
Sext Sandbox instead oy, .- y Y

been created. It is complemented by another DSL to establish

For example, in the Modeling Actions DSL teansformation the mapping between a concrete syntax and an abstract syntax
action is a specialized kind of action, so it can be based anetamodel. Finally, we have developed a model-to-modektra
the existing action keyword defined in the Actions DSL. As formation language called RubyTL [20].
shown below, creating ther ansformaction keyword on the With this framework, a DSL can be given a concrete syntax
basis on aracti on keyword, implies inheriting from thecti on very easily taking advantage of the flexibility of the embedd
keyword’s sandbox to include new keyword methods, such approach. At the same time the use of metamodels to describe
transfor mati on. Also, thet r ansf or mact i on method is created the DSL's abstract syntax helps reasoning about the domain,
in a class inheriting from the action group sandbox, because and promotes model transformations. These features alpid r
action is contained into an action group. prototyping of DSLs, and we have in turn relied on them to trea
the embedded DSLs provided by the framework.

A distinctive feature of our framework is that each compdnen
provides composition mechanisms to achieve reuse at the cor

Concrete to
Abstract syntax
Mapping

o Creating a new sandbd.,+ as a subclass ¢, ., defining

class TransformActi onSandbox < Acti onSandbox
def transformati on(nane)

end responding level of the definition of a DSL. We will use these
end mechanisms in Section V to address the creation of familfes o
class Mbdel i ngGr oupSandbox < Acti onGr oupSandbox DSLs. In the rest of _the section we present eac_h_ component of
def transform action(nanme, &bl ock) the framework, focusing on the composition primitives iteo$.

sandbox = Transfor mActi onSandbox. new
sandbox. i nst ance_eval (&bl ock)

end A. Abstract syntax
The set of language concepts and their relationships, atldthg

en.d' . .
the rules to combine them, form the DSL's abstract syntaxe Th

To complete the extension, the definition of @ i on_gr oup 5 et thecon | Ho b o i
; F A . Notice that theconformsrelationship between the DSL program and the
keyword. method mUSt. be Qverrldden (-e. inheriting from_c_tbe concrete syntax definition has been quoted in Figure 2 toctefte fact that,
responding sandbox, in th'§ case the root sandbox) to #etan ¢ the text level, the only conformance relationship that barenforced is
the Mbdel i ngGr oupSandbox instead ofAct i onG oupSandbox. between the DSL program and the host language’s syntax.

definition of abstract syntaxes using object oriented metieting B. Concrete syntax

is a well-known topic [3], and we will not focus on it, but on

how to modularize a metamodel. We implement two mechanismsAs aforementioned, to define the concrete syntax of a meta-
based on the notions of package import and package mergedel we rely on the technique of embedding the DSL's syntax
proposed by the UML/MOF specification [21]. The former altowinto the Ruby language. Usually, the definition of an embedde
us to establish dependencies between independent metismodRSL repeats the same idioms explained in Section I, such as
whereas the later provides us with a means to create corapo8igfining a method for each keyword, sandboxing, etc. Thus, we
metamodels from existing ones. have developed a DSL intended to automatize this task.

When a metamodel imports another metamodel, the metaOur DSL relies on the idea of keyword and keyword composi-
classes of the imported metamodel are visible within it. sThiion as the main abstractions to define the structure of aredmb
allows dependencies to be represented while still keepiieg ded DSL. The generation of the actual implgmentatign is done
metamodels independent. In our tooling the dependencies dynamically, and transparently to the user. This generiagde-
implemented as cross-references between metamodels. mentation also takes into account error reporting, maatmng

. he exception trace to translate error messages automhatea.

Package merge is defined as a directed relatlonshlp between Eo identify the error line). Three basic constructs are latée:
packages, where the contents of a source packagei{ingpack-
age) are extended with the contents of a target packagegéd o Keyword This is the basic construct to create the DSL. The
package). Matching elements are merged (e.g. two metaslass number and the type of the parameters are specified.
with the same name), while non-matching elements are juegi-de o Keyword extensianA keyword can be defined as an exten-
copied. A typical approach to metamodel modularizationais t sion of another keyword.
define a base metamodel which is later augmented by merging Keyword compositionThis construct specifies which key-
extensions defined in other metamodels. words can be nested within another keyword, including

Although the basic definition of package merge is concep- restrictions about the cardinality of the nested keywords.

tually simple, there are some concerns which make it difficul The notions of keyword, keyword extension, and keyword
to understand and increases the complexity of the implem%mposition hide the complexity of creating a sandbox for
tation [22]. For instance, the same metaclass may be prtigdach context where a keyword can appear, as well as creating
defined in several metamodels, and conflicts may appear wh§hclasses to define extended sandboxes. When defining the
merging attributes. In [13] a merge approach is used to leandlyncrete syntax, the developer only needs to focus on tigeiaye
metamodel variability. It allows us to leave the connedian keywords and their composition. Also, this DSL provideseoth
joint points between metamodels open by defining “labelsieW featyres such as abstract keywords, or a means to define rich

metamodels are merged the labels are substituted by thal ac@kpression languages based on the techniques explaindedn |
names of the metaclasses to be merged. The main problemygf they are out of the scope of this paper.

this approach is that the notion of label has to be propagated
any tool or formalism dealing with concrete syntax and sdiogn
(model transformations in our case).

For instance, an excerpt of the definition of the Resources
DSL is shown below. Ther oj ect keyword expects the project
name of string type, as well as an optional parameter to

In this way, our strategy to merge metamodels is a simplidlow a description to be specified Thesour ce_type, f ol der
fied version of the two former approaches. It removes part ghd containres keywords are defined in the same way. The
the package merge complexity by avoiding partial definitadn conposition_for construct is used to specify which keywords
elements (e.g. metaclasses), and there is no need to aegaptniist be enclosed within another one. In this caséder and

rest of the framework, because instead of using “labels” W&nt ai n_res keywords are allowed only within proj ect and
just define a joint point as an empty metaclass with a namgs ol der keyword respectively.

The merging process can be briefly summarized as follows. Two _

metaclasses are merged when both names are identical. ém efeyword * proj ect’ d? _

. . . . ar ans name , string

is raised if none of the matghed m.etaclasses are empty fi.e. a{;ar ams * description’, :string, :optional
least one of them must be a joint point). Subpackages areemhergng

when their names match, merging their metaclasses as egglai keyword *fol der’ do

The rest of the metamodel elements are just copied, arrgnginnpar ams ' name’, :string

the re_Iationships to the merged elements appropriat_el'ws ﬁ'd_ms keyword ' contain_res’ do

been implemented as a model-to-model transformation ubsi@g parans 'resource_type', :string

RubyTL transformation language, end
] .)) keyword ’resource_type' do
It is worth noting the difference between import and merge param : name, :string
with regard to how they affect to the conformance relatigmshend
between a DSL program (i.e. a model) and its abstract syntax o , . ,

. . conposition_for 'project’ do
metamodel. With a merging strategy the actual metamodel tOnested ' fol der’, :one_or_many
which a DSL program conforms to is the composite metamodeid
resulting from the merge. On the contrary, when a metamod@iTPos! g' 9”_f?f_ 'fol der’ do
imports a metaclass from another metamodel, cross-rm‘en';enengeS ed ~contain_res:, -one
between models conforming to these metamodels will apjéar.
will use these mechanisms in Section V to address two differe Once defined the concrete syntax of a DSL, the next step is to

kinds of reuse. establish the mapping to the underlying abstract syntax.

C. Concrete syntax to abstract syntax mapping The following piece of code establishes the mapping between

A bridge from embedded DSL constructs to the MDE technicgﬂe concrete sy_ntax of the Resources DSL an_d its abstrataxsyn_
space (e.g. metamodeling concepts such as metaclasséneel Each keyword is mapped to the corresponding met_aclass using
ships, etc.) must be created, so that the evaluation of a DSIE Map construct (e.g. each ocurrence pfoj ect will lead
program yields to the creation of a model. The mapping froen tHi© the creation of &r oj ect Type element). It is also used to
concrete syntax to the abstract syntax establishes suchigebr MapP keyword parameters to attributes, and to establishhehet

In our experience, the nature of this mapping usually inspiéir an at_trlbute acts_as an identifier, bemg_ global or local. The
kinds of operations: contalnmen_t relatlonshlp_between a prolect and _|ts fqlders
Straightf q . h K d is directl mapped usingon Regarding non-containment relationships, the
+ Straightiorward mappingswhere a keyword IS direclly ¢ oonstryct uses the information about global or local idems
mapped to a metaclass, and each keyword parameter @Welared withmapto resolve the references.
responds to an attribute of the metaclass.

« Establishing relationshipbetween metamodel elements al™@PPi ngs do

. . map 'resource_type’ => ResDSL::ResourceType
ready created by straightforward mappings. They can bﬁag " resour Ce—tige_ nane’ => 'nane’, :id Zg : gl obal
either containment or non-containment relationships. map ' project’ => ResDSL:: Project Type

« Global-to-local transformationg23], where information to - - - fol der cos B - Fol d
. f map ol der => Res .. Fol aer
create a single target_element is spread through severayla map ’ fol der. name’ => ’'name’, :id => :1ocal
of the source model (in this case, the concrete syntax model)

Complex queries may be needed to retrieve the requiredon ' project.folder’ => 'folders’
information. ref ’folder.contain_res’ => 'resource_type’

T . d
« Initialization sentencesDepending on the structure of the®"

target abstract syntax metamodel, the creation of a givenWhen the concrete syntax to abstract syntax mapping is per-
element may imply creating some others target elemeritsmed on a given source DSL program, the result is a model
imperatively to complete the mapped one. conforming to the abstract syntax metamodel. This modelbean

An important part of the mapping is related to resolve identi NOW manipulated using, for instance, model transformation
based references at the concrete syntax level to explicidemo
references (i.e. a concrete syntax tree is converted to stnagb D. Translational semantics
syntax graph). When an identifier is used to allow a concept tomodel-to-model transformations play a key role to estéblis
be referenced, it can take two forms: global or local. mappings between metamodels, and to convert high-level, ab
« Global identifiers A global identifier is unique between stract models to low-level, concrete programming langsaayed
all the instances of a given metaclass. Therefore, once platforms. In the DSL setting, model-to-model transforioags
instance has been given an identifier, no other instance afn be used to establish the translational semantics of adySL
the same metaclass can have the same identifier. describing a mapping to another language. This is the approa
« Local identifiers A local identifier is unique only within taken in this paper. As part of our research in model transder
a given scope. Therefore, it must be qualified with thtions we have developed a model transformation languageeda
identifier of its scope. RubyTL [20], which has been implemented using the techriique

This issue has an impact in the way a metaclass is referenc@¢plained in this paper. _
Global identifiers can be referenced without being qualifieth ~ RUPYTL is a hybrid rule-based model transformation languag
the path to reach the identifier scope. On the contrary, tr tef intended to specify mappings between metamodels. It has a

a local identifier the complete path to reach the identifiepsc declarative part based on rules and bindings. Bindings are a
must be given. special kind pf aSS|gnme|_1t which aIIOV_/ us to descndeat is

It is worth noting that, in an embedded DSL, identifiers naed fransformed into whatwhile rules are in charge of resolving
be quoted (i.e. quotes are the way to specify a string). @ser f[hem (|.'e. a rule is implicitly cal_led_to resolve a binding)he
the compiler would consider the identifier as an undefinetably MPerative part of the language is given by the fact that Riiby

or method, so provoking an error. In dynamic languages it 1§ €mbedded within Ruby. In this way, it is possible to write

possible to use some metaprogramming strategies to avotihgu 2rPitrary Ruby code in the mapping part of a rule. _
identifiers, but they are out of the scope of this paper. The following piece of transformation definition estabéstthe

To automatize the task of defining the mapping betweéﬂapping between the Resources DSL metamodel and the Eclipse

the concrete and the abstract syntax we have also created®Hitecture metamodel shown in Figure 3. The first rule ef th
embedded DSL which provides declarative constructs fos tHf@nsformation definition creates a new! eTypeEP extension
purpose. Also, to give more flexibility, a visitor [24] is ifarge point from‘ eaclResour ceType element. Equally, the second rule
of traversing the syntax tree, allowing methods to be wifte creates &i | eResour ce element from eaclresour ceType. The
order to complete the mappings with queries and initiaiirat only binding in the first rule establishes that thesour ce source
sentences element must be transformed toFal eResour ce and assigned
Mappings are established by three constructs: (1) rtep to thefil eResour ce property. This binding is resolved by the
construct establishes the correspondence between keyvaoidl second rule.
metaclasses (it is also in charge of mapping parameters tt@nsformation 'res2ecl’
attrlbute_s_), (2) theon gonstruct is in cha_\rge of mapping keywordr ule 'resource2ep’ do
composition to containment relat!onsh[ps, while (3) thé con- from ResDSL: : Resour ceType
struct maps identifier-based relationships to explicierefces. to Arch::FileTypeEP

11 : ResourceType el : FileTypeEP e2 : FileTypeEP

r2 : ResourceType|

ExtensionPoint
JAN

- fileResource
ResourceRegister—— |
T W

f1 : FileResource| 2 : FileResource

PopupMenuEP Actionlmpl

Fig. 4. Piece of a trace model recorded during a transformati@eution.

r1 andr 2 are source elements, whigd, e2, f 1 andf 2 are target elements
created by transformation rules. Arrows represent traciogiships.

Implementation
Class
‘ N

resource
1 TransfActionimpl ValidationAction

FileR transformation : File Impl
rleResource metamodels[*] : File

type : {text, binary}|
extension : String

ContentTypeEP FileTypeEP

Fig. 3. Excerpt of a metamodel to describe an architecturaitisol to de-
velop contributions for the Eclipse platform. Extensionnisiare represented
as metaclasses inheriting from tli&t ensi onPoi nt abstract metaclass,
while already existing implementation classes are repreddny metaclasses
inheriting from| npl enent at i ond ass.

mappi ng do |resource, filetype_ep|
filetype_ep.fileResource = resource
end
end

rule 'resource2file_resource’ do
from ResDSL: : Resour ceType
to Arch::Fil eResource
mappi ng do |resource, file_resource|
file_resource. extension = resource. extension

part). For each match the refinement rule is executed, but
instead of creating a new target element as usual, the etemen
matched by the target pattern is used. This means that no new
target elements are created, but the rule works on existing
elements, refining them. For example, the following rule
would match anyi | eResour ce andFi | eTypeEP instances
which are both related to the same source instance of type
Resour ceType. According to the trace model, the rule appli-
cation will result in two matchesfr1, ei1, f1} and{r2,
e2, f2}. Some code could be written in the mapping part
of the rule to refine these already existing target elements,
{e1l, f1} and{e2, f2} in this case.

refinenent _rule 'resource_type do

from ResDSL: : Resour ceType
to Arch:: Fil eTypeEP, Arch::Fil eResource

file_resource.type = Arch::Fil eMbdes: : Text mapping ...
end end
end Thus, our proposal for transformation composition relies o

An important feature of RubyTL is that it provides a modutiari duerying the piece of target model created by a previousfoan
mechanism, called phasing [25]. Unlike rule-level modtyar mation (or phase), using the trace information, either ylyapg
mechanisms, such as the ones discussed in [26], phasinghgtrace queryor refinement rulemechanisms.

Coarser_grained' and it is intended to reuse and COl"nposp]etﬁ'n Fina"y, a transformation definition can be imported within
transformation deﬁnitions’ not 0n|y individual rules. another transformation definition, and it is treated as aJIEEEg

At this point’ we br|ef|y exp|ain our phasing mechanisn‘phase. A construct calledchedul i ng allows us to set the
although a more complete description can be found in [25thwi€éxecution order of phases and imported transformationitefis.

a phasing mechanism, a transformation definition is orgahi,s A practical application of these features is given in thetnex
a set of phases, which are composed of rules. Executing s tragfction.

formation definition consists of executing its phases in idage

order. The execution of a phase means executing its rulésheeyi V. FAMILIES OF DSLs

belonged to an isolated transformation definition, withaariflicts Defining families of languages has been proposed as an ap-
with rules defined in other phases. A transformation definiti proach to promote Systematic reuse in the deve|opment ofsDSL
is therefore seen as a phase, so allowing the same compositir a given context [12] [13]. A family of DSLs is defined as a
operators as for phases. set of related DSLs intended to address some task or prollem i

We have defined two operators for composing phases. Thesgiven domain.
operators are based on the trace information recorded giurin practical development and usage of a family of DSLs requires
the execution of rules. A trace establishes that a certamcso reyse both from the DSL deve|0per and user poin[s of view.
element has been transformed to a target element. We exgtin Some DSLs in a family may have commonalities, which can
operators assuming that the piece of trace model shown imé€=igbe used to factorize common DSL implementation code that
4 has been recorded during the execution of the transfosmatis |ater composed with the corresponding variants. In the ru
shown above. ning example, the Modeling Actions DSL reuses most of the

o trace query It is a function which takes a source elemeninfrastructure of the Actions DSL. On the other hand, ther use

as input and returns one or more target elements that aneist be provided with modularization mechanisms to organiz
related by the trace to the source element (i.e. those target reuse DSL programs. For example, the Actions DSL (or the
elements that have been created from the source elemehtpdeling Actions alternatively) and the Resources DSL mtes
The returned elements can be constrained to be instanceshef user with a means to reuse the corresponding DSL programs
some metaclass. For instant@ce query(el, FileResource) in different contexts (e.g. the same Resources program ean b
returns{ f1 } becausel is related to only one element ofused for several projects).
typeFi | eResour ce by the trace. To tackle these two forms of reuse, mechanisms for DSL
o refinement rulelt is a special kind of rule which matchescomposition are needed. DSL composition can be defined as the
against the trace information, instead of the source modability to relate two or more DSLs in order to achieve a certai
There is a match if a source instance of the metaclasctionality which is the result of combining the functadity of
specified in the rule’s source pattern (i.e. rulétsm part), the composed DSLs. Thus, a single DSL can be decomposed into
has a trace relationship with one target instance of tlseveral, smaller DSLs than can be reused in different ctsitex
metaclass specified in the rule’s target pattern (i.e. sute’ either by the developer or the user. In this way, we distisigui

between two forms of DSL composition: language composition Resources F"* “actions F’*{ ‘Modeling.
and program composition. ii ii ii
« Language compositiois the ability to compose two or more <”’
DSLs transparently to the user. This means that, from the v v v
«.syntax» | _ _| «a.syntax» < «a. syntax»
Resources F Actions Modeling

user point of view, there is only one DSL with a certain
advantage of existing DSL implementations to create a new <
v v v

functionality. This form of reuse allows the developer tketa
specialized DSL.

o Program composition on the other hand, refers to the [Edlipse architectural solution model]

possibility of the user app'y'“g meCh‘T’mIsms to mOdum_‘r_'Zﬁg. 5. Composition relationships between the members of the f28ily
the DSL programs he or she writes. This form of compositiofised as running example, and their implementation artifacish&d arrows
allows DSL programs to be reused. means dependency, while empty arrows means exten&i@yntax” means

- . . . concrete syntax;'a.syntax” means abstract syntax, whilen2m” means
Language composition requires the existence of modularizgggel-to-model transformation.

tion mechanisms at the tooling level, that is, mechanisms to

modularize the definition of the concrete syntax, abstraotax,)) p .

and semantics are needed. On the contrary, program coioposif"@PPing will be in charge of actually connecting the modéfe

implies that the DSL developer provides the DSL user witfhodel transformatior_] d§f|n|t|on attached to each membert mus

modularization mechanisms intended to organize DSL progra have the dependencies into account. _ _
There are several concrete forms of composition that can bd" the example, the abstract syntax of the Modeling Actions

classified into one of these two categories. In this paper le WPSL IS created as an extension of the abstract syntax of the

illustrate language composition witxtensiorand program com- Actions DSL. The same applies for the concrete syntax. Re-

position withimportation Other forms of composition that are outd@rding model transformationsjod2eclis based oract2ecl(see

of the scope of this paper areerging[13] and superimposition Figuré 5). The result of composing all the components is the

[27]. Merging consists of combining pieces of DSLs, esttbiig actual Modeling Act_|ons DSL definition. At the same time, the

connection points, to form a composite DSL. Superimpcmitid?esources and Actions DSLs are two different DSLs from the

allows the user to superimpose additional functionalityarn USEr point of view, but they have dependencies. A dependency
existing DSL program. is first described in the abstract syntax metamodel, and brist

propagated to the rest of the components. For instancectecl
transformation definition must be able to get elements ecehy
A. Approach overview the res2ecltransformation definition.

Each member of a DSL family must be developed as aln the next two subsections we explain how to address impor-
reusable unit, which must be composed with other membd@dion and extension in a family of DSLs using the compositio
of the family to provide a common functionality. Typicallg, Mechanisms introduced in the previous section.
member corresponds to some aspect or concern of the domain
of interest. A member has a corresponding DSL definition (i.8. Importation
abstract syntax, concrete syntax and semantics), and afset As with general purpose languages, decomposition of DSL
dependencies with other DSLs of the family, which are descti programs into reusable parts, that can be later composedl, is
at the abstract syntax level, either using import or merge. Avay of improving reuse and avoiding code duplication. Also,
important advantage of using MDE techniques is that regulgeparating a DSL program into several files is a way of dealing
operations on models can be used to manipulate a memben It gdth the complexity of large specifications. A DSL program is
be stored in a model repository or serialized, it can be u#did then seen as a reusable module, and mechanisms to compose a
using any compatible tool, it can be transformed, and so on. module into other modules must exist.

We argue that to tackle the creation of a family of DSLs, com- One way to achieve such goals, is to allow a DSL program
position mechanisms are needed at the concrete syntaxaebsto import another DSL program, making the elements it defines
syntax and semantics levels. Figure 5 shows the relatipashavailable. In a family of DSLs this means that dependencies
between the artifacts involved in the definition of our famil between family members has to be resolved.
of DSLs. When language composition is considered (i.e.eeus At the abstract syntax levele represent dependencies as cross-
at the DSL developer level) the composition is needed for theferences between metamodels using the package impart rel
components of two or more DSL's definitions. It is performed btionship presented in Section IV-A. When a metaclass of aljam
composing metamodels, concrete syntax definitions and Imodeember depends on a metaclass “belonging” to another family
transformation definitions, in order to get a single, résglIDSL member, a cross-reference between metamodels is estblish
definition. When program composition is considered (i.eisee In this way, each DSL program (i.e. a model) conforms to the
at the DSL user level) an independent DSL definition is attdchcorresponding family member metamodel, and the depengenci
to each member, but the dependencies between them mustabthe abstract syntax level will be propagated as crossertes
represented. They are established between the abstratxsyto other models. Figure 6 shows that in the running examme th
metamodels, and must be propagated to the models. The t®ncret i onG oup metaclass is related ter oj ect Type, andAct i on
syntax of each member must provide the user with a meansigaelated torResour ceType. Any program defining actions has to
connect the DSL programs. The composition is therefore egtedeference resources defined in another program.
at the DSL program level, that is, the actual composition is At the concrete syntax levétiere are two problems involved.
performed on models. The concrete syntax to abstract synférst, an “import” statement is needed to allow the user tdlo

10

Actions Resources
: v v in both Resources and Actions DSLs with different purposes:
focionboup | ______________ pf frlece g |__Folder to define a project, and to reference a project respectivalyg
Acion — implementation resolves the cross-references transgharen
_ _ name: String | _ _ _ | B > na:‘zo:usrc:nvpe .
actions * . gxtensiﬁtn..ssgfing inport_for 'dsl://resources’, :as => 'res’ do
iconpath Suing uri ' resources’
/;N end
\\«\\erge»
>~ Atv\ mappi ngs do
N e ref 'action_group.project’ => 'res.project’
metamodels[*] : String end

Fig. 6. Excerpt of the metamodels involved in the example famly o At the model transformation levethe challenge is how to as-
DSLs, and their relationships. Dashed arrows means a referenanother sociate an indepedendent transformation definition to &aolly
metamodel, and thus a metamodel importation relationship iblesstad. The member, but still allowing dependencies to be resolvedeGia
merge relationship is indicated with the<merge>> stereotype. . " . . .
family with DSL; and DSLy their associated transformations,

Ty and T, have to be related when some piece of target model
created byT is needed to complet&,. Our solution relies on
\{\Jhsing thetrace queryfunction presented in Section IV-D. In
S A . o is way, T» usestrace queryto reference elements created by
which is its definition. We rely on Uniform Resource |dentifie

y Ty. The abstract syntax model @dSL; has elements that are

(URI) to uniquely identify DSLs within a family. The name dfet .
DSL program to be imported is prefixed with a logical Schemrgferenced by»S Lo, andtrace quenyprovides a means to get the

which identifies its definition (i.e. the member of the faruily ~ COreSPonding target element, creatediby for a given source

. . . - element “shared” byDSL; and DSLs.
In Section IV-C we explained that identifiers are used torrefe . W51 2 . -
In the running example, thees2ecltransformation definition

ence elements in a non-containment relationship. The itapon o
i .) is in charge of dealing with resources. In particular it bishes
mechanism makes elements directly available, so that thay 4 i
. o . X . the mapping betweemesour ceType and Fi |l eResource (see
be referenced by its identifier as if they had been definedeén t . o .
) . __example of Section IV-D). Thect2eclis in charge of dealing
same DSL program. However, to avoid name clashes the ImpOIL -~ tions (e.g. it may map anction to ap NenuER)
statement requires a qualifier to reference the elementeedefi 9: Y P anction OPUpNENUEFR).

- . . However, as can be seen in Figure 3paupMenuEP is related
by the imported program. This means that the imported progr i .
- A 0 aFi | eResour ce, but to respect the separation of concerns, the
becomes the scope of the elements it defines.

The examole below shows the DSL proaram to define act.oathecI transformation cannot create resource-related elements,
txd tpth b W show f Secti ”ﬁ’ g itten t C(Iie ih 'oBGit only reference them. In this way, the reference is eistadx
ip;;eserp ?i nam eh i?'?:'r:?i?n ?tc I?hn DrSeIiN ”r enr ?n " s émiri in two steps: (1yes2eclis first executed to create resource-related
; po ra 0 I te,c a IISita. P Th program fo elements, and (2) imct2ecla trace querycall is performed for
erzmrja(;*fsis(i(ran Soriz q asge- rzzofr:;e?t)s' ele;ggg rrﬁigl':rggsref each cross-reference between abstract syntax models tisabe
brog > IMP °% s : resolved (i.e. to obtain the corresponding target element)
erenced with the es prefix. In this way, thepr oj ect keyword . o
. An excerpt of theact2ecltransformation definition is shown
references thege project type, andesour ce keyword references . . '
. » . below. The only rule shown creates an extension point to éefin
the resource type identified bywbyt | - transf, which belong to .
. o a pop-up menu from each action. Ttrace querycall takes the
the DSL program identified ases.)
value of theacti on. resource source element, and returns one
inport 'resources://age-resources’, :as => 'res’ element of typeri | eResour ce (i.e. notice the use afne_of to
ensure that only one element is returned), which was prelyiou
created from the source element by tes2ecltransformation.

a certain DSL program. This raises the following issue, miae
certain DSL program which is going to be imported, how to kno

action_group 'age-group’ do
project 'res.age’
action 'export transformation do
resource 'res.rubytl-transf’
show_i n_popup
end
end

transformation 'act2ecl’

rul e "action2popup’ do
from ResDSL: : Acti on
to Ar ch: : PopupMenuEP
This is supported by our DSL for mapping concrete to abstractIn'aI t o {dloarg'cf’inlona‘:te' IO”' I's_popup? }
syntax, which resolves qualified cross-references to eiésne ZE_ rgsource = trgcefquery(am on. resour ce) .
defined in imported DSL programs. To do so, a construct called one_of (Arch: : Fi | eResour ce)
import for is added, so that it is possible to specify that one €nd
DSL can import other DSL, and the URI that will be used 5"
identify the imported DSL programs. In this way, one onlyd®e As part of its phasing mechanism, RubyTL provides a way
to declare which DSLs can be imported, and to establish the define a new transformation definition which is actuallg th
relationships between DSL elements using rsieconstruct. result of composing two or more transformations, which @ens
The following excerpt corresponds to the definition of thas phases. As explained, existing transformation defirstican
Actions DSL. It uses theénport for statement to establish anbe imported within a new one, establishing then the executio
import relationship to the Resources DSL. References te kayder using thechedul i ng construct. In our examplect2eclis
words defined in the Resources DSL must also be prefixed wekecuted afteres2eclbecause the former depends on the piece
res, to avoid name clashes (e.g.paoj ect keyword is defined of target model generated by the latter (i.e. the trace qually

11

establishes the dependency). concrete syntax definitions, automating the process oftiogea
, subclasses of sandboxes explained in Section IlI-E.

inmport 'nm2m//res2ecl’, :as => 'resources . .
inport ’n2m//act2ecl’, :as =>’actions’ In the code excerpt below, the Actions DSL is extended to
_ create the Modeling Actions DSL. The Actions DSL definition

schedul i ng do , is first imported, and themr ansfor maction is defined as an

execute ’'resources

execute ' actions’ extension of theacti on keyword defined in Actions.
end extension_for 'dsl://actions', :as => "act’

. keyword ’'transform action’, :extends => 'act.action’
C. Extension keyword ’'transformation’ do
param’filenane’, :string

Extending a DSL consists of creating a new DSL that contaipg
the same constructs as the extended DSL, but also some mewposition for 'transformaction do
constructs and new functionality. This allows common péots nested 'transfornation’
be reused in a family of languages: the commonalities ofragve®"d
DSLs can be factorized into a base DSL, that will be later At the model transformation levéde problem involved is how
extended with variants. to extend an existing transformation definition, that desith

In the running example, the Actions base language is defmeddne family member, in order to add those rules and bindings th
represent generic actions in the Eclipse platform. It carebised are needed to implement the translational semantics ohanot
to describe actions typical of specialized environmenif bntop member, which is an extension of the former.
of Eclipse. For instance, launching a transformation oiceding In the running example, the Modeling Actions DSL is an
a model are actions commonly found in a modeling environmerixtension of the Actions DSL, so thmod2ecltransformation
Thus, the Modeling Actions DSL extends Actions to providetsu definition is written as an extension aft2ecl This means that
specialized actions. new rules may be added, while others may need to be refined. In

The following piece of code shows an excerpt of a Modparticular, theacti on2popup rule shown above must be refined
eling Actions DSL program, which defines actions that caim order to deal with specialized kind of actions, for instara
be applied to a UML class model in order to transform itransf or mati onActi on that has a particular Eclipse implemen-
to Java code. They are enclosed into a group of related astion represented with ther ansf Acti onl npl metaclass.
tions. Bothtransformaction andvalidate.action are spe- A refinement rule provides us with a means to refine a mapping
cialized keywords not available in the Actions DSL. Moregveestablished by a rule in a previous transformation. Thus, we
transformation andmet anodel s are keywords only available propose importing the extended transformation into thereding

for transformation actions. transformation, and using refinement rules to extend thepgp
action_group ’unl-transformations’ do it establishes.
project 'uni-nodeling’ In the transformation excerpt below, themod2ecl trans-

formation definition imports theact2ecl transformation defi-

transformaction ’'um -accessors’ do . - “ " ;
= nition. Then, a refinement rule “captures” all mappings be-

resource 'um -files’

show_i n_popup tween Tr ansf or mat i onActi on elements andPopupMenuEP el-
' ements, allowing them to be refined, in this case to create a
transformation " unl 2accessors. rtl new Transf Acti onl npl element and connect it to an existing
net anodel s 'UML’, ' Java.ecore . . .
end PopupMenuEP element. Implementation-wise the transformation
code is enclosed within @hasedeclaration to allow it to be
\éal idate_action 'um -class’ ... scheduled along witlact2ecl
en

) o transformati on ' nod2ecl’
At the abstract syntax levedxtension is implemented as ai nport ' n2m//act2ecl’, :as => ’actions’

merge relationship between the base metamodel and the-corre _ o
sponding extension metamodel, which adds new concepts £H o ngongﬁlt '_pgl'gcf ;g?isonggopup, do
extends some of the existing ones. Creating a generalizatio from ResDSL: : Tr ansf or mat i onAct i on
relationship from an existing metaclass belonging to thereed to Arch::PopupMenuEP
metamodel is the way to connect the two DSLs. Additionallg, w ~ ™Ppi ng do |action, ep| .
. . . . ep.inpl _class = Arch:: Transf Acti onl npl . new

provide a merge transformation that will create a new coritg@os o
metamodel resulting from merging both metamodels, as qala end
in Section IV-A. Figure 6 shows how the Actions DSL abstract end
syntax is reused by Modeling Actions DSL abstract syntax. fd
particular, the join point is thécti on metaclass. schedul i ng do

At the concrete syntax levelr framework supports extension execute ’actions’
by means of the concept of keyword extension. In this way, €Xecute ’modeling-actions’
extending a DSL simply consists of importing it into the new
DSL, so that its keyword definitions are part of the new DSIld an Figure 7 summarizes the techniques we propose to create a
extending the desired keywords according to the abstraxtagy family of DSLs. We useextensionto address language compo-
A generalization relationship is therefore mapped to a keyiw sition. Abstract syntax metamodels are composed using gemer
extension relationship. The implementation internallyges both transformation, and the notion of keyword extension is used

12

Extension Importation because it would imply dealing with the whole grammar of the
Abstract syntax Merge Import host Ianguage.
Concrete syntax | Keyword extension| Qualified identifiers
Trans. semantics Refinement rule Trace query B. Guidelines

Fig. 7. Summary of techniques to address modularity for theldpreent Based on the discussion above we identify several situmtion
of a family of DSLs. where creating an embedded DSL is a suitable option. When
the host language is known by the user community, there is
no problem to adopt this approach since users are comfertabl
represent the generalization relationships at the com@gttax with the syntax and constructs of the DSL. On the other hand,
|eVe|. The I’efll’]ement I‘u|e mechanlsm a"OWS us to eXtendIBgIS managing a global Community non_knowledgeable in the host
mappings. We tackle program composition wiithiportation The |anguage to accept and embrace an embedded DSL is difficult,
dependencies between family members are represented at 4hg§ a good adoption is improbable. Users tend to think tHat al
abstract syntax level using an import mechanism to establigaatyres of the host language must be learned, and feel ¢hezas
CI’OSS-referenceS. Quallﬂed identiﬁers are Used to reﬁerm' overwhelmed by the “ﬁctitious" need of |earning a hew |arma
ments defined in imported DSL programs. Finally, the trac&yju Moreover, languages well-suited to create embedded DS$ich, s
operator resolves dependencies by allowing a transfoomadt a5 Haskell or Ruby, usually belongs to paradigms the average

get elements created by another transformation. developer is not used to. Finally, in the case of local user
communities a knowledgeable person may train a small team.
VI. DiscussioN If the DSL is simple enough, only a minimum initial effort is

From our experience with embedded DSLs during the develeeded to overcome the initial reluctance.
opment of the AGE tod| we present a discussion about the We have identified four usage scenarios for embedded DSLs.
advantages and disadvantages of the embedded approac8lfor Dhe first, and more obvious, scenario is to develop an emledde
development. We conclude with some guidelines to decidenwhBSL intented to be widely used by a certain host language
this approach could be a good choice to implement a DSL. community (e.g. Parsec in Haskell, Rake in Ruby, etc.)

Another scenario is to develop an embedded DSL to automate
repetitive tasks usually carried out by a developing teaime T
Orunning example used in this paper corresponds to such an
Eenario. Defining a generative family of DSLs, as explaimed

ture of the host language, which allows us to have all featofe th;p?:%efr'thlz t%aarrtr'fg?rrl?gtlrﬂsgxizztﬁog??;?]\;i;;s?ﬁ:;rfan be

a .ge.neral purpose Ianguage fpr freg .We pavokaken advmaggrained by the people in charge of the implementati(’Jn.

this in Rub_y‘_l'_l_ to provide the irffperaige natur_e of th.e langeia The third scenario we consider is experimentation. The -flexi
The flexibility of the embedded approach (in particular whe ility provided by embedded DSLS is very suitable to experit

combined with dynamic languages) aliows novel featureseto g/ith novel features of DSLs. In addition, it allows us to have

incorporated to a DSL without much implementation effortisT ’

h I dust . t with model t ¢ i working DSL faster than creating the DSL from the scratcmgisi
as aflowec Us 1o expefnci@viy mode! transiorma ion g other techniques. In our case, we have experimented wittemod
features [28] and DSL composition.

. o ; . . transformations using this approach. As a result, we hawated
Regarding usability, IDE support is an important issue ti&ena 9 PP

the adoption of a DSL by a community easier. Nowadays, IDI&he RubyTL transformation language, which includes pfgsin

providing features such as syntax highlighting. code fuidiau- ich is an innovative composition mechanism. In this cadle,
tocompletion, cheat sheets, etc. are common ’for generpbpar people invc_)lve_d must knovy the host language.

. T . . Prototyping is an scenario where the embedded DSL approach
programming languages. An embedded DSL not only inheréis t@an be particularly useful. Even when the DSL will be used
host language’s features, but one can also take advantagpenaf

. . by a global community, it is still possible to take advantade
feattures a:(vwlable n er>](|st|ng ”?ES r:‘prhlt_h(ka]t_host Ia(;\glrjfa%? Fembedded DSLs. They can be used to build a prototype of the
Instance, features such as syntax highiighting, code fgiar -, ,,|q DSL, so that the designer can test those languagerdsatu
even some form of autocompletion are straightforward tseeu

which may not be clear. Once the DSL design is complete, the

However, there are some disadvantages in embedded DS(!1‘es\'/elopment can switch to a more traditional approach. Aot

;Zesmgtrsxog;”%f ;\S‘O;T"’Il;:]hi;’ygta;igz;hfheDSSLr:faieéiLTc;nggt%proach is to concentrate in the abstract syntax and semant
the oytimal one, a domaingex gerlt may be una)tl)le to use it the language, relying in the embedded approach to give the
P ’ P y -~ concrete syntax so that the language can be tested in thsir fir
The fact that all features of the host language are availzdole .
stages. In a last stage, an stable concrete syntax can be give

be a drawback instead of an advantage. In our experiences usu%'ng any other approach.

are reluctant to use embedded DSLs because they tend to thin inally, we remark on the two main reasons difficulting the

_that itimplies Iearr_ung anew general purpose I_anguageo,Als adoption of an embedded DSL by a user community: tool uggbili
is not always possible to keep developers working on the edant

bstraction b th | host | 's fat and the lack of experience in the host language. To widen
apstraction because they may rely on nost 'anguage's U the spectrum of possible users of an embedded DSL, IDE’s
Finally, concerning IDE support, providing autocomplatio

based on the domain constructs is complicated to im IemesqOUIOI provide more usable editors taking into account §@ u
P P of domain specific constructs, and proper training in thecet
3The AGE tool has been released as free software. It can beldaded NOSt language must be provided, so that developers are affle b

from http://gts.inf.um.es to use and create embedded DSLs

A. Advantages and disadvantages

ment [11]. A particular strength is that they reuse the stfiac-

13

VII. RELATED WORK Method Engineering to create project specific methods from

Techniques to embed a DSL into some host language have b8¥jhod fragments [35]. .
discussed in several works. In [7], Hudak coined the termalom Créating a pipeline of DSL translators, each one in charge of
specificembeddedanguage to describe such DSLs implementefianslating the corresponding piece of DSL program, is foeat
on top of a host language. This approach has been widely nsedl [36] as an approach to deal with DSL composition in a
Haskell [29] [30] [16]. In Lisp, as argued in [8], defining kg of family Of DSLs. The example given is theoff system for text
languages using the macro system is the standard way ohdeaRrocessing. However, this approach works at “the text Tevel
with complexity. Building embedded DSLs is also common ignd trans]ators communicate just by mam.pula.tlng the et
dynamic object oriented language communities, such as Rody and passing dovyn the resqlt to .the following in the chain. Our
Smalltalk [11] [9] [24]. Embedded DSLs has also been dewedop apprc_;ach g_stabllshes relationships at the_ abstract syetax,
in other languages, such as ML [31], Java [19] or C++ [32]. THNd it _addltlonally allows reuse to be achieved _at the progra
profiles mechanism of UML can even be considered a means!¥€! (i-6. DSL programs can be composed using importation
define an embedded domain modeling language [21] into UMLC related them). In [13] [37], a product line approach isdise

With regard to combining the embedded approach with tf{@ create individual languages from language variants. milfa
MDE paradigm, as far as we know, this is the first work addres@f languages is therefore seen as a set of individual laregguag
ing this issue. Anyway, in [16] an approach to compile emieedd With some common parts, which are r_eused. The techniques
domain specific languages within Haskell is presented. famed W€ Propose can be used to create individual languages, but ou
combinators are defined, which create an abstract syntax tIrgefmm_on of family of DSLs also covers the creation of rghht
which is then used to generated code. This is, in some aspeHSLS intended to allow the user to reuse DSL programs (in [12]
similar to our proposal, but we rely in a metamodel to defiree t0th approaches are discussed).

DSL’s abstract syntax, and in a model transformation laggua R€garding model transformation composition, several ap-
for the translational semantics. proaches at rule-level has been proposed [26] [38]. However
In the case of model-based approaches to create textual, DSI&fining families of DSLs requires transformation composit
two main categories can be distinguished, grammar-basdd & Pe addressed with coarser-grained mechanisms, that allo

metamodel-based. Grammar-based approaches [33] ardeariegomplete transformation definitions_to be rgused. In thig, wee
to generate metamodels from grammars, whereas metamodéi€ Proposed a phasing mechanism which allows composition
based approaches [2] [17] work on the opposite direction. Dgf model transformation definitions.
veloping simple DSLs with these approaches is relativelyyea
but the former has the disadvantage of the poor quality of the VIII. CONCLUSIONS
generated metamodels, while with the latter it can be difficu
fully customize the concrete syntax. In our case we estaldis ~With the emergence of model driven development, the cneatio
explicit bridge between concrete syntax constructs (egwiords, Of domain specific languages is becoming a fundamental fpart o
keyword composition, etc.) and abstract syntax metamolel elanguage engineering. The development cost of a DSL shauld b
ments by means of a mapping DSL. This gives freedom in bofhodest, compared to the cost of developing a general-perpos
the concrete syntax and the metamodel structure. In théqusev Programming language. Techniques to allow DSLs to be defined
section we have highlighted several advantages of embeddéthout much implementation effort, but focusing on domain
DSLs, but in comparison with other approaches, certaingy tf@spects are needed. Reuse techniques in the context of DSLs a
most important advantage is flexibility. We have been able @&so a key aspect for DSL approaches to be really effective.
develop a practical approach to create families of DSLsgBI8L In this paper, we have presented an approach to integrate em-
composition, relying on embedded DSL techniques. Comgadn bedded domain specific languages in a model driven develapme
[17] and [2] this is a distintive aspect. In fact, to our knedgje, environment. On the basis of this approach we have tackied th
our framework is the only one, within those supporting MOMevelopment of families of DSL, as form of reuse, by defining
or Ecore metamodels, providing composition mechanismieat tmnechanisms for DSL composition. We have shown that creating
concrete syntax and translational semantics level. On thero family of DSLs requires composition mechanisms at all tvele
hand, as we have pointed out, the embedded approach is @o@ DSLs definition.
suitable for all scenarios, and then we must rely on someef th Our main contribution is two-fold. On the one hand, we have
former approaches. explained how embedded DSLs can be developed in a systematic
The topic of DSL composition has not been widely address&dy, separating abstract syntax, concrete syntax and sesian
in the literature. In [13] the problem of building families o using the MDE principles. We have shown that combining em-
DSLs, and how to reuse DSL assets is addressed. It discussebadded DSLs and MDE leverages both of them. On the other
approach to composing DSLs which is based on abstract synt@nd, we have tackled the development of families of DSLs to
templates. However, concrete syntax and transformatiompoe deal with DSL reuse. To our knowledge this is the first proposa
sition are not treated. GME is a generic modeling envirortmeaddressing reuse both from the DSL developer and user pbint o
which supports composition of metamodels [5] [34]. GME i$ noviews, providing a full stack of composition mechanisms.
based in MOF, but it extends UML with composition operators. Regarding the future work, we are investigating other mecha
The concrete syntax of DSLs defined with GME is graphical, amdsms for DSL composition, as well as studying how to apply
it is highly coupled to the underlying metamodel definition. product-line techniques to further improve reuse. We ae® al
this way, composition at concrete syntax level is based @ tlesearching into evolution of DSLs, by automatically gatieg
extended metamodel composition operators. Metamodelbasransformations intended to adapt both DSL definition acts
assembly techniques has been applied to the field of Sihatioand programs.

(1]

2

(3]
(4]

[5

[6

[7

(8]
9

[10]

[11]

[12]

(23]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

REFERENCES [27]

M. Mernik, J. Heering, and A. M. Sloane, “When and how to elep
domain-specific languagesACM Comput. Sury.vol. 37, no. 4, pp.
316-344, 2005. (28]
I. Kurtev, J. Bezivin, F. Jouault, and P. Valduriez, “Model-based dsl
frameworks,” inCompanion to the 21st Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Largsjagnd
Applications, OOPSLA 2006, October 22-26, 2006, PortldR, USA 29
ACM, 2006, pp. 602—-616.

T. Clark, A. Evans, P. Sammut, and J. Willamgplied metamodelling:
A foundation for language driven developme®eptember 2004.

D. M. Weiss and C. T. R. LaiSoftware product-line engineering:
a family-based software development processBoston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

Akos Lédeczi,Arpad Bakay, M. Madti, P. Volgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific Degiggii-
ronments,”Computey vol. 34, no. 11, pp. 44-51, 2001. [32]
S. Kelly and J.-P. Tolvaneromain-Specific Modeling: Enabling full
code generation Wiley-IEEE Computer Society Press, 2008.

P. Hudak, “Building domain-specific embedded language€M Com-
put. Surv, p. 196, 1996.

P. GrahamOn Lisp: Advanced Techniques for Common Lisprentice
Hall, 1994.

S. Ducasse, A. Lienhard, and L. Renggli, “Seaside: A Bexienvi-
ronment for building dynamic web application$EEE Softw,. vol. 24,
no. 5, pp. 64-71, 2007.

D. Thomas and A. HuntProgramming Ruby: The pragmatic program-[35]
mer's guide Addison-Wesley, 2000.

J. S. Cuadrado and J. G. Molina, “Building domain-spedtdinguages
for model-driven development/EEE Softw, vol. 24, no. 5, pp. 48-55,
2007.

A. Evans, G. Maskeri, P. Sammut, and J. S. Willans, “Buaitgfamilies
of languages for model-driven system development,2iml Workshop [37]
on Software Model Engineering (WiSME’02002.

J. Greenfield, K. Short, S. Cook, and S. Ke®bftware Factories:
Assembling Applications with Patterns, Models, Framewpakd Tools
Wiley, 2004.

F. Budinsky, S. A. Brodsky, and E. MerkS¢lipse Modeling Framework
Pearson Education, 2003.

Meta Object Facility (MOF) 2.0 Core Specificatio@bject Management
Group, Inc., oct 2003.

D. Leijen and E. Meijer, “Domain specific embedded comgilein
DSL'99: Proceedings of the 2nd conference on Conferenceamdn-
Specific Languages Berkeley, CA, USA: USENIX Association, 1999.
A. Kleppe, “Towards the generation of a text-based ienfa language
metamodel.” i3"¢ European Conference on Model Driven Architecture
ser. Lecture Notes in Computer Science, D. H. Akehurst, ReVand
R. F. Paige, Eds., vol. 4530. Springer, 2007, pp. 114-129.

E. Gamma and K. BeckContributing to Eclipse: Principles, Patterns,
and Plugins Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 2003.

S. Freeman and N. Pryce, “Evolving an embedded domainfgpkmn-
guage in java,” inOOPSLA '06: Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems, kgesi and
applications New York, NY, USA: ACM, 2006, pp. 855-865.

J. S. Cuadrado, J. G. Molina, and M. Menarguez, “RubyA[Practical,
Extensible Transformation Language,” 2% European Conference on
Model Driven Architecturevol. 4066. Lecture Notes in Computer
Science, June 2006, pp. 158-172.

OMG, “UML specification, v2.1.2,” February 2007.

J. Dingel, Z. Diskin, and A. Zito, “Understanding and iroping UML
package merge Software and Systems Modeling

J. v. van Wijngaardeen and E. Visser, “Program tramsédion mechan-
ics: A classification of mechanisms for program transformatidth a
survey of existing transformation systems,” May 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign patterns:
elements of reusable object-oriented softwawddison-Wesley Profes-
sional, 1995.

J. S. Cuadrado and J. G. Molina, “Modularization of modahsforma-
tions through a phasing mechanisngbftware and Systems Modeling
2008.

I. Kurtev, K. van den Berg, and F. Jouault, “Rule-basedioiarization
in model transformation languages illustrated with a8¢i. Comput.
Program, vol. 68, no. 3, pp. 111-127, 2007.

(30]

(31]

(33]

(34]

(36]

(38]

14

R. Lammel, “Adding Superimposition To a Language Semantics —
Extended Abstract,” irFOAL'03 Proceedings: Foundations of Aspect-
Oriented Languages Workshop at AOSD 2002; Technical Rep6rt
Dept., lowa State UniyG. T. Leavens and C. Clifton, Eds., Mar. 2003.
J. S. Cuadrado and J. G. Molina, “A plugin-based languagexperiment
with model transformations,” i8*" International Conference on Model
Driven Engineering Languages and Systendd. 4199. Lecture Notes
in Computer Science, October 2006, pp. 336—350.

D. Leijen and E. Meijer, “Parsec: Direct style monadiagg combi-
nators for the real world,” Department of Information and Cotimu
Sciences, Utrecht University, Tech. Rep. UU-CS-2001-3®12

P. Hudak, “Modular domain specific languages and toats Proceed-
ings: Fifth International Conference on Software RelReDevanbu and
J. Poulin, Eds. |IEEE Computer Society Press, 1998, pp. 124-14
S. N. Kamin and D. Hyatt, “A special-purpose language fature-
drawing,” inDSL'97: Proceedings of the Conference on Domain-Specific
Languages on Conference on Domain-Specific Languages (2997
Berkeley, CA, USA: USENIX Association, 1997, pp. 23-23.

K. Czarnecki, J. T. O’'Donnell, J. Striegnitz, and W. &HhDsl im-
plementation in metaocaml, template haskell, and c++.Dismain-
Specific Program Generatiorser. Lecture Notes in Computer Science,
C. Lengauer, D. S. Batory, C. Consel, and M. Odersky, Eds.,3616.
Springer, 2003, pp. 51-72.

M. Wimmer and G. Kramler, “Bridging grammarware and modelware
Satellite Events at the MODELS 2005 Conferemge 159-168, 2006.
A. Lédeczi, G. Nordstrom, G. Karsai, P. Valgyesi, and M. 84ar*On
metamodel composition,” iRroceedings of the 2001 IEEE International
Conference on Control Applications (CGA)001, pp. 756—760.

S. Brinkkemper, M. Saeki, and F. Harmsen, “Meta-modelllased
assembly techniques for situational method engineeritigrmation
Systemsvol. 24, no. 3, pp. 209-228, May 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0306-4379(99)00016-2

D. Spinellis, “Notable design patterns for domain sfiedanguages,”
Journal of Systems and Softwam®l. 56, no. 1, pp. 91-99, Feb. 2001.
M. Voelter, “A family of languages for architecture degtion,” in 8th
OOPSLA Workshop on Domain-Specific Modeling (DSM'G8). 2008.
M. Belaunde, “Transformation Composition in QVT,” Rroceedings of
the First European Workshop on Composition of Model Tramsétions
July 2006, pp. 45-52.

Jedis Snchez CuadradoJegis Sinchez Cuadrado

is a PhD candidate at the University of Murcia.
His research interests are model-driven development,
model transformation languages, and dynamic lan-
guages. He received his masters in computer science
from the University of Murcia. Contact him at the
Dept. of Computers and Systems, Facultad de In-
formatica, Univ. of Murcia, Murcia 30071, Spain;
jesusc@um.es.

Jedis Garcia Molina Jesis Garta Molina is a
professor of software design at the University of
Murcia, where he leads the Software Technology Re-
search Group. His research interests include model-
driven development, domain-specific languages, and
software processes. He received his PhD in science
from the University of Murcia. Contact him at the
Dept. of Computers and Systems, Facultad de In-
formatica, Univ. of Murcia, Murcia 30071, Spain;
jmolina@um.es.

